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Abstract

In this paper, we introduce Suzuki Z-contraction type (I) maps, Suzuki Z-contraction type (II) maps, for a
single selfmap and prove the existence and uniqueness of fixed points. Our results extend / generalize the
results of Kumam, Gopal and Budhia [22] and Padcharoen, Kumam, Saipara and Chaipunya [25] from the
metric space setting to b-metric spaces. We provide examples in support of our results.
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1. Introduction

In 1975, in the direction of generalization of contraction condition, Dass and Gupta [18] initiated a
contraction condition involving rational expression and established the existence of fixed points in com-
plete metric spaces. In 2008, Suzuki [28] proved two fixed point theorems, one of which is a new type of
generalization of the Banach contraction principle and does characterize the metric completeness.

On the other hand, in the direction of generalization of metric spaces, Bourbaki [15] and Bakhtin [9]
initiated the idea of b-metric spaces. The concept of b-metric space or metric type space was introduced by
Czerwik [16] as a generalization of metric space. Afterwards, many authors studied the existence of fixed
points for a single-valued and multi-valued mappings in b-metric spaces under certain contraction conditions.
For more details, we refer [1, 3, 4, 5, 6, 10, 11, 12, 13, 14, 17, 20, 23, 27].
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Definition 1.1. [16] Let X be a non-empty set. A function d : X ×X → [0,∞) is said to be a b-metric if
the following conditions are satisfied: for any x, y, z ∈ X

(i) 0 ≤ d(x, y) and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) there exists s ≥ 1 such that d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with s = 1. In general, every b-metric space is not a metric space.

Definition 1.2. [11] Let (X, d) be a b-metric space.

(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such
that d(xn, x)→ 0 as n→∞. In this case, we write lim

n→∞
xn = x.

(ii) A sequence {xn} in Xis called b-Cauchy if d(xn, xm)→ 0 as
n,m→∞.

(iii) A b-metric space (X, d) is said to be a complete b-metric space if every
b-Cauchy sequence in X is b-convergent in X.

(iv) A set B ⊂ X is said to be b-closed if for any sequence {xn} in B such
that {xn} is b-convergent to z ∈ X then z ∈ B.

In general, a b-metric is not necessarily continuous.
In this paper, we denote R+ = [0,∞) and N is the set of all natural numbers.

Example 1.3. [19] Let X = N ∪ {∞}. We define a mapping d : X ×X → R+ as follows:

d(m,n) =


0 if m = n,

| 1m −
1
n | if one of m,n is even and the other is even or ∞,

5 if one of m,n is odd and the other is odd or ∞,
2 otherwise.

Then (X, d) is a b-metric space with coefficient s = 5
2 .

Definition 1.4. [11] Let (X, dX) and (Y, dY ) be two b-metric spaces. A function f : X → Y is a b-continuous
at a point x ∈ X, if it is b-sequentially continuous at x. i.e., whenever {xn} is b-convergent to x we have
fxn is b-convergent to fx.

The following lemmas are useful in proving our main results.

Lemma 1.5. [8] Suppose (X, d) is a metric space. Let {xn} be a sequence in X such that d(xn, xn+1) → 0
as n → ∞. If {xn} is not a Cauchy sequence then there exist an ε > 0 and sequences of positive integers
{mk} and {nk} with nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε. For each k > 0, corresponding to mk, we can

choose nk to be the smallest positive integer such that d(xmk
, xnk

) ≥ ε, d(xmk
, xnk−1) < ε . In this case,

(i) lim
k→∞

d(xmk
, xnk

) = ε,

(ii) lim
k→∞

d(xnk−1, xmk
) = ε,

(iii) lim
k→∞

d(xmk+1, xnk
) = ε,
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(iv) lim
k→∞

d(xmk+1, xnk−1) = ε.

Lemma 1.6. [26] Suppose (X, d) is a b-metric space with coefficient s ≥ 1 and {xn} be a sequence in X such
that d(xn, xn+1)→ 0 as n→∞. If {xn} is a not Cauchy sequence then there exist an ε > 0 and sequences of
positive integers {mk} and {nk} with nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε. For each k > 0, corresponding

to mk, we can choose nk to be the smallest positive integer such that d(xmk
, xnk

) ≥ ε, d(xmk
, xnk−1) < ε and

(i) ε ≤ lim inf
k→∞

d(xmk
, xnk

) ≤ lim sup
k→∞

d(xmk
, xnk

) ≤ sε,

(ii) ε
s ≤ lim inf

k→∞
d(xmk+1, xnk

) ≤ lim sup
k→∞

d(xmk+1, xnk
) ≤ s2ε,

(iii) ε
s ≤ lim inf

k→∞
d(xmk

, xnk+1) ≤ lim sup
k→∞

d(xmk
, xnk+1) ≤ s2ε,

(iv) ε
s2
≤ lim inf

k→∞
d(xmk+1, xnk+1) ≤ lim sup

k→∞
d(xmk+1, xnk+1) ≤ s3ε.

Lemma 1.7. [2] Let (X, d) be a b-metric space with coefficient s ≥ 1.
Suppose that {xn} and {yn} are b-convergent to x and y respectively. Then we have

1
s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover for each z ∈ X we have
1
sd(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

In 2015, Khojasteh, Shukla and Radenović [21] introduced simulation function and defined Z-contraction
with respect to a simulation function.

Definition 1.8. [21] A simulation function is a mapping
ζ : R+ × R+ → (−∞,∞) satisfying the following conditions:

(i) ζ(0, 0) = 0;

(ii) ζ(t, s) < s− t for all s, t > 0;

(iii) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn = l ∈ (0,∞) then

lim sup
n→∞

ζ(tn, sn) < 0.

Remark 1.9. [7] Let ζ be a simulation function. If {tn}, {sn} are sequences in (0,∞) such that
lim
n→∞

tn = lim
n→∞

sn = l ∈ (0,∞) then lim sup
n→∞

ζ(ktn, sn) < 0 for any k > 1.

The following are examples of simulation functions.

Example 1.10. [7] Let ζ : R+ × R+ → (−∞,∞) be defined by

(i) ζ(t, s) = λs− t for all t, s ∈ R+, where λ ∈ [0, 1);

(ii) ζ(t, s) = s
1+s − t for all s, t ∈ R+;

(iii) ζ(t, s) = s− kt for all t, s ∈ R+, where k > 1;

(iv) ζ(t, s) = 1
1+s − (1 + t) for all s, t ∈ R+;

(v) ζ(t, s) = 1
k+s − t for all s, t ∈ R+ where k > 1.
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Definition 1.11. [21] Let (X, d) be a metric space and f : X → X be a selfmap of X. We say that f is a
Z-contraction with respect to ζ if there exists a simulation function ζ such that

ζ(d(fx, fy), d(x, y)) ≥ 0

for all x, y ∈ X.

Theorem 1.12. [21] Let (X, d) be a complete metric space and f : X → X be a Z-contraction with respect
to a certain simulation function ζ. Then for every x0 ∈ X, the Picard sequence {fnx0} converges in X and
lim
n→∞

fnx0 = u(say) in X and u is the unique fixed point of f in X.

Recently, Olgun, Bicer and Alyildiz [24] proved the following result in complete metric spaces.

Theorem 1.13. [24] Let (X, d) be a complete metric space and f : X → X be a selfmap on X. If there
exists a simulation function ζ such that

ζ(d(fx, fy),M(x, y)) ≥ 0

for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)2 }, then for every x0 ∈ X, the
Picard sequence {fnx0} converges in X and lim

n→∞
fnx0 = u(say) in X and u is the unique fixed point of f in

X.

The following theorem is due to Kumam, Gopal and Budhia [22].

Theorem 1.14. [22] Let (X, d) be a complete metric space and f : X → X be a selfmap on X. If there
exists a simulation function ζ such that

1

2
d(x, fx) < d(x, y) =⇒ ζ(d(fx, fy), d(x, y)) ≥ 0

for all x, y ∈ X, then for every x0 ∈ X, the Picard sequence {xn}, where xn = fxn−1 for all n ∈ N converges
to the unique fixed point of f .

In 2018, Padcharoen, Kumam, Saipara and Chaipunya [25] proved the following theorem in complete
metric spaces.

Theorem 1.15. [25] Let (X, d) be a complete metric space and f : X → X be a selfmap on X. If there
exists a simulation function ζ such that

1

2
d(x, fx) < d(x, y) =⇒ ζ(d(fx, fy),M(x, y)) ≥ 0

for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)2 }, then for every x0 ∈ X, the
Picard sequence {xn}, where xn = fxn−1 for all n ∈ N converges to the unique fixed point of f .

Motivated by the works of Kumam, Gopal and Budhia [23] and
Padcharoen, Kumam, Saipara and Chaipunya [25], we extend Theorem 1.14 and Theorem 1.15 to b-metric
spaces for the maps satisfying Suzuki Z-contraction type maps.

In Section 2, we introduce Suzuki Z-contraction type (I) maps, Suzuki Z-contraction type (II) maps, for
a single selfmap and provide examples of these maps. In Section 3, we prove the existence and uniqueness of
fixed points of Suzuki Z-contraction type maps. Examples are provided in support of our results in Section
4.
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2. Suzuki Z-contraction type maps

The following we introduce Suzuki Z-contraction type (I) and Suzuki Z-contraction type (II) maps
for a single selfmap in b-metric spaces as follows:

Definition 2.1. Let (X, d) be a b-metric space with coefficient s ≥ 1 and f : X → X be a selfmap. We say
that f is a Suzuki Z-contraction type (I) map, if there exists a simulation function ζ such that

1

2s
d(x, fx) < d(x, y) implies that ζ(s4d(fx, fy),M1(x, y)) ≥ 0 (2.1.1)

for all distinct x, y ∈ X, where

M1(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2s
}.

Remark 2.2. It is clear that from definition of simulation function that ζ(u, v) < 0, for all u ≥ v > 0.
Therefore if f satisfies (2.1.1), then

1

2s
d(x, fx) < d(x, y) implies that s4d(fx, fy) < M1(x, y),

for all distinct x, y ∈ X.

Example 2.3. Let X = (0, 1) and let d : X ×X → R+ defined by

d(x, y) =

{
0 if x = y

(x+ y)2 if x 6= y.
Then clearly (X, d) is a b-metric space with coefficient s = 2.
We define f : X → X by f(x) = x

16(1+x) for all x ∈ (0, 1) and ζ : R+ × R+ → (−∞,∞)

by ζ(t, s) = 1
4s− t, t, s ≥ 0. Without loss of generality, we assume that y ≤ x. We have

1

2s
d(x, fx) =

1

4
(x+

x

16(1 + x)
)2 ≤ 1

4
(x+

x

(1 + x)
)2 ≤ (x+ y)2 = d(x, y).

Here
M1(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)2s }

= max{(x+ y)2, (x+ x
16(1+x))

2, (y + y
16(1+y))

2,
(x+ y

16(1+y)
)2+(y+ x

16(1+x)
)2

4 }.

Now we consider
s4d(fx, fy) = 16( x

16(1+x) + y
16(1+y))

2 = 1
16( x

(1+x) + y
(1+y))

2

≤ 1
16( x

(1+x) + x)2 ≤ 1
4(x+ y)2

≤ 1
4d(x, y) ≤ 1

4M1(x, y).

Therefore f is a Suzuki Z-contraction type (I) map.

Definition 2.4. Let (X, d) be a b-metric space with coefficient s ≥ 1 and f : X → X be a selfmap. We say
that f is a Suzuki Z-contraction type (II) map, if there exists a simulation function ζ such that

1

2s
d(x, fx) < d(x, y) implies that ζ(s4d(fx, fy),M2(x, y)) ≥ 0 (2.4.1)

for all distinct x, y ∈ X, where

M2(x, y) = max{d(x, y),
d(y, fy)[1 + d(x, fx)]

1 + d(x, y)
,
d(y, fx)[1 + d(x, fx)]

s2(1 + d(x, y))
}.
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Remark 2.5. It is clear that from definition of simulation function that ζ(u, v) < 0, for all u ≥ v > 0.
Therefore if f satisfies (2.4.1), then

1

2s
d(x, fx) < d(x, y) implies that s4d(fx, fy) < M2(x, y),

for all distinct x, y ∈ X.

Example 2.6. Let X = (0, 1) and let d : X ×X → R+ defined by

d(x, y) =

{
0 if x = y

(x+ y)2 if x 6= y.
It is clear that (X, d) is a b-metric space with coefficient s = 2.

Let f : X → X by f(x) = x(10+x)
256 for all x ∈ (0, 1) and ζ : R+ × R+ → (−∞,∞) by ζ(t, s) = 1

4s− t, t ≥
0, s ≥ 0. Without loss of generality, we assume that y ≤ x.
We have

1

2s
d(x, fx) =

1

4
(x+

x(10 + x)

256
)2 ≤ 1

4
(x+

x(10 + x)

16
)2 ≤ (x+ y)2 = d(x, y).

Here

M2(x, y) = max{d(x, y),
d(y, fy)[1 + d(x, fx)]

1 + d(x, y)
,
d(y, fx)[1 + d(x, fx)]

s2(1 + d(x, y))
}

= max{(x+ y)2,
(y + y(10+y)

256 )2[1 + (x+ x(10+x)
256 )2]

1 + (x+ y)2
,
(y + x(10+x)

256 )2[1 + (x+ x(10+x)
256 )2]

4(1 + (x+ y)2)
}.

Now we consider

s4d(fx, fy) = 16(
x(10 + x)

256
+
y(10 + y)

256
)2 =

1

16
(
x(10 + x)

16
+
y(10 + y)

16
)2

≤ 1
16(x(10+x)16 + y)2 ≤ 1

4(x+ y)2 ≤ 1
4d(x, y) ≤ 1

4M2(x, y).

Therefore f is a Suzuki Z-contraction type (II) map.

3. Main results

Theorem 3.1. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and f : X → X be a Suzuki
Z-contraction type (I) map. Then f has a unique fixed point in X.

Proof. We take x0 ∈ X and let {xn} be the Picard sequence, that is, xn = fxn−1 = fnx0 for n ∈ N. If there
exists n ∈ N such that d(xn, fxn) = 0 then x = xn becomes a fixed point of f , which completes the proof.
So, without loss of generality, we suppose that d(xn, fxn) > 0
for all n = 0, 1, 2, . . . .
Since

1

2s
d(xn, fxn) ≤ d(xn, xn+1),

from (2.1.1), we have

ζ(s4d(xn+1, xn+2),M1(xn, xn+1)) = ζ(s4d(fxn, fxn+1),M1(xn, xn+1)) ≥ 0, (3.1.1)

where

M1(xn, xn+1) = max{d(xn, xn+1), d(xn, fxn), d(xn+1, fxn+1),
1
2s [d(xn, fxn+1) + d(xn+1, fxn)]}

= max{d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+2)

2s }
= max{d(xn, xn+1), d(xn+1, xn+2)}.
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If d(xn, xn+1) < d(xn+1, xn+2) then M1(xn, xn+1) = d(xn+1, xn+2). Therefore from (3.1.1), we have

0 ≤ ζ(s4d(xn+1, xn+2),M1(xn, xn+1)) = ζ(s4d(xn+1, xn+2), d(xn+1, xn+2))
< d(xn+1, xn+2)− s4d(xn+1, xn+2),

which is a contradiction. Therefore d(xn, xn+1) ≥ d(xn+1, xn+2) for all n = 0, 1, 2, . . . .
Hence {d(xn, xn+1)} is a decreasing sequence of nonnegative real sequence. Thus there exists r ≥ 0 such
that lim

n→∞
d(xn, xn+1) = r.

Suppose that r > 0. By using the condition (ζ3) with tn = d(xn+1, xn+2) and sn = d(xn, xn+1), we have

0 ≤ lim sup
n→∞

ζ(s4d(xn+1, xn+2),M1(xn, xn+1))

= lim sup
n→∞

ζ(s4d(xn+1, xn+2), d(xn, xn+1)) < 0,

a contradiction. Therefore
lim
n→∞

d(xn, xn+1) = 0. (3.1.2)

Now we prove that {xn} is a b-Cauchy sequence.
On the contrary, suppose that {xn} is not b-Cauchy.
Case (i). s = 1.
In this case, by Lemma 1.5 there exist an ε > 0 and sequence of positive integers {nk} and {mk} with
nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε and d(xmk

, xnk−1) < ε satisfying (i)-(iv) of Lemma 1.5.
Suppose that there exists a k ≥ k1 such that

1

2
d(xmk

, xmk+1) > d(xmk
, xnk

). (3.1.3)

On letting as k →∞ in (3.1.3), we get that ε ≤ 0,
which is a contradiction.
Therefore 1

2d(xmk
, xmk+1) ≤ d(xmk

, xnk
) and from (2.1.1), we have

ζ(d(fxmk
, fxnk

),M1(xmk
, xnk

)) ≥ 0,

where

M1(xmk
, xnk

) = max{d(xmk
, xnk

), d(xmk
, fxmk

), d(xnk
, fxnk

),
1

2
[d(xnk

, fxmk
) + d(xmk

, fxnk
)]}.

On taking limits as k →∞ and using (3.1.2), we get

lim
n→∞

M1(xmk
, xnk

) = max{ε, 0, 0, ε} = ε.

By using (ζ3) with tn = d(xmk+1, xnk+1) and sn = M1(xmk
, xnk

), we have

0 ≤ lim sup
k→∞

ζ(d(xmk+1, xnk+1),M1(xmk
, xnk

)) < 0,

a contradiction.
Case (ii). s > 1.
In this case, by Lemma 1.6 there exist an ε > 0 and sequences of positive integers {nk} and {mk} with
nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε and d(xmk

, xnk−1) < ε satisfying (i)-(iv) of Lemma 1.6. Suppose
that there exists a k ≥ k1 such that

1

2s
d(xmk

, xmk+1) > d(xmk
, xnk

). (3.1.4)
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On letting limit superior as k → ∞ in (3.1.4), we get that ε ≤ 0, which is a contradiction. Therefore
1
2sd(xmk

, xmk+1) ≤ d(xmk
, xnk

) and from (2.1.1), we have

ζ(s4d(fxmk
, fxnk

),M1(xmk
, xnk

)) ≥ 0,

where

M1(xmk
, xnk

) = max{d(xmk
, xnk

), d(xmk
, fxmk

), d(xnk
, fxnk

),
1

2s
[d(xnk

, fxmk
) + d(xmk

, fxnk
)]}.

On taking limit superior as k →∞ and using (3.1.2), we get

lim
n→∞

M1(xmk
, xnk

) ≤ max{sε, 0, 0, sε} = sε.

Now we have
0 ≤ lim sup

k→∞
ζ(s4d(fxmk

, fxnk
),M1(xmk

, xnk
))

≤ lim sup
k→∞

[M1(xmk
, xnk

)− s4d(xmk+1, xnk+1)]

= lim sup
k→∞

M1(xmk
, xnk

)− s4 lim inf
k→∞

d(xmk+1, xnk+1)

≤ sε− s4 ε
s2
,

which is a contradiction. Therefore by Case (i) and Case (ii), we have {xn} is a b-Cauchy sequence in X.
Since X is b-complete, there exists x ∈ X such that lim

n→∞
xn = x.

Now we prove that x is a fixed point of f . Suppose that x 6= fx. We now show that

either (a) :
1

2s
d(xn, xn+1) ≤ d(xn, x) (or) (b) :

1

2s
d(xn+1, xn+2) ≤ d(xn+1, x) (3.1.5)

hold.
On the contrary, suppose that

1

2s
d(xn, xn+1) > d(xn, x) and

1

2s
d(xn+1, xn+2) > d(xn+1, x) hold for some n = {0, 1, 2, . . .}.

By b-triangular property, we have

d(xn, xn+1) ≤ s[d(xn, x) + d(x, xn+1)]
< s 1

2s [d(xn, xn+1) + d(xn+1, xn+2)]
= 1

2 [d(xn, xn+1) + d(xn, xn+1)]
= d(xn, xn+1),

which is a contradiction. Therefore the inequality (3.1.5) holds.
Subcase (a). Suppose 1

2sd(xn, xn+1) ≤ d(xn, x).
Since 1

2sd(xn, fxn) ≤ d(xn, x), from the inequality (2.1.1), we have

ζ(s4d(fxn, fx),M1(xn, x)) ≥ 0,

where
M1(xn, x) = max{d(xn, x), d(xn, fxn), d(x, fx),

1

2s
[d(xn, fx) + d(x, fxn)]}.

On taking limit superior as n→∞, we get

lim sup
n→∞

M1(xn, x) ≤ max{0, 0, d(x, fx),
1

2s
sd(x, fx)} = d(x, fx).
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Therefore
0 ≤ lim sup

n→∞
ζ(s4d(fxn, fx),M1(xn, x))

= lim sup
n→∞

M1(xn, x)− lim inf
n→∞

s4d(xn+1, fx)

≤ d(x, fx)− s4 d(x,fx)s ,

a contradiction. Therefore x = fx.
Subcase (b). Suppose 1

2sd(xn+1, xn+2) ≤ d(xn+1, x).
Since 1

2sd(xn+1, fxn+1) ≤ d(xn+1, x), from the inequality (2.1.1), we have

ζ(s4d(fxn+1, fx),M1(xn+1, x)) ≥ 0.

Following on the similar lines as in Subcase (a), we have x is a fixed point of f .
We now show that f has unique fixed point in X. Let x and y be two fixed points of f with x 6= y. Since
1
2sd(x, fx) < d(x, y), from the inequality (2.1.1), we have

ζ(s4d(fx, fy),M1(x, y)) ≥ 0,

where

M1(x, y) = max{d(x, y), d(x, fx), d(y, fy),
1

2s
[d(x, fy) + d(y, fx)]} = d(x, y).

Therefore
0 ≤ lim sup

n→∞
ζ(s4d(fx, fy),M1(x, y))

= lim sup
n→∞

M(x, y)− lim inf
n→∞

s4d(x, y)

≤ d(x, y)− s4d(x, y),

a contradiction.
Therefore x is the unique fixed point of f in X.

Even though, the proof of the following theorem is as that of Theorem 3.1, the importance of the rational
term d(y,fx)[1+d(x,fx)]

s2(1+d(x,y))
in the inequality (2.4.1) is established in Example 4.3.

Theorem 3.2. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and f : X → X be a Suzuki
Z-contraction type (II) map. Then f has a unique fixed point in X.

Proof. Take x0 = x ∈ X and let {xn} be the Picard sequence, that is, xn = fxn−1 = fnx0 for all n ∈ N.
Without loss of generality, we suppose that d(xn, fxn) > 0 for n = 0, 1, 2, . . . .
We have 1

2sd(xn, fxn) ≤ d(xn, xn+1). From (2.4.1), we have

ζ(s4d(xn+1, xn+2),M2(xn, xn+1)) = ζ(s4d(fxn, fxn+1),M2(xn, xn+1)) ≥ 0 (3.2.1)

where

M2(xn, xn+1) = max{d(xn, xn+1),
d(xn+1,fxn+1)[1+d(xn,fxn)]

1+d(xn,xn+1)
, d(xn+1,fxn)[1+d(xn,fxn)]

s2(1+d(xn,xn+1))
}

= max{d(xn, xn+1), d(xn+1, xn+2)}.

If d(xn, xn+1) < d(xn+1, xn+2) then M2(xn, xn+1) = d(xn+1, xn+2).
Therefore from (3.2.1), we have

0 ≤ ζ(s4d(xn+1, xn+2),M2(xn, xn+1)) = ζ(s4d(xn+1, xn+2), d(xn+1, xn+2))
< d(xn+1, xn+2)− s4d(xn+1, xn+2),

a contradiction. Therefore d(xn, xn+1) ≥ d(xn+1, xn+2) for all n = 0, 1, 2, . . . . Hence {d(xn, xn+1)} is a
decreasing nonnegative sequence of reals.
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Thus there exists r ≥ 0 such that lim
n→∞

d(xn, xn+1) = r.
Suppose that r > 0. By using the condition (ζ3) with tn = d(xn+1, xn+2) and sn = d(xn, xn+1), we have

0 ≤ lim sup
n→∞

ζ(s4d(xn+1, xn+2),M2(xn, xn+1)) = lim sup
n→∞

ζ(s4d(xn+1, xn+2), d(xn, xn+1)) < 0,

a contradiction. Therefore
lim
n→∞

d(xn, xn+1) = 0. (3.2.2)

We now prove that {xn} is a b-Cauchy sequence. On the contrary suppose that {xn} is not b-Cauchy.
Case (i). s = 1.
In this case, by Lemma 1.5 there exist an ε > 0 and sequence of positive integers {nk} and {mk} with
nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε and d(xmk

, xnk−1) < ε satisfying (i)-(iv) of Lemma 1.5.
Suppose that there exists a k ≥ k1 such that

1

2
d(xmk

, xmk+1) > d(xmk
, xnk

). (3.2.3)

On letting as k →∞ in (3.2.3), we get that ε ≤ 0,
which is a contradiction.
Therefore 1

2d(xmk
, xmk+1) ≤ d(xmk

, xnk
) and from (2.4.1), we have

ζ(d(fxmk
, fxnk

),M2(xmk
, xnk

)) ≥ 0,

where

M2(xmk
, xnk

) = max{d(xmk
, xnk

),
d(xnk

,fxnk
)[1+d(xmk

,fxmk
)]

1+d(xmk
,xnk

) ,
d(xnk

,fxmk
)[1+d(xmk

,fxmk
)]

1+d(xmk
,xnk

) }.

On taking limits as k →∞ and using (3.2.2), we get

lim
n→∞

M(xmk
, xnk

) = max{ε, 0, ε

1 + ε
} = ε.

By using (ζ3) with tn = d(xmk+1, xnk+1) and sn = M2(xmk
, xnk

), we have

0 ≤ lim sup
k→∞

ζ(d(xmk+1, xnk+1),M2(xmk
, xnk

)) < 0,

which is a contradiction.
Case (ii). s > 1.
In this case, by Lemma 1.6 there exist an ε > 0 and and sequence of positive integers {nk} and {mk} with
nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε and d(xmk

, xnk−1) < ε satisfying (i)-(iv) of Lemma 1.6.
Suppose that there exists a k ≥ k1 such that

1

2s
d(xmk

, xmk+1) > d(xmk
, xnk

). (3.2.4)

On taking limit superior as k →∞ in (3.2.4), we get that ε ≤ 0,
which is a contradiction.
Therefore 1

2sd(xmk
, xmk+1) ≤ d(xmk

, xnk
) and from (2.4.1), we have

ζ(s4d(fxmk
, fxnk

),M2(xmk
, xnk

)) ≥ 0,

where
M2(xmk

, xnk
) = max{d(xmk

, xnk
),
d(xnk

,fxnk
)[1+d(xmk

,fxmk
)]

1+d(xmk
,xnk

) ,
d(xnk

,fxmk
)[1+d(xmk

,fxmk
)]

s2(1+d(xmk
,xnk

))
}.
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On taking limit superior as k →∞ and using (3.2.2), we get

lim
k→∞

M2(xmk
, xnk

) ≤ max{sε, 0, s2ε

s2(1 + ε)
} = sε.

Now we have
0 ≤ lim sup

k→∞
ζ(s4d(fxmk

, fxnk
),M2(xmk

, xnk
))

≤ lim sup
k→∞

[M2(xmk
, xnk

)− s4d(xmk+1, xnk+1)]

= lim sup
k→∞

M2(xmk
, xnk

)− s4 lim inf
k→∞

d(xmk+1, xnk+1)

≤ sε− s4 ε
s2
,

which is a contradiction. Therefore by Case (i) and Case (ii), we have {xn} is a b-Cauchy sequence in X.
Since X is b-complete, there exists x ∈ X such that lim

n→∞
xn = x.

Now we prove that x is a fixed point of f . Suppose that x 6= fx. We now show that either

(a) :
1

2s
d(xn, xn+1) ≤ d(xn, x) or (b) :

1

2s
d(xn+1, xn+2) ≤ d(xn+1, x) (3.2.5)

hold.
On the contrary suppose that

1

2s
d(xn, xn+1) > d(xn, x) and

1

2s
d(xn+1, xn+2) > d(xn+1, x) for some n = {0, 1, 2, . . .}.

By b-triangular property, we have

d(xn, xn+1) ≤ s[d(xn, x) + d(x, xn+1)] < s 1
2s [d(xn, xn+1) + d(xn+1, xn+2)]

= 1
2 [d(xn, xn+1) + d(xn, xn+1)] = d(xn, xn+1),

which is a contradiction. Therefore the inquality (3.2.5) holds.
Subcase (a). Suppose 1

2sd(xn, xn+1) ≤ d(xn, x).
Since 1

2sd(xn, fxn) ≤ d(xn, x), from the inequality (2.4.1), we have

ζ(s4d(fxn, fx),M2(xn, x)) ≥ 0,

where
M2(xn, x) = max{d(xn, x),

d(x, fx)[1 + d(xn, fxn)]

1 + d(xn, x)
,
d(x, fxn)[1 + d(xn, fxn)]

s2(1 + d(xn, x))
}.

On taking limit superior as n→∞, we get

lim sup
n→∞

M2(xn, x) ≤ max{0, d(x, fx),
d(x, fx)

s
} = d(x, fx).

Therefore
0 ≤ lim sup

n→∞
ζ(s4d(fxn, fx),M2(xn, x))

= lim sup
n→∞

M2(xn, x)− lim inf
n→∞

s4d(xn+1, fx)

≤ d(x, fx)− s4 d(x,fx)s ,

a contradiction. Therefore x = fx.
Subcase (b). Suppose 1

2sd(xn+1, xn+2) ≤ d(xn+1, x).
Since 1

2sd(xn+1, fxn+1) ≤ d(xn+1, x), from the inequality (2.4.1), we have

ζ(s4d(fxn+1, fx),M2(xn+1, x)) ≥ 0.

On the similar lines as in Subcase (a), here also it follows that x is a fixed point of f .
Uniqueness of fixed point of f follows as in the proof of Theorem 3.1.
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4. Examples

The following is an example in support of Theorem 3.1.

Example 4.1. Let X = R+ and let d : X ×X → R+ defined by

d(x, y) =


0 if x = y,
4 if x, y ∈ [0, 1],

5 + 1
x+y if x, y ∈ (1,∞),

66
25 otherwise.

Then clearly (X, d) is a complete b-metric space with coefficient s = 25
24 . Here we observe that when x =

10
9 , z = 1 ∈ [1,∞) and y ∈ (0, 1), we have d(x, z) = 5 + 1

x+z = 104
19 and d(x, y) + d(y, z) = 66

25 + 66
25 = 132

25 so
that d(x, z) 6= d(x, y) + d(y, z). Hence d is a b-metric with s = 25

24 but not a metric.

We define f : X → X by f(x) =

{
2 if x ∈ [0, 1)
1
x if x ∈ [1,∞).

and ζ : R+ × R+ → (−∞,∞) by ζ(t, s) = 99
100s − t,

t, s ∈ R+.
Then ζ is a simulation function. Without loss of generality, we assume that y ≤ x.
Case (i). x, y ∈ [0, 1).
Since 1

2sd(x, fx) = 12
25(6625) ≤ 4 = d(x, y), we have d(fx, fy) = 0 and clearly the inequality (2.1.1) holds in

this case.
Case (ii). x, y ∈ (1,∞).
Since 1

2sd(x, fx) = 12
25(6625) ≤ 5 + 1

(x+y) = d(x, y), we have d(fx, fy) = 4, d(x, y) = 5 + 1
(x+y) , d(x, fx) =

66
25 , d(y, fy) = 66

25 , d(x, fy) = 66
25 , d(y, fx) = 66

25 and

M1(x, y) = max{d(x, y), d(x, fx), d(y, fy, 1
2s [d(x, fy) + d(y, fx)])}

= max{5 + 1
(x+y) ,

66
25 ,

66
25 ,

12
25 [6625 + 66

25 ]} = 5 + 1
(x+y) .

We consider

ζ(s4d(fx, fy),M1(x, y)) =
99

100
M1(x, y)− s4d(fx, fy) =

99

100
(5 +

1

(x+ y)
)− (

25

24
)4(4) ≥ 0.

Case (iii). x ∈ (1,∞), y ∈ [0, 1).
Since 1

2sd(x, fx) = 12
25(6625) ≤ 66

25 = d(x, y).
d(fx, fy) = 66

25 , d(x, y) = 66
25 , d(x, fx) = 66

25 , d(y, fy) = 66
25 , d(x, fy) = 5 + 1

(x+y) , d(y, fx) = 4 and

M1(x, y) = max{d(x, y), d(x, fx), d(y, fy), 1
2s [d(x, fy) + d(y, fx)]}

= max{6625 ,
66
25 ,

66
25 ,

12
25 [5 + 1

(x+y) + 4]} = 12
25 [9 + 1

(x+y) ].

We consider
ζ(s4d(fx, fy),M1(x, y)) = 99

100M1(x, y)− s4d(fx, fy)

= 99
100(1225 [9 + 1

(x+y) ])− (2524)4(6625) ≥ 0.

Case (iv). x = 1, y ∈ [0, 1).
Since 1

2sd(x, fx) = 0 < 4 = d(x, y).
d(fx, fy) = 66

25 , d(x, y) = 4, d(x, fx) = 0, d(y, fy) = 66
25 , d(x, fy) = 66

25 , d(y, fx) = 4 and

M1(x, y) = max{d(x, y), d(x, fx), d(y, fy), 1
2s [d(x, fy) + d(y, fx)]}

= max{4, 0, 6625 ,
12
25 [6625 + 4]} = 4.

We consider
ζ(s4d(fx, fy),M1(x, y)) = 99

100M1(x, y)− s4d(fx, fy)
= 99

100(4)− (2524)4(6625) ≥ 0.
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From all the above cases, f is a Suzuki Z-contraction type (I) map. Therefore f satisfies all the hypotheses
of Theorem 3.1 and 1 is the unique fixed point of f .

Remark 4.2. Theorem 3.1 and Example 4.1 extend and generalize Theorem 1.14 to b-metric spaces. Also
Theorem 3.1 extends Theorem 1.15 to b-metric spaces.

The following is an example in support of Theorem 3.2.

Example 4.3. Let X = [0,∞) and let d : X ×X → R+ defined by

d(x, y) =


0 if x = y,
4 if x, y ∈ [0, 1],

5 + 1
x+y if x, y ∈ (1,∞),

27
10 otherwise.

Then clearly (X, d) is a complete b-metric space with coefficient s = 489
480 . Here we observe that when x =

11
10 , z = 12

10 ∈ (1,∞) and y ∈ (0, 1], we have

d(x, z) = 5 +
1

x+ z
=

125

23
and d(x, y) + d(y, z) =

27

10
+

27

10
=

54

10

so that d(x, z) 6= d(x, y) + d(y, z). Hence d is a b-metric with s = 489
480 but not a metric.

We define f : X → X by f(x) =

{
2 if x ∈ [0, 1)
2

x2+1
if x ∈ [1,∞).

We define ζ : R+ × R+ → (−∞,∞) by ζ(s, t) = 99
100 t − s, t ≥ 0, s ≥ 0. Then ζ is a simulation function.

Without loss of generality, we assume that x ≥ y.
Case (i). x, y ∈ [0, 1).
1
2sd(x, fx) = (480978)(2710) ≤ 4 = d(x, y). Since d(fx, fy) = 0 the inequality (2.4.1) holds in this case.
Case (ii). x, y ∈ (1,∞).
We have 1

2sd(x, fx) = (480978)(2710) ≤ 5 + 1
x+y = d(x, y),

d(fx, fy) = 4, d(x, y) = 5 +
1

x+ y
, d(x, fx) =

27

10
, d(y, fy) =

27

10
, d(y, fx) =

27

10

and
M2(x, y) = max{d(x, y), d(y,fy)[1+d(x,fx)]1+d(x,y) , d(y,fx)[1+d(x,fx)]

s2(1+d(x,y))
}

= max{5 + 1
x+y ,

27
10

[1+ 27
10

]

6+ 1
x+y

,
27
10

[1+ 27
10

]

( 489
480

)2(6+ 1
x+y

)
}

= 5 + 1
x+y .

We consider
ζ(s4d(fx, fy),M2(x, y)) = 99

100M2(x, y)− s4d(fx, fy)

= 99
100(5 + 1

x+y )− (489480)4(4) ≥ 0.

Case (iii). x ∈ (1,∞), y ∈ [0, 1).
We have 1

2sd(x, fx) = (480978)(2710) ≤ 27
10 = d(x, y),

d(fx, fy) =
27

10
, d(x, y) =

27

10
, d(x, fx) =

27

10
, d(y, fy) =

27

10
, d(y, fx) = 4

and
M2(x, y) = max{d(x, y), d(y,fy)[1+d(x,fx)]1+d(x,y) , d(y,fx)[1+d(x,fx)]

s2(1+d(x,y))
}

= max{2710 ,
27
10

[1+ 27
10

]

1+ 27
10

,
4[1+ 27

10
]

( 489
480

)2(1+ 27
10

)
}

= 4
( 489
480

)2
.
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We consider

ζ(s4d(fx, fy),M2(x, y)) =
99

100
M2(x, y)− s4d(fx, fy) =

99

100
(

4
489
480

2 )− (
489

480
)4(

27

10
) ≥ 0.

Case (iv). x = 1, y ∈ [0, 1).
We have 1

2sd(x, fx) = 0 ≤ 4 = d(x, y),

d(fx, fy) =
27

10
, d(x, y) = 4, d(x, fx) = 0, d(y, fy) =

27

10
, d(y, fx) = 4,

and
M2(x, y) = max{d(x, y), d(y,fy)[1+d(x,fx)]1+d(x,y) , d(y,fx)[1+d(x,fx)]

s2(1+d(x,y))
}

= max{4, 2750 ,
4

( 489
480

)2(5)
} = 4.

We consider

ζ(s4d(fx, fy),M2(x, y)) =
99

100
M2(x, y)− s4d(fx, fy) =

99

100
(4)− (

489

480
)4(

27

10
) ≥ 0.

From all the above cases, f is a Suzuki Z-contraction type (II) map. Therefore f satisfies all the hypotheses
of Theorem 3.2 and 1 is the unique fixed point of f .

Here we observe from Case (iii) that, if we omit the term d(y,fx)[1+d(x,fx)]
s2(1+d(x,y))

from the inequality (2.4.1),
then the inequality (2.4.1) fails to hold so that Theorem 3.2 is not possible to apply.
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