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Abstract

In this paper, we study the existence and uniqueness of Generalized Fractional Cauchy-type
problem involving Hilfer-Hadamard-type fractional derivative for a nonlinear fractional
differential equation. Also, we prove an equivalence between the Cauchy-type problem and
Volterra integral equation(VIE).

1. Introduction

We consider the Cauchy-type problem
HDα,β

a+ x(t) = ϕ(t,x(t)), n−1 < α < n,0≤ β ≤ 1,

HDγ− j
a+ x(t)

∣∣
t=a = xa j , ( j = 1,2, ...,n), γ = α +β (n−α).

(1.1)

From the above initial condition and by definition 2.3(in this paper), it is clear that

HDγ− j
a+ x(t) = δ

n− j
H In−γ

a+ x(t),

where HDα,β
a+ is the Hilfer-Hadamard-type fractional derivative of order α and type β [1, 2] Fractional differential equations have numerous

applications in science, physics, chemistry, and engineering [3, 6].
Recently, the theory and applications of fractional derivatives have received considerable attention by researchers. They have studied some
results of the existence and uniqueness of solutions for fractional differential equations on the different finite intervals such as the examples
in [1, 21] and references therein.
In this paper, we find a variety of results for the initial values problem (1.1), which are equivalent with (VIE), existence and uniqueness. In
section 2, we present some preliminaries. In section 3, we establish the equivalence of the Cauchy-type problem (1.1) and (VIE). In section
4, we prove the existence and uniqueness results for a solution of the Cauchy-type problem (1.1) in the weighted space.

2. Preliminaries

In this section, we introduce some notations, Lemmas, definitions and weighted spaces, which are important for developing some theories in
this paper. For further explanations, see [5].
Let 0 < a < b < +∞. Assume that C[a,b],AC[a,b],Cn[a,b] and Cn

µ [a,b] be the spaces of continuous, absolutely continuous, n-times
continuous and continuously differentiable functions on [a,b] respectively. And let Lp(a,b) with p≥ 1 be the space of Lebesgue integrable
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functions on (a,b). Moreover, we recall some of weighted spaces [5] in definition 2.1.
Definition 2.1 [5] Let Ω = [a,b] (0 < a < b < +∞) is a finite interval and 0 ≤ µ < 1. We introduce the weighted space Cµ,log[a,b] of
continuous functions ϕ on (a,b]

Cµ,log[a,b] = {ϕ : (a,b]→ R : [log(t/a)]µ ϕ(t) ∈C[a,b]}

with the norm

‖ϕ‖Cµ,log =

∥∥∥∥[log(t/a)]µ ϕ(t)
∥∥∥∥

C
, C0,log[a,b] =C[a,b].

And for n ∈ N and δ = t d
dt , we have

Cn
δ ,µ [a,b] =

{
ϕ : ‖ϕ‖Cn

δ ,µ
=

n−1

∑
k=0
‖δ k

ϕ‖C +‖δ n
ϕ‖Cµ,log

}
,C0

δ ,µ [a,b] =Cµ,log[a,b].

The space Cµ,log[a,b] is the complete metric space defined with the distance as

d(x1,x2) = ‖x1− x2‖Cµ,log [a,b] := max
t∈[a,b]

∣∣∣∣[log(t/a)]µ
[
x1(t)− x2(t)

]∣∣∣∣,
where log(.) = loge(.).
Definition 2.2 [4, 5] Let 0 < a < b <+∞. The Hadamard fractional integral of order α ∈ R+ for a function ϕ : (a,+∞)→ R is defined as

H Iα
a+ϕ(t) =

1
Γ(α)

∫ t

a
(log

t
τ
)α−1 ϕ(τ)

τ
dτ, (t > a).

Definition 2.3 [4, 5] Let 0 < a < b <+∞. The Hadamard fractional derivative of order α applied to the function ϕ : (a,+∞)→ R is defined
as

HDα
a+ϕ(t) = δ

n(H In−α
a+ ϕ(t)), n−1 < α < n, n = [α]+1,

where δ n = (t d
dt )

n, and [α] denotes the integer part of the real number α.
Lemma 2.4 [5] Let n ∈ N0 = {0,1,2, ...} and let µ1,µ2 ∈ R such that 0≤ µ1 ≤ µ2 < 1. The following embeddings hold:

Cn
δ
[a,b]−→Cn

δ ,µ1
[a,b]−→Cn

δ ,µ2
[a,b],

with

‖ϕ‖Cn
δ ,µ2
≤ Kδ ‖ϕ‖Cn

δ ,µ1
, Kδ = min

[
1,
(

log(b/a)
)µ2−µ1

]
, a 6= 0.

In particular,

C[a,b]−→Cµ1,log[a,b]−→Cµ2,log[a,b]

with

‖ϕ‖Cµ2 ,log ≤
(

log(b/a)
)µ2−µ1

‖ϕ‖Cµ1 ,log , a 6= 0.

Lemma 2.5 [5]
(a1) If R(α)≥ 0,R(β )≥ 0 and 0 < a < b <+∞, then[

H Iα
a+
(

log(τ/a)
)β−1]

(x) =
Γ(β )

Γ(α +β )
(log(t/a))α+β−1, x > a,

[
HDα

a+
(

log(τ/a)
)β−1]

(x) =
Γ(β )

Γ(α−β )
(log(t/a))α−β−1, x > a.

(a2) Let R(α)≥ 0,n = [R(α)]+1 and 0 < a < b <+∞. The equality ( HDα
a+x)(t)

= 0 is valid if and only if

x(t) =
n

∑
k=1

ck(log(t/a))α−k,

where ck ∈ R(k = 1,2, ...,n) are arbitrary constants.
(a3) Let R(α)≥ 0,R(β )≥ 0 and 0≤ µ < 1. If 0 < a < b <+∞, then for

ϕ ∈Cµ,log[a,b]

H Iα
a+ H Iβ

a+ϕ = H Iα+β

a+ ϕ

holds at any point t ∈ (a,b]. When ϕ ∈C[a,b], then this relation will be valid
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at any point t ∈ (a,b].
Theorem 2.6 [5] Let R(α)≥ 0,n = [R(α)]+1, and 0 < a < b <+∞. Also, let H In−α

a+ ϕ be the Hadamard-type fractional integral of order
n−α of the function ϕ. If ϕ ∈Cµ,log[a,b] (0≤ µ < 1) and H In−α

a+ ϕ ∈Cn
δ ,µ [a,b], then

(H Iα
a+ HDα

a+ϕ)(t) = ϕ(t)−
n

∑
k=1

(δ n−k(H In−α
a+ ϕ))(a)

Γ(α− k+1)
(log

t
a
)α−k.

Lemma 2.7 [5] Let 0 < a < b <+∞,R(α)≥ 0,n = [R(α)]+1 and 0≤R(µ)< 1.
(a) If R(µ)>R(α)> 0, then the fractional integration operator H Iα

a+ is
bounded from Cµ,log[a,b] into Cµ−α,log[a,b]:

‖ H Iα
a+ϕ‖Cµ−α,log ≤ k1‖ϕ‖Cµ,log ,

where

k1 =

(
log(b/a)

)R(α)
Γ[R(α)]|Γ(1−R(µ))|
|Γ(α)|Γ(1+R(α−µ))

.

In particular, H Iα
a+ is bounded in Cµ,log[a,b].

(b) If R(µ)≤R(α), then the fractional integration operator H Iα
a+ is bounded

from Cµ,log[a,b] into C[a,b]:

‖ H Iα
a+ϕ‖C ≤ k2‖ϕ‖Cµ,log ,

where

k2 =

(
log(b/a)

)R(α−µ)
Γ[R(α)]|Γ(1−R(µ))|
|Γ(α)|Γ(1+R(α−µ))

.

In particular, H Iα
a+ is bounded in Cµ,log[a,b].

Definition 2.8 [2] Let n−1 < α < n,0≤ β ≤ 1, and ϕ ∈ L1(a,b). The Hilfer-Hadamard fractional derivative HDα,β of order α and type β

of ϕ is defined as

(HDα,β
ϕ)(t) =

(
H Iβ (n−α)(δ )n

H I(n−α)(1−β )
ϕ
)
(t)

=
(

H Iβ (n−α)(δ )n
H In−γ

ϕ
)
(t); γ = α +nβ −αβ

=
(

H Iβ (n−α)
HDγ

ϕ
)
(t),

where H I(.) and HD(.) is the Hadamard fractional integral and derivative defined by definitions 2.2 and 2.3 respectively.
Definition 2.9 [5, 13] Assume that ϕ(x,y) is defined on set (a,b]×G,G⊂ R. The function ϕ(x,y) satisfies Lipschitz condition with respect
to y, if for all x ∈ (a,b] and for all y1,y2 ∈ G,

|ϕ(x,y1)−ϕ(x,y2)| ≤ L|y1− y2|,

where L > 0 is Lipschitz constant.
Definition 2.10 [1, 12] Let 0 < α < 1,0≤ β ≤ 1. The weighted space Cα,β

1−γ
[a,b] is defined by

Cα,β
1−γ

[a,b] = {ϕ ∈C1−γ [a,b] : Dα,β
a+ ϕ ∈C1−γ [a,b]},γ = α +β −αβ .

Lemma 2.11 [9] Let 0 < a < b <+∞,α > 0,0≤ µ < 1 and ϕ ∈Cµ,log[a,b]. If α > µ, then H Iα
a+ϕ is continuous on [a,b] and

H Iα
a+ϕ(a) = lim

t→a+
H Iα

a+ϕ(t) = 0.

Lemma 2.12 [2] Let R(α) > 0,0 ≤ β ≤ 1,γ = α + nβ −αβ ,n− 1 < γ ≤ n, n = [R(α)] + 1 and 0 < a < b < ∞. If ϕ ∈ L1(a,b) and
(H In−γ

a+ ϕ)(t) ∈ ACn
δ
[a,b], then

H Iα
a+ (HDα,β

a+ ϕ)(t) =H Iγ

a+ (HDγ

a+ϕ)(t) = ϕ(t)−
n

∑
j=1

(δ (n− j)(H In−γ

a+ ϕ))(a)
Γ(γ− j+1)

(log
t
a
)γ− j.

Lemma 2.13 [13] Let 0 < a < b <+∞,0≤ µ < 1,ϕ ∈Cµ,log[a,c] and ϕ ∈Cµ,log[c,b]. Then, ϕ ∈Cµ,log[a,b] and

‖ϕ‖Cµ,log[a,b] ≤max
{
‖ϕ‖Cµ,log[a,c],

(
log(b/a)

)µ

‖ϕ‖C[c,b]

}
.

Theorem 2.14 [5] Let (U,d) be a non-empty complete metric space. Let 0 ≤ ω < 1 and let T : U→ U be the map such that, for every
u,v ∈ U, the relation

d(Tu,Tv)≤ ω d(u,v), 0≤ ω < 1

holds. Then, the operator T has a unique fixed point u∗ ∈ U.
Furthermore, if Tk(k ∈ N) is the sequence of operators defined by

T1 = T, Tk = TTk−1 ∈ N\{1},

then, for any u0 ∈ U, the sequence {Tku0}+∞

k=1 converges to the above fixed point u∗.
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3. Equivalence of the Cauchy-Type Problem (1.1) and (VIE)

In this section, we are going to prove the equivalence of the Cauchy-type problem (1.1) and (VIE). So, we need the following definition:
Definition 3.1 Let n−1 < α < n, 0≤ β ≤ 1,γ = α +nβ −αβ and 0≤ µ < 1. We consider the underlying spaces defined by

Cα,β
δ ;n−γ,µ

[a,b] = {ϕ ∈Cn−γ,log[a,b] : HDα,β
a+ ϕ ∈Cµ,log[a,b]}

and

Cγ

n−γ,log[a,b] = {ϕ ∈Cn−γ,log[a,b] : HDγ

a+ϕ ∈Cn−γ,log[a,b]},

where Cn−γ,log[a,b] and Cµ,log[a,b] are weighted spaces of continuous functions on (a,b] defined by

Cγ,log[a,b] =
{

ϕ : (a,b]→ R :
(

log t/a
)γ

ϕ(t) ∈C[a,b]
}
.

In the next theorem, we studied the equivalence between the Cauchy-type problem (1.1) and (VIE) of the second kind

x(t) =
n

∑
k=1

xak

Γ(γ− k+1)
(log(t/a))γ−k +

1
Γ(α)

∫ t

a
(log(t/τ))α−1

ϕ(τ,x(τ))
dτ

τ
, t > a. (3.1)

Theorem 3.2 Let n−1<α < n,0≤ β ≤ 1,γ =α+β (n−α), and assume that ϕ(.,x(.))∈Cµ,log[a,b], where ϕ : (a,b]×R→R be a function
for any x∈Cµ,log[a,b](n−γ ≤ µ < n−β (n−α)). If x∈Cγ

n−γ,log[a,b], then x satisfies (1.1) if and only if x satisfies the integral equation (3.1).

Proof. First part, we will prove the necessity.
Assume that x ∈Cγ

n−γ,log[a,b] is a solution of (1.1). We prove that x is a solution of (3.1) as follows:

By the definition 3.1 of Cγ

n−γ,log[a,b], Lemma 2.7 (b) and definition 2.3, we have

H In−γ

a+ x ∈C[a,b], HDγ

a+x = δ
n

H In−γ

a+ x ∈Cn−γ,log[a,b].

Thus, by definition 2.1, we get

H In−γ

a+ x ∈Cn
δ ,n−γ

[a,b].

Now, by applying Theorem 2.6, we obtain

H Iγ

a+ HDγ

a+x(t) = x(t)−
n

∑
k=1

(δ n−k(H In−γ

a+ ϕ))(a)
Γ(γ− k+1)

(log
t
a
)γ−k, t ∈ (a,b],

or

H Iγ

a+ HDγ

a+x(t) = x(t)−
n

∑
k=1

xak

Γ(γ− k+1)
(log

t
a
)γ−k, t ∈ (a,b], (3.2)

where xak comes from the initial condition of (1.1). By our hypothesis ϕ(.,x(.)) ∈Cµ,log[a,b] and since x ∈Cn−γ,log[a,b] ⊂Cµ,log[a,b],
Lemma 2.7, we can see that the integral H Iα

a+ϕ(.,x(.)) ∈Cµ−α,log[a,b] for µ > α and H Iα
a+ϕ(.,x(.)) ∈C[a,b] for µ ≤ α. By applying the

operator H Iα
a+ to both sides of the problem of Cauchy-type (1.1) and Lemma 2.12 we obtain

H Iγ

a+ HDγ

a+x = H Iα
a+ HDα,β

a+ x = H Iα
a+( HDα,β

a+ x) = H Iα
a+ϕ. (3.3)

From (3.2) and (3.3) we get

x(t) =
n

∑
k=1

xak

Γ(γ− k+1)
(log

t
a
)γ−k + H Iα

a+[ϕ(τ,x(τ))](t), t ∈ (a,b], (3.4)

which is the (VIE)(3.1).

Second part, we will prove the sufficiency.
Assume that x ∈Cγ

n−γ,log[a,b] satisfies (3.1) which is written as (3.4). Then, HDγ

a+x exists and HDγ

a+x ∈Cn−γ,log[a,b]. Now, by applying

the operator HDγ

a+ to both sides of (3.4), we get

HDγ

a+x(t) = HDγ

a+

[ n

∑
k=1

xak

Γ(γ− k+1)
(log

t
a
)γ−k + H Iα

a+[ϕ(τ,x(τ))](t)
]
.

By using Lemma 2.5 (a2) and (a3), and definition 2.3, we obtain

HDγ

a+x = HDγ

a+
[

H Iα
a+ϕ

]
= δ

n(H In−γ

a+ H Iα
a+ϕ)

= δ
n(H In−β (n−α)

ϕ)

= HDβ (n−α)
a+ ϕ (3.5)
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From (3.5) and the hypothesis HDγ

a+x ∈Cn−γ,log[a,b], we have

HDβ (n−α)
a+ ϕ ∈Cn−γ,log[a,b].

Now, by applying H Iβ (n−α)
a+ to both sides of (3.5) we obtain

( H Iβ (n−α)
a+ HDγ

a+x)(t) = ( H Iβ (n−α)
a+ HDβ (n−α)

a+ ϕ(τ,x(τ)))(t);

that is,

H Iβ (n−α)
a+ δ

n(H In−γ

a+ x)(t) = ( H Iβ (n−α)
a+ HDβ (n−α)

a+ ϕ(τ,x(τ)))(t).

Since

δ
n(H In−β (n−α)

a+ ϕ(t,x(t))) = HDβ (n−α)
a+ ϕ(.,x(.)) ∈Cn−γ,log[a,b],

and γ > β (n−α) and by definition 2.1, we have H In−β (n−α)
a+ ϕ ∈Cn

δ ;n−γ
[a,b] (also that which is found in the first part of this proof, or by

Lemma 2.7 (b) with µ < n−β (n−α), for a continuity of H In−β (n−α)
a+ ϕ). Then, Theorem 2.6 with definition 2.8 allow us to write

HDα,β
a+ x(t) = ϕ(t,x(t))−

n

∑
k=1

(δ n−k(H In−β (n−α)
a+ ϕ))(a)

Γ(β (k−α))
(log

t
a
)β (n−α)−k, (3.6)

since µ < n−β (n−α). Then, it follows by Lemma 2.11 that[
H In−β (n−α)

a+ ϕ)

]
(a) = 0.

Therefore, we can write the relation (3.6) as

HDα,β
a+ x(t) = ϕ(t,x(t)), t ∈ (a,b].

Finally, we will show that the initial condition of (1.1) also holds. For that, we apply HDγ− j
a+ = δ n− j

H In−γ

a+ ( j = 1,2, ...,n) to both sides of
(3.4) and by using Lemma 2.5 (a1) and (a3), we obtain

HDγ− j
a+ x(t) = xa j +

[
δ

n− j(
H In−β (n−α)

a+ ϕ(τ,x(τ))
)]
(t) (3.7)

Now, taking the limit as t→ a, in (3.7), we get

HDγ− j
a+ x(t)

∣∣
t=a = xa j , ( j = 1,2, ...,n).

The proof of this theorem is complete.

Remark 3.3 For 0 < α < 1, Theorem 3.2 is reduced to Theorem 21 (see[9]).

4. Existence and Uniqueness

In this section, we will prove the existence and uniqueness results for a solution of the Cauchy-type problem (1.1) in the weighted space
Cα,β

n−γ,log[a,b] by using the Banach fixed point theorem. For that, we need the following Lemma.

Lemma 4.1 If µ ∈ R(0 ≤ µ < 1), then the Hadamard-type fractional integral operator H Iα
a+ with α ∈ C(R(α) > 0) is bounded from

Cµ,log[a,b] into Cµ,log[a,b] such that,

‖ H Iα
a+ϕ‖Cµ,log[a,b] ≤

Γ(1−µ)

Γ(1+α−µ)
(log(t/a))α‖ϕ‖Cµ,log[a,b]. (4.1)

Proof. By Lemma 2.7, the result of this Lemma follows. Now, we will prove the inequality (4.1). By definition 2.1 of the weighted space
Cµ,log[a,b], we have

‖ H Iα
a+ϕ‖Cµ,log[a,b] =

∥∥(log(t/a))µ
H Iα

a+ϕ
∥∥

C[a,b]

≤
∥∥ϕ
∥∥

Cµ,log[a,b]

∥∥
H Iα

a+(log(t/a))−µ
∥∥

Cµ,log[a,b]
.

Now, by using Lemma 2.5 (a1) (with β replaced by 1−µ) we obtain

‖ H Iα
a+ϕ‖Cµ,log[a,b] ≤

Γ(1−µ)

Γ(1+α−µ)
(log(t/a))α‖ϕ‖Cµ,log[a,b].

Hence, the proof of this Lemma is complete.

Theorem 4.2 Let n− 1 < α < n,0 ≤ β ≤ 1,γ = α + β (n−α), and assume that ϕ(.,x(.)) ∈ Cµ,log[a,b], where ϕ : (a,b]×R→ R be
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a function for any x ∈Cµ,log[a,b](n− γ ≤ µ < n−β (n−α)) and satisfies the Lipschitz condition given in definition 2.9 with respect to x.

Then, there exists a unique solution x(t) for the Cauchy-type problem (1.1) in the weighted space Cα,β
δ ;n−γ,µ

[a,b].

Proof. First, we will prove the existence of the unique solution x(t) ∈Cn−γ,log[a,b]. According to Theorem 3.2, it is sufficient to prove the
existence of the unique solution x(t) ∈Cn−γ,log[a,b] to the nonlinear (VIE)(3.1) and that is based on Theorem 2.14 (Banach fixed point
theorem). Since the equation (3.1) makes sense in any interval [a, t1]⊂ [a,b], then we choose t1 ∈ (a,b] such that the following estimate
holds

ω1 := L
Γ(γ−n+1)

Γ(α + γ−n+1)
(log(t1/a))α < 1, (4.2)

where L > 0 is a Lipschitz constant. So, we will prove the existence of the unique solution x(t) ∈Cn−γ,log[a, t1] to the equation (3.1) on the
interval (a, t1]. For this we know that the space Cn−γ,log[a, t1] is a complete metric space defined with the distance as

d(x1,x2) = ‖x1− x2‖Cn−γ,log [a, t1] := max
t∈[a,t1]

∣∣∣∣[log(t/a)]n−γ
[
x1(t)− x2(t)

]∣∣∣∣.
The equation (3.1) we be rewritten as the following:

x(t) = (Tx)(t),

where T is the operator defined by

(Tx)(t) = x0(t)+
[

H Iα
a+ϕ(τ,x(τ))

]
(t). (4.3)

with

x0(t) =
n

∑
k=1

xak

Γ(γ− k+1)
(log(t/a))γ−k. (4.4)

Now, we claim that T maps from Cn−γ,log[a, t1] into Cn−γ,log[a, t1]. In fact, it is clear from (4.4) that x0(t) ∈ Cn−γ,log[a, t1]. And since
ϕ(t,x(t)) ∈Cn−γ,log[a, t1], then, by Lemma 2.7 and Lemma 4.1 [with µ = n− γ,b = t1 and ϕ(.) = ϕ(.,x(.))], the integral in the right-hand
side of (4.1) is relevant to Cn−γ,log[a, t1]. Thus, (Tx)(t) ∈Cn−γ,log[a, t1].
Next, we will prove that T is the contraction. That is, we will prove that the following estimate holds:∥∥Tx1−Tx2

∥∥
Cn−γ,log[a,t1]

≤ ω1
∥∥x1− x2

∥∥
Cn−γ,log[a,t1]

, 0 < ω1 < 1. (4.5)

By equations (4.1) and (4.4), and using the Lipschitz condition given in definition 2.9 and applying the estimate (4.1) [with µ = n− γ,b = t1
and ϕ(t) = ϕ(t,x1(t))−ϕ(t,x2(t))], we get∥∥Tx1−Tx2

∥∥
Cn−γ,log[a,t1]

=
∥∥ H Iα

a+ϕ(t,x1(t))− H Iα
a+ϕ(t,x2(t))

∥∥
Cn−γ,log[a,t1]

≤
∥∥ H Iα

a+
[
|ϕ(t,x1(t))−ϕ(t,x2(t))|

]∥∥
Cn−γ,log[a,t1]

≤ L
∥∥ H Iα

a+
[
|x1(t))− x2(t))|

]∥∥
Cn−γ,log[a,t1]

≤ L
Γ(γ−n+1)

Γ(α + γ−n+1)
(log(t1/a))α‖x1− x2‖Cn−γ,log[a,t1]

= ω1‖x1− x2‖Cn−γ,log[a,t1],

which yields (4.5), 0 < ω1 < 1. According to (4.2) and by applying the Theorem 2.14 (Banach fixed point theorem), we obtain a unique
solution x∗ ∈Cn−γ,log[a, t1] to (VIE)(3.1) on the interval (a, t1].
This solution x∗ is given from a limit of the convergent sequence (Tmx∗0)(t) :

lim
m→∞

∥∥Tmx∗0− x∗
∥∥

Cn−γ,log[a,t1]
= 0,

where x∗0 is any function in Cn−γ,log[a, t1] and

(Tmx∗0)(t) = (TTm−1x∗0)(t)

= x0(t)+
[

H Iα
a+ϕ(τ,(Tm−1x∗0)(τ))

]
(t),

Let us put x∗0(t) = x0(t) with x0(t), which is defined by (4.4).
If we indicate xm(t) := (Tmx∗0)(t), then it is clear that

lim
m→+∞

∥∥xm(t)− x∗
∥∥

Cn−γ,log[a,t1]
= 0. (4.6)

Next, we consider the interval [t1,b]. From the (VIE)(3.1) we have

x(t) =
n

∑
k=1

xak

Γ(γ− k+1)
(log(t/a))γ−k +

1
Γ(α)

∫ t1

a
(log(t/τ))α−1

ϕ(τ,x(τ))
dτ

τ

+
1

Γ(α)

∫ t

t1
(log(t/τ))α−1

ϕ(τ,x(τ))
dτ

τ

= x01 +
1

Γ(α)

∫ t

t1
(log(t/τ))α−1

ϕ(τ,x(τ))
dτ

τ
, (4.7)
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where x01 is defined by

x01 =
n

∑
k=1

xak

Γ(γ− k+1)
(log(t/a))γ−k +

1
Γ(α)

∫ t1

a
(log(t/τ))α−1

ϕ(τ,x(τ))
dτ

τ
, (4.8)

and is the known function. We note that x01 ∈Cn−γ,log[t1,b]. Now, we will prove the existence of the unique solution x(t) ∈Cn−γ,log[t1,b]
to the equation (3.1) on the interval (t1,b]. Also, we use Theorem 2.14 (Banach fixed point theorem) for the space Cn−γ,log[t1, t2], where
t2 ∈ (t1,b] (with t2 = t1 +h1, h1 > 0, t2 ≤ b) satisfies

ω2 := L
Γ(γ−n+1)

Γ(α + γ−n+1)
(log(t2/t1))α < 1.

The space Cn−γ,log[t1, t2] is a complete metric space defined with the distance as

d(x1,x2) = ‖x1− x2‖Cn−γ,log [t1, t2] = max
t∈[t1,t2]

∣∣∣∣[log(t/a)]n−γ
[
x1(t)− x2(t)

]∣∣∣∣.
Also, we can rewrite equation (4.6) as the following:

x(t) = (Tx)(t), (4.9)

where T is the operator given by

(Tx)(t) = x01(t)+
[

H Iα
t1+ϕ(τ,x(τ))

]
(t).

As in the beginning part of this proof, since x01(t) ∈Cn−γ,log[t1, t2] and ϕ(t,x(t)) ∈Cn−γ,log[t1, t2], then, by Lemma 2.7 and Lemma 4.1
[with µ = n− γ,b = t2 and ϕ(.) = ϕ(.,x(.))], the integral in the right-hand side of (4.9) also belongs to Cn−γ,log[t1, t2]. Thus, (Tx)(t) ∈
Cn−γ,log[t1, t2].
Furthermore, using the Lipschitz condition given in definition 2.9 and applying the estimate (4.1) [with µ = n− γ,b = t2 and ϕ(t) =
ϕ(t,x1(t))−ϕ(t,x2(t))], we get∥∥Tx1−Tx2

∥∥
Cn−γ,log[t1,t2]

=
∥∥ H Iα

t1+ϕ(t,x1(t))− H Iα
t1+ϕ(t,x2(t))

∥∥
Cn−γ,log[t1,t2]

≤
∥∥ H Iα

t1+
[
|ϕ(t,x1(t))−ϕ(t,x2(t))|

]∥∥
Cn−γ,log[t1,t2]

≤ L
∥∥ H Iα

t1+
[
|x1(t))− x2(t))|

]∥∥
Cn−γ,log[t1,t2]

≤ ω2‖x1− x2‖Cn−γ,log[t1,t2].

This, together with (4.8), 0 < ω2 < 1, indicates that T is a contraction. And by applying the Theorem 2.14 (Banach fixed point theorem),
we obtain a unique solution x∗1 ∈Cn−γ,log[t1, t2] to (VIE)(3.1) on the interval (t1, t2]. Moreover, this solution x∗1 is given from a limit of the
convergent sequence (Tmx∗01)(t) :

lim
m→+∞

∥∥Tmx∗01− x∗1
∥∥

Cn−γ,log[t1,t2]
= 0,

where x∗01 is any function in Cn−γ,log[t1, t2]. Again, we can put x∗01(t) = x01(t) defined by (4.7). Hence,

lim
m→+∞

∥∥xm(t)− x∗1
∥∥

Cn−γ,log[t1,t2]
= 0,

where

xm(t) = (Tmx∗01)(t)

= x01(t)+
1

Γ(α)

∫ t

t1
(log(t/τ))α−1

ϕ(τ,x(τ))
dτ

τ
.

Next, if t2 6= b, we consider the interval [t2, t3] such that t3 = t2 +h2 with h2 > 0, t3 ≤ b and

ω3 := L
Γ(γ−n+1)

Γ(α + γ−n+1)
(log(t3/t2))α < 1.

By using the same argument as above, we conclude that there exists a unique solution x∗2 ∈Cn−γ,log[t2, t3] to (VIE)(3.1) on [t2, t3]. If t3 6= b,
then we continue the previous process until we get a unique solution x(t) to the (VIE)(3.1) and x(t) = x∗i such that x∗i ∈Cn−γ,log[ti−1, ti] for
i = 1,2, ...,L, where a = t0 < t1 < t2 < ... < tL = b and

ωi := L
Γ(γ−n+1)

Γ(α + γ−n+1)
(log(ti/ti−1))

α < 1.

Thus, by using Lemma 2.13, it yields that there exists a unique solution x(t) ∈Cn−γ,log[a,b] to the (VIE)(3.1) on the whole interval (a,b].
Therefore, x(t) ∈Cn−γ,log[a,b] is a unique solution to the Cauchy-type problem (1.1).

Finally, we will show that such unique solution x(t) ∈Cn−γ,log[a,b] is in the weighted space Cα,β
n−γ,µ [a,b]. By definition 3.1, it is sufficient to

prove that HDα,β
a+ x ∈Cµ,log[a,b]. From the above proof, a solution x(t) ∈Cn−γ,log[a,b] is a limit of the sequence xm(t) ∈Cn−γ,log[a,b] such

that

lim
m→+∞

∥∥xm− x
∥∥

Cn−γ,log[a,b]
= 0. (4.10)
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Hence, by using equation (1.1), Lipschitz condition given in definition 2.9 and Lemma 2.4, we have∥∥ HDα,β
a+ xm(t)− HDα,β

a+ x(t)
∥∥

Cµ,log[a,b]
=
∥∥ϕ(t,xm(t))−ϕ(t,x(t))

∥∥
Cµ,log[a,b]

≤ L (log(b/a))µ−n+γ
∥∥xm(t)− x(t)

∥∥
Cn−γ,log[a,b]

. (4.11)

Clearly, the equations (4.10) and (4.10) yield that

lim
m→+∞

∥∥ HDα,β
a+ xm(t)− HDα,β

a+ x(t)
∥∥

Cµ,log[a,b]
= 0,

and, hence, ( HDα,β
a+ x) ∈ Cµ,log[a,b]. Thus, the proof of this theorem is complete.

Remark 4.3 For 0 < α < 1, Theorem 4.2 is reduced to Theorem 22 (see[9]).
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