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Abstract

We consider two types of second-order neutral functional differential equations with infinite distributed
delays and offer existence criteria for periodic solutions. During the process we invert the integro-differential
equations into equivalent integral equations and derive suitable fixed point mappings. We show that these
mappings fit into the framework of Schauder’s fixed point theorem so that periodic solutions are readily
obtained.
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1. Introduction

All biological systems and processes take time delays to complete. The delays can represent gestation
times, incubation periods, or transport delays. In many cases time delays can be substantial such as gesta-
tion and maturation or can represent little lags such as acceleration and deceleration in physical processes.
Therefore, it become natural to include time delay terms into the differential equations that model population
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dynamics. Such models are referred as delay differential equation models. Thus, it seems clear that ordinary
differential models are, at best, approximations of real word problems. In the last fifty years, delay models
are becoming more common, appearing in many branches of biological, economical and physical modeling
(see [1]-[12], [15]-[18]). This is due to their advantage of combining a simple, intuitive derivation with a wide
variety of possible behavior regimes and to the fact that such models operate on an infinite dimensional
space consisting of continuous functions that accommodate high dimensional dynamics (see [15]-[16]). More
recently investigators have given special attentions to the study of equations in which the delay occurs in the
derivative of the state variable as well as in the independent variable, so called neutral differential equations
(see, [1]-[10], [12], [13], [17]). As known by Hale [15], Hale and Lunel [16], neutral delay differential equa-
tions appear as models of electrical networks which contain lossless transmission lines. Such networks arise,
for example, in high speed computers where lossless transmission lines are used to interconnect switching
circuits.

Existence and periodicity of solutions of functional differential equations are of great interest in mathe-
matics and its applications to the modeling of various practical problems and have been extensively studied
in recent times (see [1]-[13], [17]-[18] and references therein).

The study on neutral functional differential equations is more intricate than ordinary delay differential
equations. This is why the studies of periodic solutions for neutral differential equations are relatively less
than those devoted to ordinary differential equation. Most of the investigations on neutral type equations
are confined to first order neutral differential equations. Very recently, Wu and Wang (see [18]) discussed
the second order neutral delay differential equation

(x (t)− cx (t− δ))′′ + a (t)x (t) = λb (t) f (x (t− τ (t))) ,

where λ is a positive parameter, δ and c are constants with |c| 6= 1, a (·) , b (·) are continuous positive
functions, f ∈ C ([0,∞), [0,∞)) and a (·) , b (·), τ (·) are periodic functions.

We consider the following two types of second-order neutral functional integro-differential equations with
infinite distributed mixed-delays

d2

dt2

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
= a (t)x (t)− b (t)

(∫ t

−∞
p (t, s)h1 (x (s)) ds+

∫ ∞
t

q (t, s)h2 (x (s)) ds

)
, (1.1)

and

d2

dt2

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
= −a (t)x (t) + b (t)

(∫ t

−∞
p (t, s)h1 (x (s)) ds+

∫ ∞
t

q (t, s)h2 (x (s)) ds

)
. (1.2)

Here a, b ∈ C (R,R+) are T -periodic functions, p : 4− → R+, q : 4+ → R+, p (t+ T, s+ T ) = p (t, s),
q (t+ T, s+ T ) = q (t, s), f (t+ T, s+ T, x) = f (t, s, x) and g (t+ T, s+ T, x) = g (t, s, x) with

4− := {(t, s) | s ≤ t} and 4+ := {(t, s) | t ≤ s} .

Also we assume that f : 4− × R → R+, g : 4+ × R → R+ and h1, h2 : R → R are uniformly continuous
functions at x.

Special cases of (1.1) and (1.2) have been considered and investigated by many authors. Particularly,
W. Han and J. Ren in [17], Ardjouni et al. in [1], have, by choosing available operators and applying
Krasnoselskii’s fixed-point theorem, obtained sufficient conditions providing existence of periodic solutions
to special cases of equations (1.1) and (1.2).
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The main features of this exposition are the following. In first section we introduce some notations and
lemmas and state some preliminary results needed in later sections. Then we give the Green’s function of
(1.1) and (1.2), which plays an important role in our investigation. Also, we present the inversions of (1.1)
and (1.2) and Schauder’s fixed point theorem. For details on Schauder’s theorem we refer the reader to [14].
In the last section, we present our main results on existence of periodic solutions of (1.1) and (1.2).

2. Preliminaries

For T > 0, let CT be the set of all continuous scalar functions x that are periodic in t with period T .
Then, endowed with the supremum norm,

‖x‖ := sup
t∈R
|x (t)| = sup

t∈[0,T ]
|x (t)| ,

(CT , ‖·‖) is a Banach space. Define

C−T := {x ∈ CT | x < 0} , C+
T = {x ∈ CT | x > 0} ,

and
CJT := {ϕ ∈ CT | ‖ϕ‖ ≤ J} .

Denote

M := sup {a (t) | t ∈ [0, T ]} , m := inf {a (t) | t ∈ [0, T ]} , β :=
√
M,

λ1 :=
exp

(
−βT

2

)
β (1− exp (−βT ))

, µ1 :=
1 + exp (−βT )

2β (1− exp (−βT ))
,

and

λ2 :=
cos
(
βT
2

)
2β sin

(
βT
2

) , µ2 := 1

2β sin
(
βT
2

) .
Throughout this section we let

H1 (t, s, x) := b (t) p (t, s)h1 (x (s))− a (t) f (t, s, x (s+ t)) ≥ 0, on 4− × CJT ,
H2 (t, s, x) := b (t) q (t, s)h2 (x (s))− a (t) g (t, s, x (s+ t)) ≥ 0, on 4+ × CJT .

Also, in order to simplify notation, we define the function H by

H (t) :=

∫ t

−∞
H1 (t, s, x (s)) ds+

∫ ∞
t

H2 (t, s, x (s)) ds.

Clearly, H is a positive continuous function on R.

Lemma 2.1 ([13]). The equation

d2

dt2
y (t)−My (t) = h(t), h ∈ C−T ,

has a unique T -periodic solution

y (t) =

∫ t+T

t
K1 (t, s) (−h (s)) ds,

where
K1 (t, s) :=

exp (−β (s− t)) + exp (β (s− t− T ))
2β (1− exp (−βT ))

, s ∈ [t, t+ T ] .
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Lemma 2.2 ([13]). λ1 ≤ K1 (t, s) ≤ µ1 and
∫ t+T
t K1 (t, s) ds =

1
M for all t ∈ [0, T ] and s ∈ [t, t+ T ].

Define the operator P1 : CT → CT by

(P1x) (t) := (I − T1B1)
−1 T1

(∫ t

−∞
[−H1 (t, s, x)] ds+

∫ ∞
t

[−H2 (t, s, x)] ds

)
, (2.1)

where

(T1h) (t) =

∫ t+T

t
K1 (t, s) (−h (s)) ds and (B1y) (t) = [a (t)−M ] y (t) .

Lemma 2.3 ([13]). The equation

d2

dt2
y (t)− a (t) y (t) = h(t), h ∈ C−T ,

has a unique T -periodic solution

y (t) = (P1h) (t) = (I − T1B1)
−1 T1h (t) .

Lemma 2.4 ([13]). P1 satisfies

0 < (T1h) (t) ≤ (P1h) (t) ≤
M

m
‖T1h‖ , h ∈ C−T .

The following lemma is essential for our results on existence of periodic solution of (1.1).

Lemma 2.5. If x ∈ CT , then x is a solution of equation (1.1) if and only if

x (t) =

∫ t

−∞
f (t, s, x (s+ t)) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds+ (P1x) (t) ,

where P1 is the map given by (2.1).

Proof. Let x ∈ CT be a solution of (1.1). Equation (1.1) can be rewritten as

d2

dt2

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
−M

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
= [−M + a (t)]

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
+ a (t)

(∫ t

−∞
f (t, s, x (s+ t)) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds

)
− b (t)

(∫ t

−∞
p (t, s)h1 (x (s)) ds+

∫ ∞
t

q (t, s)h2 (x (s)) ds

)
. (2.2)

Taking

y (t) = x (t)−
∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds.

Then, (2.2) is transformed into

d2

dt2
y (t)−My (t)

= (B1y) (t) + a (t)

(∫ t

−∞
f (t, s, x (s+ t)) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds

)
− b (t)

(∫ t

−∞
p (t, s)h1 (x (s)) ds+

∫ ∞
t

q (t, s)h2 (x (s)) ds

)
= h (t) . (2.3)
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From Lemma 2.1, we have

y (t) = (T1B1) y (t)

+ T1

(∫ t

−∞
a (t) f (t, s, x (s+ t)) ds+

∫ ∞
t

a (t) g (t, s, x (s+ t)) ds

)
− T1

(∫ t

−∞
b (t) p (t, s)h1 (x (s)) ds+

∫ ∞
t

b (t) q (t, s)h2 (x (s)) ds

)
.

This yields

(I − T1B1) y (t) = T1

(∫ t

−∞
[−H1 (t, s, x)] ds+

∫ ∞
t

[−H2 (t, s, x)] ds

)
.

Therefore, since ‖T1B1‖ ≤ 1− m
M < 1, we have

y (t) = (I − T1B1)
−1 T1

(∫ t

−∞
[−H1 (t, s, x)] ds+

∫ ∞
t

[−H2 (t, s, x)] ds

)
.

Obviously

x (t) =

∫ t

−∞
f (t, s, x (s+ t)) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds

+ (I − T1B1)
−1 T1

(∫ t

−∞
[−H1 (t, s, x)] ds+

∫ ∞
t

[−H2 (t, s, x)] ds

)
.

It is clear that y (t) is the unique T -periodic solution of (2.3) for h ∈ C−T .

Lemma 2.6 ([13]). The equation

d2

dt2
y (t) +My (t) = h(t), h ∈ C+

T ,

has a unique T -periodic solution

y (t) =

∫ t+T

t
K2 (t, s)h (s) ds,

where

K2 (t, s) =
cosβ

(
T
2 + t− s

)
2β cos βT2

, s ∈ [t, t+ T ] .

Lemma 2.7 ([13]).
∫ t+T
t K2 (t, s) ds = 1

M . Furthermore, if M <
(
π
T

)2 then λ2 ≤ K2 (t, s) ≤ µ2 for all
t ∈ [0, T ] and s ∈ [t, t+ T ].

Next, define the operator P2 : CT −→ CT by

(P2ϕ) (t) := (I − T2B2)
−1 T2

(∫ t

−∞
H1 (t, s, ϕ (s)) ds+

∫ ∞
t

H2 (t, s, ϕ (s)) ds

)
, (2.4)

where

(T2h) (t) =

∫ t+T

t
K2 (t, s)h (s) ds and (B2y) (t) = [M − a (t)] y (t) .
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Lemma 2.8 ([13]). The equation

d2

dt2
y (t) + a (t) y (t) = h(t), h ∈ C+

T ,

has a unique T -periodic solution

y (t) = (P2h) (t) = (I − T2B2)
−1 T2h (t) .

Lemma 2.9 ([13]). If M <
(
π
T

)2 then

0 < (T2h) (t) ≤ (P2h) (t) ≤
M

m
‖T2h‖ , h ∈ C+

T .

The following lemma is essential for our results on existence of periodic solution of (1.2).

Lemma 2.10. If x ∈ CT then x is a solution of equation (1.2) if and only if

x (t) =

∫ t

−∞
f (t, s, x (s+ t)) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds+ (P2x) (t) ,

where P2 is the map given by (2.4).

Proof. Let x ∈ CT be a solution of (1.2). Equation (1.2) can be rewritten as

d2

dt2

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
+M

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
= (M − a (t))

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
− a (t)

(∫ t

−∞
f (t, s, x (s+ t)) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds

)
+ b (t)

(∫ t

−∞
p (t, s)h1 (x (s)) ds+

∫ ∞
t

q (t, s)h2 (x (s)) ds

)
. (2.5)

Taking

y (t) = x (t)−
∫ t

−∞
f (t, s, x (s))x (s) ds−

∫ ∞
t

g (t, s, x (s)) ds,

then (2.5) is transformed into

d2

dt2
y (t) +My (t)

= (B2y) (t)− a (t)
(∫ t

−∞
f (t, s, x (s+ t)) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds

)
+ b (t)

(∫ t

−∞
p (t, s)h1 (x (s)) ds+

∫ ∞
t

q (t, s)h2 (x (s)) ds

)
= h (t) . (2.6)

From Lemma 2.6, we have

y (t) = (T2B2) y (t)

− T2
(∫ t

−∞
a (t) f (t, s, x (s+ t)) ds+

∫ ∞
t

a (t) g (t, s, x (s+ t)) ds

)
+ T2

(∫ t

−∞
b (t) p (t, s)h1 (x (s)) ds+

∫ ∞
t

b (t) q (t, s)h2 (x (s)) ds

)
.
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This yields

(I − T2B2) y (t) = T2

(∫ t

−∞
H1 (t, s, x (s)) ds+

∫ ∞
t

H2 (t, s, x (s)) ds

)
.

Therefore, since ‖T2B2‖ ≤ 1− m
M < 1, we obtain

y (t) = (I − T2B2)
−1 T2

(∫ t

−∞
H1 (t, s, x (s)) ds+

∫ ∞
t

H2 (t, s, x (s)) ds

)
.

Obviously

x (t) =

∫ t

−∞
f (t, s, x (s+ t))x (s) ds+

∫ ∞
t

g (t, s, x (s+ t)) ds

+ (I − T2B2)
−1 T2

(∫ t

−∞
H1 (t, s, x (s)) ds+

∫ ∞
t

H2 (t, s, x (s)) ds

)
.

It is obvious that y (t) is the unique T -periodic solution of (2.6) for h ∈ C+
T .

3. Periodic solutions

In this section we offer existence criteria for the periodic solutions of the second-order nonlinear neutral
integro-differential equations with infinite distributed delay. Lastly in this section we state the Schauder
fixed point theorem which enables us to prove the existence of periodic solutions to (1.1) and (1.2). For its
proof we refer the reader to [14]. This section is devoted to results concerning the condition (3.2) below.
We already know, from Lemma (2.5), that the existence of periodic solutions for (1.1) is equivalent to the
existence of solutions for the operator equation x = D1x (3.1), that is, the fixed points in CJT of D1. So we
assume, for any J > 0, that there are continuous functions FJ : 4− → R+ and GJ : 4+ → R+ such that

|f (t, s, ϕ)| ≤ FJ (t, s) , (t, s, ϕ) ∈ 4− × CJT ,
FJ (t+ T, s+ T ) = FJ (t, s) , (t, s) ∈ 4−,

and

|g (t, s, ϕ)| ≤ GJ (t, s) , (t, s, ϕ) ∈ 4+ × CJT ,
GJ (t+ T, s+ T ) = GJ (t, s) , (t, s) ∈ 4+.

Whenever necessary, we shall consider∫ t

−∞
H1 (t, s, ϕ (s)) ds+

∫ ∞
t

H2 (t, s, ϕ (s)) ds ≤ η.

We define an operator D1 on CT as follows, ϕ ∈ CT implies that

(D1ϕ) (t) =

∫ t

−∞
f (t, s, ϕ (s+ t)) ds+

∫ ∞
t

g (t, s, ϕ (s+ t)) ds+ (P1ϕ) (t) . (3.1)

It is easy to check that (D1ϕ) (t+ T ) = (D1ϕ) (t).
We are now ready to state existence T−periodic solution criteria for (1.1)–(1.2).

Proposition 3.1. Assume that∫ t−τ

−∞
FJ (t, s) ds+

∫ ∞
t+τ

GJ (t, s) ds converges to 0, (3.2)

as τ →∞, uniformly for t ∈ R. Then, the set
{
D1ϕ | ϕ ∈ CJT

}
is equicontinuous.
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Proof. For this purpose, we show that for each ε > 0 there is a continuous increasing positive function
δ = δJ (ε) : (0,∞)→ (0,∞) with

|(D1ϕ) (t1)− (D1ϕ) (t2)| ≤ ε, if ϕ ∈ CJT and t1 < t2 < t1 + δ. (3.3)

First we prove that there is a continuous increasing positive function δ− = δ−J (ε) : (0,∞)→ (0,∞) with∣∣(A−ϕ) (t1)− (A−ϕ) (t2)∣∣ ≤ ε

3
for ϕ ∈ CJT and t1 < t2 < t1 + δ−, (3.4)

where A− is defined by (
A−ϕ

)
(t) :=

∫ t

−∞
f (t, s, ϕ (s+ t)) ds, t ∈ R.

From (3.2), for any ε > 0, there is a τ > 0 such that

(
A−ϕ

)
(t) ≤

∫ t−τ

−∞
FJ (t, s) ds ≤

ε

12
, t ∈ R.

For any ϕ ∈ CJT and t1 and t2 with t1 < t2, we have∣∣(A−ϕ) (t1)− (A−ϕ) (t2)∣∣
=

∣∣∣∣∫ t1

−∞
f (t1, s, ϕ (s+ t)) ds−

∫ t2

−∞
f (t2, s, ϕ (s+ t)) ds

∣∣∣∣
≤
∫ t1

t1−τ
|f (t1, s, ϕ (s+ t))− f (t2, s, ϕ (s+ t))| ds+

∫ t1−τ

−∞
FJ (t1, s) ds

+

∫ t1−τ

−∞
FJ (t2, s) ds+

∫ t2

t1

FJ (t2, s) ds

≤
∫ t1

t1−τ
|f (t1, s, ϕ (s+ t))− f (t2, s, ϕ (s+ t))| ds+ ε

6
+

∫ t2

t1

FJ (t2, s) ds.

Since f (t, s, ϕ) is uniformly continuous on U = {(t, s, ϕ) | t− τ ≤ s ≤ t, and |ϕ| ≤ J}, one can, for the ε > 0
previously fixed, find a δ1 such that δ1 ∈ (0, 1) and

|f (t1, s, ϕ)− f (t2, s, ϕ)| ≤
ε

12τ
if (t1, s, ϕ) , (t2, s, ϕ) ∈ U with |t1 − t2| ≤ δ1.

Hence, if t1 < t2 < t1 + δ1, then we obtain∫ t1

t1−τ
|f (t1, s, ϕ (s+ t))− f (t2, s, ϕ (s+ t))| ds ≤ ε

12
.

Now let l := sup {FJ (t2, s) | t1 ≤ s ≤ t2}. Then, for the ε, there is a δ2 such that 0 < δ2 < min
(
ε
l , 1
)
and∫ t2

t1

FJ (t2, s) ds ≤
ε

12
if t1 < t2 < t1 + δ2.

Thus, letting δ3 = min (δ1, δ2) , we see that (3.4) is valid with δ− = δ3. Since we may assume that δ3 (ε)
is nondecreasing, we can easily conclude that there is a continuous increasing function δ− = δ−J : (0,∞) →
(0,∞) which satisfies (3.4).

Similarly, one can prove that there is a continuous increasing function δ+ = δ+J : (0,∞)→ (0,∞) with∣∣(A+ϕ
)
(t1)−

(
A+ϕ

)
(t2)
∣∣ ≤ ε

3
if t1 < t2 < t1 + δ+, (3.5)
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where A+ is defined by (
A+ϕ

)
(t) :=

∫ ∞
t

g (t, s, ϕ (s+ t)) ds, t ∈ R.

Finally, it is clear that there is a continuous increasing function δ4 = δ4 (ε) : (0,∞)→ (0,∞) with

|(P1ϕ) (t1)− (P1ϕ) (t2)| ≤
ε

3
if t1 < t2 < t1 + δ4 and δ4 < T.

Indeed, note that

H (s) =

∫ t

−∞
H1 (t, s, x (s)) ds+

∫ ∞
t

H2 (t, s, x (s)) ds,

and let ε > 0. Choosing 0 < δ4 < 1 such that for t1 < s < t2 < t1 + δ4,

|K1 (t1, s)−K1 (t2, s)| ≤
mε

6ηMT
, t1 < s < t2 < t1 + δ4,

and
|K1 (t1, s)−K1 (t2, s+ T )| ≤ mε

6ηM
, t1 < s < t2 < t1 + δ4.

Therefore

|(P1ϕ) (t1)− (P1ϕ) (t2)|

≤ M

m

∣∣∣∣∫ t2

t1

K1 (t1, s) |H (s)| ds−
∫ t2+T

t1+T
K1 (t2, s) |H (s)| dsds

+

∫ t1+T

t2

|K1 (t1, s)−K1 (t2, s)| |H (s)| ds
∣∣∣∣ .

Since H (s+ T ) = H (s), then∫ t2+T

t1+T
K1 (t2, s)H (s) ds =

∫ t2

t1

K1 (t2, s+ T )H (s) ds.

Consequently,

|(P1ϕ) (t1)− (P1ϕ) (t2)|

≤ ηM
m

∫ t2

t1

|K1 (t1, s)−K1 (t2, s+ T )| ds

+ η
M

m

∫ t1+T

t2

|K1 (t1, s)−K1 (t2, s)| ds

≤ ε

6
+
ε

6
=
ε

3
. (3.6)

It now follows, from (3.4) (3.5) and (3.6), that (3.3) holds for δ = min (δ4, δ
−, δ+).

Theorem 3.2 (Schauder). [14, p. 31] Let S be a closed convex bounded subset of a Banach space X.
Assume that A : S → S is a compact operator. Then, A has at least one fixed point in S.

Theorem 3.3. Let the conditions of Proposition 3.1 holds. Suppose that there is an α > 0 such that for
ϕ ∈ CJT ∫ t

−∞
H1 (t, s, ϕ (s)) ds+

∫ ∞
t

H2 (t, s, ϕ (s)) ds ≤ mα, (3.7)

and ∫ t

−∞
FJ (t, s) ds+

∫ ∞
t

GJ (t, s) ds+ α ≤ J. (3.8)

Then, (1.1) has a T -periodic solution.
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Proof. First, we see that CJT is a closed convex bounded subset of the Banach space CT . Let ϕ ∈ CJT and
consider the map D1 on CJT . We show that D1 : CJT → CJT . First the equation (D1ϕ) (t+ T ) = (D1ϕ) (t) is
not difficult to check. Let ϕ ∈ CJT

|(D1ϕ) (t)|

≤
∫ t

−∞
FJ (t, s) ds+

∫ ∞
t

GJ (t, s) ds

+
∥∥∥(I − T1B1)

−1
∥∥∥max

∫ t+T

t
K1 (t, s)

[∫ s

−∞
|−H1 (s, u, ϕ (u))| du

+

∫ ∞
s
|−H2 (s, u, ϕ (u))| du

]
ds.

Therefore, since ‖T1B1‖ ≤ 1− m
M < 1 we have

∥∥∥(I − T1B1)
−1
∥∥∥ ≤ 1

1−‖T1B1‖ but 1−‖T1B1‖ ≥ 1− 1+ m
M thus

1
1−‖T1B1‖ ≤

M
m . So, from the Lemma 2.4, (3.7) and from what we deduced above, it follows that

|(D1ϕ) (t)| ≤
∫ t

−∞
FJ (t, s) ds+

∫ ∞
t

GJ (t, s) ds+
1

m
mα ≤ J.

Remains to show D1 is continuous on CJT . For that, let {ϕn} be a sequence of elements in CJT such that
ϕn → ϕ ∈ CJT as n → ∞. We prove that the sequence (D1ϕn) converges to (D1ϕ) ∈ CJT as n → ∞. To see
this, let τ > 0 be given. Since ∫ t

−∞
|f (t, s, ϕn)| ds+

∫ ∞
t
|g (t, s, ϕn)| ds

≤
∫ t

−∞
FJ (t, s) ds+

∫ ∞
t

GJ (t, s) ds ≤ J − α,

and ∫ t

−∞
|f (t, s, ϕn)| ds+

∫ ∞
t
|g (t, s, ϕn)| ds

=

∫ t−τ

−∞
|f (t, s, ϕn)| ds+

∫ t

t−τ
|f (t, s, ϕn)| ds

+

∫ t+τ

t
|g (t, s, ϕn)| ds+

∫ ∞
t+τ
|g (t, s, ϕn)| ds,

then, for all n ≥ 0, ∫ t

t−τ
|f (t, s, ϕn)| ds+

∫ t+τ

t
|g (t, s, ϕn)| ds

≤
∫ t

−∞
FJ (t, s) ds+

∫ ∞
t

GJ (t, s) ds ≤ J − α.

Thus, by the dominated convergence theorem we deduce that∫ t

t−τ
|f (t, s, ϕn)| ds+

∫ t+τ

t
|g (t, s, ϕn)| ds→

∫ t

t−τ
|f (t, s, ϕ)| ds+

∫ t+τ

t
|g (t, s, ϕ)| ds,

because f and g are continuous. Proposition 3.1 shows that the set
{
D1ϕ | ϕ ∈ CJT

}
is equicontinuous and

the function D1 is continuous. Thus D1 is compact operator. The conditions of Schauder’s theorem are
satisfied and there exists x ∈ CJT with D1x = x. Thus, x is a T -periodic solution of (1.1).
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Example 3.4. Consider the following second-order neutral functional integro-differential equations with
infinite distributed mixed-delays

d2

dt2

(
x (t)−

∫ t

−∞
f (t, s, x (s+ t)) ds−

∫ ∞
t

g (t, s, x (s+ t)) ds

)
= a (t)x (t)− b (t)

(∫ t

−∞
p (t, s)h1 (x (s)) ds+

∫ ∞
t

q (t, s)h2 (x (s)) ds

)
, (3.9)

where

T = π, a (t) =
1

4
sin2 (t) + 1, b (t) = 0.4×

(
1

4
sin2 (t) + 1

)
,

p (t, s) = es−t, q (t, s) = et−s, h1 (x) = sin (x) , h2 (x) = cos (x) ,

f (t, s, x) = 0.5 sin (x) , g (t, s, x) = 0.2 cos (x) .

Clearly, all the hypotheses of Theorem 3.3 are satisfied. Then (3.9) has a π-periodic solution.

Using Lemmas 2.9 and 2.10 and reasoning as in last section, it is possible to establish the following
theorem for the existence of T -periodic solution to (1.2).

Theorem 3.5. Assume that the hypotheses of Theorem 3.3 hold. Then, (1.2) has a T -periodic solution.
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