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Abstract: 

Electron energy distribution function (EEDF) in non-equilibrium plasmas often differs from Maxwellian 

distribution. Therefore, it is essential to determine the EEDF experimentally for accurately deducing the 

plasma parameters and rates of plasma-chemical processes. Langmuir Probe is a robust diagnostic tool 

allowing the estimation of EEDF by the differentiation of I-V curve. However, possible distortions in 

differentiation process should be handled cautiously. This paper focuses on Maxwellian optimization 

method for the determination of EEDF from Langmuir probe I-V curve where EEDF is modeled as 

perturbations around Maxwellian distribution. The proposed optimization method is implemented on the 

Argon glow discharge plasma experimental data. The results obtained by the proposed Maxwellian 

optimization are compared with the ones obtained by commonly used Savitzky-Golay filtering method and 

the polynomial optimization method. The results indicate that filtering data may be disadvantageous as it 

may cause the useful information encoded in the experimental data to be lost. In addition, based on the 

results one can conclude that it is vital to choose the appropriate model function to begin with for the 

optimization procedure to be satisfactory. It has been shown that the second order polynomial fit yields the 

best fitting curve to the Maxwellian optimization.   
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1. INTRODUCTION 

 

The Langmuir probe is essentially a conducting 

object in the form of a sphere or a circular cylinder used 

for plasma diagnostics. The electric potential of the probe 

is varied by an external circuit to obtain the curve of 

probe potential versus the current flowing between the 

probe and the plasma, the so called I-V diagram. 

Theoretical interest in the Langmuir probe I-V diagram 

is partly motivated by the versatility of the probe in 

plasma diagnostics [1].  

Druyvestein established a remarkable relation 

between the electron energy distribution function 

(EEDF) and the I-V diagram [2] which is valid if the 

following two conditions are met:  

• The mean free path of electrons is much greater 

than the Debye length 

• The mean free path of electrons is much greater 

than the probe radius. 

The Debye length is the fundamental property of the 

plasma representing the physical scale of the transition 

from plasma collectivity to individual particle behavior. 

Langmuir probe is screened from the plasma within the 

Debye region bounded by the Debye length. In case the 

first condition is satisfied, variations of EEDF due to the 
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collisions of electrons with charged particles within the 

Debye region will be negligibly small. Accordingly, one 

can establish a relationship between the EEDF near the 

probe with the EEDF in the plasma.  Provided that the 

second condition is met, one may neglect the impact of 

the probe dimensions on the plasma.  

In Druyvestein formula EEDF is given by the second 

derivative of the I-V curve. However, noise-

amplification effect in differentiation may lead enormous 

distortions in EEDF even for the small fluctuations in I-

V curve. Hence, it is essential to develop methods 

smoothing the I-V curve. Several commonly used digital 

filtering methods are the Savitzky–Golay filter (used for 

noise suppression also in the first and second derivatives 

of the filtered curve) [3, 4], finite impulse response filter 

(gives the second derivative via convolution) [5], 

Gaussian function [6] and Blackman window [7].   

Although the filtering avails the suppression of 

noises, it may also lead to the loss of useful information 

encoded in the experimental data. This is why, it may be 

advantageous to approximate the experimental curves in 

terms of analytic functions by quadratic optimization. 

Once the analytic expression is obtained for the I-V 

curve, differentiations are carried on without causing 

additional distortions. However, the second derivative of 

the analytically defined I-V curve does not necessarily 

agree with the second derivative obtained from the 

experimental data. Therefore, there appear additional 

requirements on the choice of basic functions used in the 

quadratic optimization.  The novelty of our work is that 

we propose Maxwellian optimization method for 

choosing a physical set of basic functions so that the 

second derivatives of both analytically defined I-V curve 

and the experimental data are consistent. 

 

2. ELECTRON ENERGY DISTRIBUTION 

FUNCTION 

 

This section is divided into two subsections where in 

the first one theoretical background for obtaining EEDF 

from I-V curve is described and in the second one the 

experimental set up and the results are presented. 

 

2.1. Theoretical Background for EEDF 

 

The typical Langmuir probe I-V diagram is given in 

Fig. 1. The potential held by an isolated conductor in the 

plasma is called as the floating potential, since the 

potential floats to a value sufficient to maintain equal 

fluxes of electrons and ions. Except around the probe, the 

remainder of the plasma is at equipotential, known as the 

plasma potential. The floating potential and the plasma 

potential divide the I-V curve into three regions: electron 

saturation region (Region I in Fig. 1), electron retardation 

region (Region II in Fig. 1) and ion saturation region 

(Region III in Fig. 1).  The EEDF is determined by using 

the data on the electron retardation and ion saturation 

regions. The plasma potential Vp, separating the electron 

saturation region from the electron retardation one, can 

be obtained either by the study of the I-V curve in the 

logarithmic scale or by the differentiation of the I-V 

curve [9]. 

 

 
FIGURE 1. Langmuir probe I-V diagram. 

 

Once the plasma potential is known, one can 

construct the current voltage characteristics I(E) of the 

plasma by the change of the variable E=e(V-Vp), where 

e is the charge of electron and E is the energy in the 

electron volts unit. It is important to emphasize that both 

ion and electron fluxes from plasma to the probe 

contribute to I(E).   In order to define the electron current 

as a function of energy Ie(E), one should be able to model 

the behavior of the ion current. The theory of Langmuir 

probe is quite complicated unless some assumptions are 

made.  In case the mean free path of ions is much larger 

than the Debye length, the ion current can be described 

by the Laframboise theory [10] so that the ion current 

dependence on the energy is given by A√E where A is a 

constant which can be determined by interpolation of the 

I(E) curve at high energies. The EEDF is obtained from 

the electron current as a function of energy by the 

Druyvestein Formula 
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𝑔(𝐸) = −
√8𝑚𝐸

𝑒𝑆

𝑑2𝐼𝑒(𝐸)

𝑑𝐸2 .                                       (2.1) 
(1) 

Here S is the area of the probe, m is the mass of 

electron. Direct differentiation of the electron current 

twice with respect to energy yields the EEDF given in 

Fig. 3. 

 

 
FIGURE 2. The energy dependence of electron current. 

 

 
FIGURE 3.  EEDF obtained by using Druyvestein 

formula. 

 

It is apparent that the direct differentiation of electron 

current data gives rise to noise amplification. Hence, 

special methods are required for determining EEDF by 

using Druyvestein formula in (1). Savitzky-Golay filter 

is among the most commonly used smoothing method. In 

Figure 4, the result of using Savitzky-Golay filter on both 

electron current data and its first and second derivatives 

is given for illustration purposes. 

 

 

 

 

 

 

 
FIGURE 4. EEDF obtained by using Savitzky-

Golay filter on both electron current data and its first 

and second derivatives. 

 

As mentioned in the Introduction, filtering of the data 

may have its own drawback of loosing useful information 

encoded in experimental data. As in Druyvestein 

formula, one needs to apply this filtering consecutively 

to Ie(E) and to its first and second derivatives, it may lead 

incoherent results. The unphysical negative regions in 

Fig. 4 exemplify this result. In the next Section, we 

develop an alternative approach based on the least square 

approximation of the electron current experimental curve 

by means of an analytic one. 

 

3. OPTIMIZATION PROCEDURE 

 

Apart from the filtering methods, polynomial fitting 

is also widely used for this purpose [8] where the 

experimental curve Ie(E) is approximated by the 

polynomial model curve Im(E). The polynomial 

coefficients are determined by minimizing the quadratic 

form: 

 

𝐹 = ∑ [𝐼𝑒(𝐸𝑛) −  𝐼𝑚(𝐸𝑛)]2𝑁
𝑛=1                                         (3.1) 

 

where n is the number index in a row of experimental 

data and En is the corresponding energy of the nth electron 

current data. The experimental electron current and its 

fourth, fifth and sixth order polynomial fits are given in 

Fig. 5. 
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FIGURE 5. The experimental electron current and its 

fourth, fifth and sixth order polynomial fits. 

 

In Fig. 6, EEDF obtained by analytic differentiation 

of these model curves are depicted. 

 

 
FIGURE 6. EEDF obtained by analytic differentiation 

of these model curves. 

 

It is obvious from Fig. 5 that, the modeled electron 

current coincides better with experimental one for higher 

order polynomials. However, in Fig. 6 one can easily 

infer that, EEDF yields unphysical results at high 

energies for higher orders. In 5th order, EEDF increases 

with increasing energies while in the 6th order it becomes 

negative. Therefore, the polynomial fit can be expanded 

up to the fourth order. In conclusion, even though the 

polynomial model curve fits well with the experimental 

one, its second derivatives may be quite dissimilar. This 

situation arises if the experimental curve does not feature 

a polynomial behavior. Therefore, it is vital to choose the 

appropriate model function to begin with for the 

optimization procedure to be satisfactory.   

For distributions slightly different from the 

Maxwellian one, it is reasonable to assume the following 

model function for the electron current which is referred 

as Maxwellian optimization: 

 

 𝐼𝑚(𝐸) = 𝑒
−

𝐸

𝐸0( 𝑎0 + 𝑎1
𝐸

𝐸0
+ 𝑎2 (

𝐸

𝐸0
)

2

+ ⋯ ).         (3.2) 

In the zeroth order approximation, all coefficients are 

set to zero except a0 and a pure Maxwellian distribution 

is obtained. Higher order coefficients describe the 

perturbations from the Maxwellian distribution.  In the 

zeroth order, the energy scale E0 is the mean energy of 

electron gas in plasma. This optimization parameter is 

determined by the the zeroth order optimization as shown 

in the Fig. 7.  The best fitting is curve is obtained at 

E0=0.3 eV.   

 

 
FIGURE 7. Estimation of energy scale E0. 

 

In Fig. 8 the first, the second, the third and the fourth 

order approximations for the electron current in are given 

in Maxwellian optimization. As it is expected, the 

modeled electron current versus energy curve fits better 

with the experimental one for higher orders in 

optimization. 

 

 
FIGURE 8. Experimental electron current and 

Maxwellian optimization of the electron current at 1st-

4th orders 

 

In EEDF, on the other hand, unphysical distributions 

are observed at higher orders (see Fig. 9). It is clear from 

Fig. 9 that, at the third order, there is a negative area at 
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small energies. Therefore, the second order 

approximation is the best fitting one in Maxwellian 

optimization. 

 

 
FIGURE 9. EEDF by Maxwellian Optimization. 

Comparing the results in Fig. 6 with the literature, one 

may conclude that in polynomial fitting at high energies 

artificial oscillations of EEDF appear [8]. However, in 

Maxwellian Optimization the artificial oscillations 

disappear due to the exponential damping (see Eq. 3).  

For non-Maxwellian distributions, it is reasonable to 

use another set of function. In Fig. 10, Maxwellian and 

Druyvestein distribution functions of electron energy 

having 1 eV mean energy are depicted. It is clearly seen 

from the figure that the electrons with high energies are 

less probable in Druyvestein plasma compared to the 

Maxwellian one since the non-elastic collisions of 

electrons with atoms and ions lead to the decreasing 

number of electrons with high energy. If this is the case, 

one should replace the exponential in (3) by e(-(E⁄E_0 )^2 ). 

 

 
FIGURE 10. Normalized Maxwellian and 

Druyvestien EEDF. 

 

 

 

 

 

 

4. CONCLUSIONS 

 

We present an optimization procedure for the 

estimation of the Maxwellian like distribution functions 

by using exponential polynomial functions where finite 

data set of electron current is modeled as a continuous 

analytic function so that a more detailed description of 

plasma is attained. The optimization parameters are the 

energy scale, the order and the coefficients of expansion. 

EEDF is obtained by a straightforward differentiation of 

the modeled analytic function of electric current with 

respect to the energy twice. The results obtained by this 

optimization are compared with the ones obtained by 

using Savitzky-Golay filtering method and the 

polynomial optimization method. The results indicate 

that filtering data may be disadvantageous as the useful 

information encoded in the experimental data may be lost 

in the filtering process. In addition, based on the results 

one can conclude that it is vital to choose the appropriate 

model function to begin with for the optimization 

procedure to be satisfactory. The order of the 

approximation is defined by selecting the best fitting 

physical result. It has been shown that the second order 

polynomial fit yields the best fitting curve to the 

Maxwellian optimization.   
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