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Abstract

In this work, we deal with the wave equation with variable coefficients. Under proper
conditions on variable coefficients, we prove the nonexistence of global solutions.

1. Introduction

In this paper, we are concerned with the following problem: utt −∆u−∆ut +µ1 (t) |ut |p−2 ut = µ2 (t) |u|q−2 u, x ∈Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈Ω,

(1.1)

where Ω is a bounded domain in Rn (n ∈ N), with a smooth boundary ∂Ω, p≥ 2, q > 2, µ1 (t) is a non-negative function of t and µ2 (t) is
a positive functions of t. The quantity |ut |p−2 ut is a damping term which assures global existence, and |u|q−2 u is the source term which
contributes to nonxistence of global solutions. µ1 (t) and µ2 (t) can be regarded as two control buttons which can dominate the polarity
between damping term and source term.
In the absence of the strong damping term ∆ut , and µ1 (t) = µ2 (t)≡ 1, then the problem (1.1) can be reduced to the following wave equation

utt −∆u+ |ut |p−2 ut = |u|q−2 u.

Many authors established the existence, nonexistence and decay of solutions, see [1–6]. The interaction between nonlinear damping
(|ut |p−2 ut) and the source term (|u|q−2 u) makes the problem more interesting. Levine [2, 3] first studied the interaction between the linear
damping (p = 2) and source term by using Concavity method. But this method can’t be applied in the case of a nonlinear damping term.
Georgiev and Todorova [1] extended Levine’s result to the nonlinear case (p > 2). They showed that solutions with negative initial energy
blow up in finite time. Later, Vitillaro in [6] extended these results to situations where the nonlinear damping and the solution has positive
initial energy.
In [7], Yu investigated the equation with constant coefficients

utt −∆u−∆ut + |ut |p−2 ut = |u|q−2 u. (1.2)

He showed globality, boundedness, blow-up, convergence up to a subsequence towards the equilibria and exponential stability. Gerbi and
Said-Houari [8] proved exponential decay of solutions (1.2) for p = 2.
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Zheng et al. [9] considered the Petrovsky equation

utt +∆
2u+ k1 (t) |ut |m−2 ut = k2 (t) |u|p−2 u

in a bounded domain. They proved the blow up of solutions.
In this paper, we established the nonexistence of solutions. To our best knowledge, the nonexistence of solutions of the wave equation with
variable coefficients not yet studied.
This paper is organized as follows: In the next section, we present some lemmas, notations and local existence theorem. In section 3, the
nonexistence of global solutions are given.

2. Preliminaries

In order to state the main results to problem (1.1) more clearly, we start to our work by introducing some notations and lemmas which will be
used in this paper. Throughout this paper ‖u‖p = ‖u‖Lp(Ω) and ‖u‖2 = ‖u‖ denote the usual Lp (Ω) norm and L2 (Ω) norm, respectively.

Also, W m,2
0 (Ω) = Hm

0 (Ω) is a Hilbert spaces (see [10, 11], for details).

Lemma 2.1. [4]. Assume that{
2≤ q < ∞, n≤ 2,
2 < q <

2(n−1)
n−2 , n≥ 3.

Then, there exist a positive constant C > 1, depending on Ω only, such that

‖u‖s
q ≤C

(
‖∇u‖2 +‖u‖q

q

)
(2.1)

for any u ∈ H1
0 (Ω) and 2≤ s≤ q.

Lemma 2.2. Assume that p≥ 2, q > 2, µ1 (t) is a nonnegative function of t, µ2 (t) is a positive functions of t and µ ′2 (t)≥ 0. Let u(t) be a
solution of problem (1.1) then the energy functional E (t) is non-increasing, namely E ′ (t)≤ 0.

Proof. Multiplying the equation (1.1) with ut and integrating with respect to x over the domain Ω, we obtain

d
dt

(
1
2
‖ut‖2 +

1
2
‖∇u‖2− µ2 (t)

q
‖u‖q

q

)
=−µ1 (t)‖ut‖p

p−‖∇ut‖2−
µ ′2 (t)

q
‖u‖q

q . (2.2)

By the equality (2.2), we get

E ′ (t) =−µ1 (t)‖ut‖p
p−‖∇ut‖2−

µ ′2 (t)
q
‖u‖q

q ≤ 0,

and E (t)≤ E (0) , where

E (t) =
1
2
‖ut‖2 +

1
2
‖∇u‖2− µ2 (t)

q
‖u‖q

q , (2.3)

and

E (0) =
1
2
‖u1‖2 +

1
2
‖∇u0‖2− µ2 (0)

q
‖u0‖q

q .

In order to obtain our main results, we set

H (t) =−E (t) . (2.4)

In the following remark, C denotes a generic constant that varies from line to line. Combining (2.1), (2.3) and (2.4), we obtain

Remark 2.3. Assume that{
2≤ q < ∞, n≤ 2,
2 < q <

2(n−1)
n−2 , n≥ 3

and energy functional E (t)< 0. Then, there exist a positive constant C, depending only on Ω, such that

‖u‖s
q ≤C

(
H (t)+‖ut‖2 +

(
µ2 (t)

q
+1
)
‖u‖q

q

)
(2.5)

for any u ∈ H1
0 (Ω) and 2≤ s≤ q.

Next, we state the local existence theorem that can be established by combining arguments of [1, 12].

Theorem 2.4. (Local existence). Suppose that{
2≤ q < ∞, n≤ 2,
2 < q <

2(n−1)
n−2 , n≥ 3.

Then, for any given (u0,u1) ∈
(
H1

0 (Ω)×L2 (Ω)
)
, the problem (1.1) has a local solution satisfying

u ∈C
(
[0,T ] : H1

0 (Ω) ,ut ∈C
(
[0,T ] ;L2 (Ω)

)
∩Lp (Ω, [0,T ])

)
for some T > 0.
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3. Nonexistence of Global Solutions

In this section, we will consider the nonexistence of global solutions for the problem (1.1). By using the same techniques as in [9].

Theorem 3.1. Let the assumptions of Lemma 2.2 hold. And assume that µ1 (t) is a nonnegative function of t, µ2 (t) is a positive functions of
t, µ ′2 (t)≥ 0 and

lim
t→∞

µ1 (t)µ2 (t)
α(p−1)

exists, where

0 < α ≤min
{

q−2
2q

,
q− p

q(p−1)

}
.

Then the solution of Eq. (1.1) blows up in finite time T ∗ and

T ∗ ≤ 1−α

αγL
α

1−α (0)

if q > p and the initial energy function

E (0)< 0,

where

L(0) = [H (0)]1−α + ε

∫
Ω

u0u1dx > 0.

Proof. From (2.2)-(2.4), we have

d
dt

H (t) = µ1 (t)‖ut‖p
p +‖∇ut‖2 +

µ ′2 (t)
q
‖u‖q

q ≥ 0 (3.1)

for almost, every t ∈ [0,T ) . Therefore

0 < H (0)≤ H (t)≤ µ2 (t)
q
‖u‖q

q , t ∈ [0,T ) . (3.2)

Define

L(t) = H1−α (t)+ ε

∫
Ω

uutdx+
ε

2
‖∇u‖2 (3.3)

where ε > 0 is small to be chosen later, and

0 < α ≤min
{

q−2
2q

,
q− p

q(p−1)

}
. (3.4)

Differentiating (3.3) with respect to t and combining the first equation of (1.1), we have

L′ (t) = (1−α)H−α (t)H ′ (t)+ ε

∫
Ω

(
uutt +u2

t

)
dx+ ε

∫
∇u∇utdx

= (1−α)H−α (t)H ′ (t)+ ε

∫
∇u∇utdx

+ε

∫
Ω

(
u∆u+u∆ut −µ1 (t) |ut |p−1 u+µ2 (t)uq +u2

t

)
dx

= (1−α)H−α (t)H ′ (t)+ ε ‖ut‖2− ε ‖∇u‖2

+εµ2 (t)‖u‖q
q− εµ1 (t)

∫
Ω

|ut |p−1 udx. (3.5)

Due to the Hölder’s and Young’s inequalities, we have∣∣∣∣µ1 (t)
∫

Ω

|ut |p−1 udx
∣∣∣∣ ≤ µ1 (t)

∫
Ω

|ut |p−1 udx

≤
(∫

Ω

µ1 (t) |ut |p dx
) p−1

p
(∫

Ω

µ1 (t) |u|p dx
) 1

p

≤ p−1
p

µ1 (t)δ
− p

p−1 ‖ut‖p
p +

δ p

p
µ1 (t)‖u‖p

p , (3.6)

where δ is positive constant to be determined later. According to the conditions µ1 (t)≥ 0,µ ′2 (t)≥ 0 and (3.1), we get

H ′ (t)≥ µ1 (t)‖ut‖p
p . (3.7)
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Combining (2.3), (2.4), (3.5), (3.6) and (3.7), we have

L′ (t) ≥
[
(1−α)H−α (t)− p−1

p
εδ
− p

p−1

]
H ′ (t)

+ε

(
qH (t)− δ p

p
µ1 (t)‖ut‖p

p

)
+ε

(q
2
+1
)
‖ut‖2 + ε

(q
2
−1
)
‖∇u‖2 . (3.8)

Since the integral is taken over the variable x, it is reasonable to take δ depending on variable t. From (3.2), we obtain

0 < H−α (t)≤ H−α (0) ,

for every t > 0. Hence H−α (t) is a positive function and bounded. Thus, by taking δ
− p

p−1 = mH−α (t) , for large m to be specified later, and
substituting in (3.8), we get

L′ (t) ≥
[
(1−α)− p−1

p
εm
]

H−α (t)H ′ (t)

+ε

(q
2
+1
)
‖ut‖2 + ε

(q
2
−1
)
‖∇u‖2

+ε

[
qH (t)− m1−p

p
µ1 (t)Hα(p−1) (t)‖u‖p

p

]
. (3.9)

By using the (2.3), (2.4), (3.2) and the embedding Lq (Ω) ↪→ Lp (Ω) (q > p) , we arrive at ‖u‖p
p ≤C‖u‖p

q and

L′ (t) ≥
[
(1−α)− p−1

p
εm
]

H−α (t)H ′ (t)

+ε

(q
2
+1
)
‖ut‖2 + ε

(q
2
−1
)
‖∇u‖2

+ε

[
qH (t)− Cm1−p

p
µ1 (t)

(
µ2 (t)

q

)α(p−1)
‖u‖p+qα(p−1)

q

]
. (3.10)

From (3.4), we get 2≤ s = p+qα (p−1)≤ q. Combining (2.3), (2.4), Remark 2.3 and (3.10), we obtain

L′ (t) ≥
[
(1−α)− p−1

p
εm
]

H−α (t)H ′ (t)+ ε

(q
2
+1
)
‖ut‖2 + ε

(q
2
−1
)
‖∇u‖2

+ε

[
qH (t)−C1m1−p

µ2 (t)
α(p−1)

µ1 (t)
(

H (t)+‖ut‖2
2 +

µ2 (t)
q

+1
)
‖u‖q

q

]
≥

[
(1−α)− p−1

p
εm
]

H−α (t)H ′ (t)+ ε

(
q+2

2
−C1m1−p

µ2 (t)
α(p−1)

µ1 (t)
)

H (t)

+ε

[
q+6

4
−C1m1−p

µ2 (t)
α(p−1)

µ1 (t)
]
‖ut‖2

+ε

[
q−2

2q
µ2 (t)−C1m1−p

µ2 (t)
α(p−1)

µ1 (t)
(

µ2 (t)
q

+1
)]
‖u‖q

q , (3.11)

where C1 =
C

pqα(p−1) . Since limt→∞ µ1 (t)µ2 (t)
α(p−1) exists, µ1 (t)µ2 (t)

α(p−1) is bounded for every t > 0. Then, we choose m large enough

so that the coefficients of H (t) , ‖ut‖2 and ‖u‖q
q in (3.11) are strictly positive. Therefore, we arrive at

L′ (t) ≥
[
(1−α)− p−1

p
εm
]

H−α (t)H ′ (t)

+εβ

[
H (t)+‖ut‖2

2 +

(
µ2 (t)

q
+1
)
‖u‖q

q

]
, (3.12)

where

β = min
{

q+2
2
−C1m1−p

µ2 (t)
α(p−1)

µ1 (t) ,

q+6
4
−C1m1−p

µ2 (t)
α(p−1)

µ1 (t) ,

q−2
2q

µ2 (t)−C1m1−p
µ2 (t)

α(p−1)
µ1 (t)

}
is the minimum of the coefficients of H (t) , ‖ut‖2 and ‖u‖q

q . Once m is fixed, we can take ε small enough so that 1−α− p−1
p εm≥ 0 and

L(0) = H1−α (0)+ ε

∫
Ω

u0u1dx > 0. (3.13)
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Then (3.12) becomes

L′ (t)≥ εβ

[
H (t)+‖ut‖2

2 +

(
µ2 (t)

q
+1
)
‖u‖q

q

]
≥ 0. (3.14)

Then, we have

L(t)≥ L(0)> 0. (3.15)

For the definition of L(t) (see (3.3)) we have ∣∣∣∣∫
Ω

uutdx
∣∣∣∣ ≤ ‖u‖‖ut‖

≤ C‖u‖q ‖ut‖ (3.16)

using Hölder’s inequality and the embedding Lq (Ω) ↪→ Lp (Ω) (q > p). Thanks to Young’s inequality, we have∣∣∣∣∫
Ω

uutdx
∣∣∣∣ 1

1−α

≤ C‖u‖
1

1−α

q ‖ut‖
1

1−α

≤ C
(
‖u‖

2
1−2α

q +‖ut‖2
)

(3.17)

from (3.4), we arrive at 2
1−2α

< q.
Combining (3.17) and Remark 2.3, we get∣∣∣∣∫

Ω

uutdx
∣∣∣∣ 1

1−α

≤C
(

H (t)+‖ut‖2
2 +

(
µ2 (t)

q
+1
)
‖u‖q

q

)
. (3.18)

Therefore, we obtain

L
1

1−α (t) =

[
H1−α (t)+ ε

∫
Ω

uutdx
] 1

1−α

≤ 2
1

1−α

(
H (t)+

∣∣∣∣ε ∫
Ω

uutdx
∣∣∣∣ 1

1−α

)

≤ C
(

H (t)+‖ut‖2
2 +

(
µ2 (t)

q
+1
)
‖u‖q

q

)
. (3.19)

Combining (3.14), (3.15) and (3.19), we have

L′ (t)≥ γL
1

1−α (t) (3.20)

where γ is a constant depending only on C, β and ε. Integrating (3.20), we arrive at

L
1

1−α (t)≥ 1

L−
α

1−α (0)− α

1−α
γt
. (3.21)

If

t→

[
1−α

αγL
α

1−α (0)

]−
, L−

α

1−α (0)− α

1−α
γt→ 0.

Hence, L(t) blows up in finite time T ∗ and

T ∗ ≤ 1−α

αγL
α

1−α (0)
,

which complete the proof of the Theorem.

4. Conclusion

In this paper, we obtained the nonexistence of global solutions for a strongly damped wave equation with variable coefficients. This improves
and extends many results in the literature.
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[12] E. Pişkin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math., 13 (2015),

408-420.


	Introduction
	Preliminaries
	Nonexistence of Global Solutions
	Conclusion

