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Abstract

In the paper we revisited the well-known fixed point theorem of Kannan under the aspect of interpolation.
By using the interpolation notion, we propose a new Kannan type contraction to maximize the rate of
convergence.
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1. Introduction

After the distinguished fixed point of Banach, one of the pivotal metric fixed point result was reported
by Kannan [1, 2]. A mapping that satisfies Banach contraction inequality is necessarily continuous. In 1968,
Kannan [1] introduced a new type of contraction which is an affirmative answer to the natural question
below: Whether there is a discontinuous mapping that fulfils certain contractive conditions and posses a
fixed point in the frame of complete metric spaces.

Theorem 1.1. [1] Let (X, d) be a complete metric spaces and T : X → X be a Kannan contraction mapping,
i.e.,

d (Tx, Ty) ≤ λ [d(x, Tx) + d(y, Ty)] ,

for all x, y ∈ X, where λ ∈
[
0, 12

)
. Then T has a unique fixed point.
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2. Main results

We start our results by the generalization of the definition of Kannan type contraction via interpolation
notion, as follows.

Definition 2.1. Let (X, d) be a metric space. We say that the self-mapping T : X → X is an interpolative
Kannan type contraction, if there exist a constant λ ∈ [0, 1) and α ∈ (0, 1) such that

d (Tx, Ty) ≤ λ [d (x, Tx)]α · [d (y, Ty)]1−α . (2.1)

for all x, y ∈ X with x 6= Tx.

Theorem 2.2. Let (X, d) be a complete metric space and T be an interpolative Kannan type contraction.
Then T has a unique fixed point in X.

Proof. Let x0 ∈ (X, d). We shall set a constructive sequence {xn} by xn+1 = Tn(x0) for all positive integer
n. Without loss of generality, we assume that xn 6= xn+1 for each nonnegative integer n. Indeed, if there
exist a nonnegative integer n0 such that xn0 = xn0+1 = Txn0 , then, xn0 forms a fixed point. Thus, we have

d(xn, Txn) = d(xn, xn+1) > 0, for each nonnegative integer n.

Taking x = xn and y = xn−1 in (2.1), we derive that

d (xn+1, xn) = d (Txn, Txn−1) ≤ λ [d (xn, Txn)]α · [d (xn−1, Txn−1)]1−α

= λ [d (xn−1, xn)]
1−α · [d (xn, xn+1)]

α ,

(2.2)

which yields that
[d (xn, xn+1)]

1−α ≤ λ [d (xn−1, xn)]1−α . (2.3)

Thus, we deduce that the sequence {d (xn−1, xn)} is non-increasing and non-negative. As a result, there is
a nonnegative constant L such that lim

n→∞
d (xn−1, xn) = L. We shall indicate that L > 0. Indeed, from (2.3),

we derive that
d (xn, xn+1) ≤ λd (xn−1, xn) ≤ λnd (x0, x1) . (2.4)

Letting n→∞ in the inequality above, we observe that L = 0.
As a next step, we shall show that the sequence {xn} is Cauchy by using a standard arguments based on

the triangle inequality. More precisely, we have

d (xn, xn+r) ≤ d(xn, xn+1) + · · ·+ d(xn+r−1, xn+r)
≤ λnd (x0, x1) + · · ·+ λn+r−1d (x0, x1)

≤ λn

1−λd (x0, x1)
(2.5)

Letting n→∞ in the inequality above, we find that the sequence {xn} is Cauchy. Since (X, d) is a complete
metric space, there exists x ∈ X such that lim

n→∞
d(xn, x) = 0.

On what follows we shall show that the limit x of the iterative sequence {xn} forms a fixed point for the
given self-mapping T. By substituting x = xn and y = x in (2.1), we find that

d (Txn, Tx) ≤ λ [d (xn, Txn)]α · [d (x, Tx)]1−α . (2.6)

Taking n→∞ in the inequality above, we derive that d(x, Tx) = 0 that is, Tx = x.
For the uniqueness, we shall use the method of Reductio ad Absurdum. Suppose, on the contrary that T

has a two distinct fixed point x, y ∈ X. Thus, from (2.1) we have

d (x, y) = d (Tx, Ty) ≤ λ [d (x, Tx)]α · [d (y, Ty)]1−α

≤ λ [d (x, x)]α · [d (y, y)]1−α = 0,

(2.7)

which yields that d(x, y) = 0, a contradiction. Hence, the observed fixed point is unique.
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Example 2.3. Let X = {x, y, z, w} be a set endowed with a metric d such that

d(x, x) = d(y, y) = d(z, z) = d(w,w) = 0,
d(y, x) = d(x, y) = 3,
d(z, x) = d(x, z) = 4,
d(y, z) = d(z, y) = 3

2
d(w, x) = d(x,w) = 5

2
d(w, y) = d(y, w) = 2
d(w, z) = d(z, w) = 3

2 .

We define a self-mapping T on X by T :

(
x y z w
x w x y

)
. It is clear that T is not Kannan contraction.

Indeed, there is no λ ∈ [0, 12) such that the following inequality is fulfilled:

d(Tw, Tz) = d(y, x) = 3 ≤ λ(d(Tw,w) + d(z, Tz)) = 6λ.

On the other hand, for α = 1
8 and λ = 9

10 , the self-mapping T forms an interpolative Kannan type contraction
and x is the desired unique fixed point of T . Notice that in the setting of interpolative Kannan type contraction,
the constant lies between 0 and 1 although in the classical version it is restricted with 1/2.
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