
Introduction
It is well known since Magendie in 1825 wrote (cited
from Miller, 1982)[1] that swallowing is subdivided into
three phases; first one is the oral phase, mostly under
voluntary control, second is the pharyngeal phase, a kind
of “swallowing reflex”; and third is esophageal phase,
involuntary and autonomic. However, oral and pharyn-
geal phases are firmly related to each other toward the
end of oral phases. Therefore, they can be called
“oropharyngeal swallowing” or “bucco-pharyngeal swal-
lowing”.[2–4] It has been recently documented that the
cerebral cortex could be involved with the oropharyngeal
swallowing as demonstrated by studies using neuroimag-
ing techniques in humans. Animal studies have also
shown that that there is a network in the brainstem
called “central pattern generator” (CPG) where swallow-
ing could be arranged according to the needs.

In daily life, we swallow more than 1000 times; how-
ever, this number changes according to different
reports.[5–10] All the swallowing movements during daily
life can not to be initiated or triggered by the cerebral
cortex, some of them may occur without cortical influ-
ences. According to this view, swallows can be classified
as two types. One of them is the “voluntary induced
swallows” which are very frequent during meal times.
While other times, including sleep, we are often unaware
of our swallowing. These could be called “spontaneous”

or “reflexive” swallows.[11] Probably, a third type of swal-
lowing movement may also exist during some stressful
emotional conditions. Spontaneous and emotional swal-
lows are certainly “saliva swallows” and mostly in reflex-
ive nature. It may be speculated that there may be some
neural control from limbic and/or extrapyramidal system
in saliva swallows.[4,9,12] As a matter of fact, the reflexive
swallows could also describe some clinical conditions. A
normal human fetus can swallow by the 12th gestational
week, before the cortical and subcortical structures have
developed.[2,3] It has also been reported that swallowing is
still possible in the human anencephalic fetus. Thexton
& Crompton 1998; Jean 2001; Miller et al 2003; Peleg
and Goldman 1978; Pritchard 1965).[2,3,13–15] Similarly,
pharyngeal phase of swallowing without oral phase may
also be considered as a reflexive swallow[16] in both
human[17,18] and animals.[19,20] Furthermore, the activation
of the pharyngeal phase of swallowing without subse-
quent activation of the esophageal phase is reported as a
common finding in humans especially during dry swal-
lowing or saliva swallowing throughout daily life and it is
called the failed swallow.[16] In humans, failed swallows
occur 3-4% of the time during wet swallows and 29-38%
of the time during dry swallows.[21,22]

During voluntary induced swallowing, the cascade of
the sequential muscle activation does not essentially
change from mouth to esophagus. This is one of the lines
for the existence of CPG in human swallowing.[23] This
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may mean that after the triggering of the oro-pharyngeal
swallowing either in the oral cavity for voluntary swallow
or in the pharyngeal spaces for reflexive swallow, order-
ly and sequentially muscle activation of more than 33
muscle pairs invariably reaches from lip through the
esophagus. If we mention again, this sequential muscle
activation is a function of the CPG of the swallowing.
This pattern of oropharyngeal activation has been
known since more than fifty years ago in mammals.[1,19,20,24]

The overall pattern of electromyographic activity during
reflexive swallowing represents the response of the
brainstem pattern generator, a purely peripheral sensory
input, independent from any descending cerebral influ-
ence.[20] However, during the swallowing in intact human
and in high level animal organisms, it is possible that
descending cortical drives and sensory inputs from
oropharynx can converge in order to provide a safe and
satisfactory swallow. However, the CPG governs not
only the timing of motor response of each phase of swal-
lowing, but also controls the timing between the phases
of swallowing[16] according to the cortical evaluation and
the present condition of sensory feedback from the
oropharynx. The experimental insufficiency of sensory
coding[25–28] would produce an uncertain evaluation of the
human central nervous system. The main role of the
oropharyngeal mucosal receptors is to contribute to the
initiation of swallowing, but when swallowing is trig-
gered cortically or reflexively the pattern and sequential
activity of the swallow is not essentially changed. Thus,
the stereotypic movements of the oropharyngeal swal-
lowing are also controlled by the CPG of the brainstem
like in experimental animal studies.[3,4,29] The interneu-
rons at the nucleus tractus solitarius (NTS) (premotor
neurons) situated at the medulla oblongata are rather
motor generator neurons involved in the triggering,
shaping and timing of the sequential and rhytmic swal-
lowing pattern. NTS receives not only peripheral senso-
ry inputs, but also cortical and subcortical descending
drives. On the other hand, premotor neurons in and
around NTS contain the “switching neurons” which dis-
trubute the swallowing output to the various motoneu-
ron pools properly.[3,29] Before and during swallowing, the
sensory inputs from the oropharynx to the somatosenso-
ry cortical areas may be expected in addition to that of
the medullary swallowing network for precise informa-
tion from both the bolus and the position of the orophar-
ynx.[30–32] Therefore, the sensory input appears to be vital
to the oropharyngeal swallowing. Sensory inputs from
the oral cavity, especially tonsillar pillar, base of the
tongue and oropharyngeal mucosa have been proposed
to be important for the triggering of swallows.[1,3,27,28,32–36]

Unfortunately, neither only cerebral cortex nor oropha-
ryngeal input alone have not systematically produced or
inhibited human swallowing completely. Important con-
vergence from both motor and sensory inputs on the
brainstem swallowing network of CPG must be neces-
sary for the human voluntary swallows. The initiation or
triggering of swallowing is probably more complex in
human and may be dependent on the type of bolus; sin-
gle or consecutive swallows, voluntary or reflex induced
swallowing. It has been clearly demonstrated that in
human the solid foods and liquids reaches the valleculae
in advance of swallowing.[37,38] The initiation of swallow
can be expected from the posterior part of oral cavity to
the hypopharynx depending on the different kind of
bolus. Recently in consecutive swallow and/or drinking,
pharyngeal bolus accumulation of masticated or drinking
material has been identified in the valleculae of phar-
ynx.[39–43] Thus, the hypopharynx may be a crucial trigger
point in the elicitation of the pharyngeal swallow.[43]

Beyond the cortical/subcortical drives and sensory
input from the oropharynx, the sequential swallows can
be controlled mostly by the CPG generating neurons in
and around NTS firing a sequential or rhytmic pattern
that parallel to the sequential motor pattern of the
oropharyngeal swallowing.[3,29,44] However, we do not
know about detail of CPG especially in human. During
oropharyngeal swallowing, there are two main purposes
for human. One of them is that the bolus should be
directed to right way by entering into the esophagus.
Second main purpose is the protection of the airway
against any escape of the bolus or part of it. It has been
shown that apart from the CPG generator of swallowing,
there are some protective reflexes for swallowing. They
do not always take place in the sequential muscle activa-
tion of CPG; but, they are ready for any kind of risk of
aspiration of oropharyngeaal swallowing. It is well
known that the cough reflex and gag reflex are some kind
of protective reflexes. However, there are some other
reflexes that could be observed during studies of oropha-
ryngeal swallowing and they may be important for the
security of airway and the descending direction of the
bolus into the esophagus.[45] These kind of protective
reflexes can be clearly studied by the electrophysiologi-
cal methods. During pharyngeal phase of swallowing,
larynx is closed by the contraction of the adductor mus-
cles of the vocal cord. The thyroaritenoid (TA) muscle of
the vocal cord is a laryngeal adductor and its contraction
causes laryngeal closure during pulling up larynx and this
results in very dense EMG activity of the TA muscle. In
the mean time, cricopharyngeal (CP) sphincter is
relaxed, opened and closed accordingly during swallow-
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ing.[45,46] Therefore, the refined-protective reflexes could
be searched by the needle EMG inserted into the TA
and/or CP sphincter muscles. For TA muscle, there can
be a protective reflex just before the closure of TA by a
very dense EMG activity during water swallowing. The
reflex activity just before the swallowing is a protective
reflex and may prevent the escape of premature pieces of
bolus from intraoral to laryngo-pharyngeal spaces. Thus
CPG plus oropharyngeal protective reflexes are synergi-
cally interacted for the safe swallowing.[45]

Previously, the laryngeal closure response to afferent
stimulation was studied by electrical stimulation of the
internal branch of the superior laryngeal nerve (SLN) in
both animals and humans. These protective reflexes
were induced by the stimulation of the sensory afferents
of SLN.[47–49] However, the repetitive stimulation of the
SLN could also produce “fictive swallowing” in experi-
mental animals, but in human SLN stimulation could
never evoke any kind of swallowing patterns.[49] It has
been demonstrated that when the swallow is initiated, a
change in sensitivity of laryngeal afferents may have
occurred because of laryngeal mechanoreceptor adapta-
tion to continuous stimulation ongoing in the pharyn-
geal and laryngeal regions.[50]

In conventional EMG, CP-sphincter has continuous
tonic activity,[23,46] but during swallowing the tonic EMG
activity of CP-sphincter clearly ceases and sphincter
opens with a duration of 400-600 msec for a single 3-5
ml water swallow. What is important is that when the
sphincter opens two bursts of EMG activity appear just
before and after the EMG pause. Earlier burst is called
foreburst and occurs just before the EMG-pause. Second
late burst is called rebound burst and appears after the
CP-EMG pause.[23,46] Rebound burst activity is always
observed with each swallow, therefore it should belong
to the sequential muscle activation of CPG. But fore-
burst can not be found in each normal subject, and there-
fore may be related with protective reflexes. If we make
intraoral topical anesthesia, the foreburst disappears dur-
ing anesthesia, rebound burst does not change signifi-
cantly. Therefore, the foreburst of CP-sphincter and
earlier burst of TA of the vocal cord should be some kind
of protective reflexes and probably initiated from the
intraoral receptors.[45,51,52] The laryngeal and glottic clo-
sure (vocal fold) and the upper esophageal sphincter have
been investigated by videofluoroscopic manometric and
endoscopic methods.[53–56] As mentioned, the laryngeal
glottic closure was found in a close temporal relation
with the onset of UES opening.[45,57] However, there is
some variability in this time relation[57–60] which is associ-

ated with the onset and duration of the UES opening
and/or glottic closure. However, in this variability in air-
way closure and UES opening, there is even fine tuned
mechanisms between the basic activity of TA muscle and
the upper esophageal CP sphincter. Celik Gokyigit et
al.[61] demonstrated that three kind of swallowing patterns
appeared between two muscles electromyographically.
In the first pattern TA muscle EMG excitation is later
than the onset of upper esophageal sphincter opening
more than 50 msec. This kind of swallow may cause
laryngeal penetration especially in neurogenic dyspha-
gia. In the second pattern of swallow, EMG excitation
basic activity of TA muscle overlaps with the CP-EMG
pause. In the third pattern; the onset of EMG closure of
TA muscle is earlier than CP EMG pause more than 50
msec. Third pattern is obviously much more safe because
of complete closure of the airway before the bolus
reached to the upper esophageal CP sphincter. Indeed,
duration of the TA basic EMG activity increases and
preceedes or overlaps with CP EMG pause, with an
increase of bolus volumes.[61] These observations in nor-
mal human subjects are not purely reflexive movements,
but the contribution of the cerebral cortex and CPG of
the brainstem can not be elucidated.

We did not mention other reflex mechanisms related
with respiration and deglutition in this scope of review.
However, swallowing mechanism may also modulate
both respiratory control and laryngeal responses to sen-
sory stimuli following swallowing act.[49,50,62]
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