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Abstract

In this paper we give some theoretical explanations related to the representation for the
general solution of the system of the higher-order rational difference equations

xn+1 =
5yn−k−5

yn−k
, yn+1 =

5xn−k−5
xn−k

, n,k ∈ N0,

where N0 = N∪{0}, and the initial conditions x−k, x−k+1, . . ., x0, y−k, y−k+1, . . ., y0 are
non zero real numbers such that their solutions are associated to Lucas numbers.
We also study the stability character and asymptotic behavior of this system.

1. Introduction

Giving theoretical explanations related to the exact solutions of most systems of the higher-order rational difference equations is sophisticated
sometimes. Therefore, some of the recent papers give formulas for solutions to systems of difference equations and prove them by using only
the method of induction.
The prime purpose of this work is to give some theoretical explanations related to the general solution of the system of the higher-order
rational difference equations

xn+1 =
5yn−k−5

yn−k
, yn+1 =

5xn−k−5
xn−k

, n,k ∈ N0, (1.1)

where N0 = N∪{0}, and the initial conditions x−k, x−k+1, . . ., x0, y−k, y−k+1, . . ., y0 are non zero real numbers. The solutions of (1.1) are
expressed using the famous Fibonacci and Lucas numbers.
The idea is establish the solution form of system (1.1) using appropriate transformation reducing the system into a system of linear type
difference equations.
In [30], the authors give formulas for solutions of the equation

yn+1 =
1+ yn−1

ynyn−1
, n ∈ N0,

and prove them by using only the method of induction. However, the formulas are not justified by some theoretical explanations.
Halim et al. [8] gave the solutions of the systems of difference equations

xn+1 =
1

±1± yn−k
, yn+1 =

1
±1± xn−k

, n,k ∈ N0,

such that their solutions are associated to Fibonacci numbers.
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Also, in [7] Halim et al. establish the solution form of equation

yn+1 =
α +βyn−1

δynyn−1
, n ∈ N0,

using appropriate transformation reducing the equation into a linear type difference equation, such that their solutions are associated to
generalized Padovan numbers.
In [19], Stevic gave a theoretical explanation for the formula of solutions of the following difference equation

yn+1 =
αyn +β

γyn +δ
, n ∈ N0,

where parameters α,β ,γ,δ and initial value y0 are real numbers, such that their solutions are associated to generalized Fibonacci numbers.
More details on this aspect can be simply found in refs. [1]-[3],[9]-[13], [19], [22]-[28], [30],[31].

2. Preliminaries

2.1. Linearized stability of the higher-order systems

Let f and g be two continuously differentiable functions:

f : Ik+1× Jk+1 −→ I, g : Ik+1× Jk+1 −→ J,

where I, J are some interval of real numbers. For n ∈ N0, consider the system of difference equations{
xn+1 = f (xn,xn−1, . . . ,xn−k,yn,yn−1, . . . ,yn−k)
yn+1 = g(xn,xn−1, . . . ,xn−k,yn,yn−1, . . . ,yn−k)

(2.1)

where n,k ∈ N0, (x−k,x−k+1, . . . ,x0) ∈ Ik+1 and (y−k,y−k+1, . . . ,y0) ∈ Jk+1.
Define the map H : Ik+1× Jk+1 −→ Ik+1× Jk+1 by

H(W ) = ( f0(W ), f1(W ), . . . , fk(W ),g0(W ),g1(W ), . . . ,gk(W ))

where

W = (u0,u1, . . . ,uk,v0,v1, . . . ,vk)
T ,

f0(W ) = f (W ), f1(W ) = u0, . . . , fk(W ) = uk−1,

g0(W ) = g(W ),g1(W ) = v0, . . . ,gk(W ) = vk−1.

Let

Wn = [xn,xn−1, . . . ,xn−k,yn,yn−1, . . . ,yn−k]
T .

Then, we can easily see that system (2.1) is equivalent to the following system written in vector form

Wn+1 = H(Wn), n ∈ N0, (2.2)

that is 

xn+1 = f (xn,xn−1, . . . ,xn−k,yn,yn−1, . . . ,yn−k) ,
xn = xn,

...
xn−k+1 = xn−k+1,

yn+1 = g(xn,xn−1, . . . ,xn−k,yn,yn−1 . . . , ,yn−k) ,
yn = yn,

...
yn−k+1 = yn−k+1.

Definition 2.1 (Equilibrium point). An equilibrium point (x,y) ∈ I× J of system (2.1) is a solution of the system{
x = f (x,x, . . . ,x,y,y, . . . ,y) ,
y = g(x,x, . . . ,x,y,y, . . . ,y) .

Furthermore, an equilibrium point W ∈ Ik+1× Jk+1 of system (2.2) is a solution of the system

W = H(W ).

Definition 2.2 (Stability). Let W be an equilibrium point of system (2.2) and ‖ . ‖ be any norm (e.g. the Euclidean norm).
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1. The equilibrium point W is called stable (or locally stable) if for every ε > 0 there exist δ such that ‖W0 −W‖ < δ implies
‖Wn−W‖< ε for n≥ 0.

2. The equilibrium point W is called asymptotically stable (or locally asymptotically stable) if it is stable and there exist γ > 0 such that
‖W0−W‖< γ implies

lim
n→+∞

Wn =W .

3. The equilibrium point W is said to be global attractor (respectively global attractor with basin of attraction a set G⊆ Ik+1× Jk+1, if
for every W0 (respectively for every W0 ∈ G)

lim
n→+∞

Wn =W .

4. The equilibrium point W is called globally asymptotically stable (respectively globally asymptotically stable relative to G) if it is
asymptotically stable, and if for every W0 (respectively for every W0 ∈ G),

lim
n→+∞

Wn =W .

5. The equilibrium point W is called unstable if it is not stable.

Remark 2.3. Clearly, (x,y) ∈ I× J is an equilibrium point for system (2.1) if and only if W = (x,x, · · · ,x,y,y, · · · ,y) ∈ Ik+1× Jk+1 is an
equilibrium point of system (2.2).

From here on, by the stability of the equilibrium points of system (2.1), we mean the stability of the corresponding equilibrium points of the
equivalent system (2.2). The linearized system, associated to system (2.2), about the equilibrium point

W = (x,x, · · · ,x,y,y, · · · ,y),

is given by

Wn+1 = AWn, n ∈ N0,

where A is the Jacobian matrix of the map H at the equilibrium point W given by

A =



∂ f0
∂u0

(W ) ∂ f0
∂u1

(W ) . . . ∂ f0
∂uk

(W ) ∂ f0
∂v0

(W ) ∂ f0
∂v1

(W ) . . . ∂ f0
∂vk

(W )
∂ f1
∂u0

(W ) ∂ f1
∂u1

(W ) . . . ∂ f1
∂uk

(W ) ∂ f1
∂v0

(W ) ∂ f1
∂v1

(W ) . . . ∂ f1
∂vk

(W )

...
...

...
...

...
...

...
...

∂ fk
∂u0

(W ) ∂ fk
∂u1

(W ) . . . ∂ fk
∂uk

(W ) ∂ fk
∂v0

(W ) ∂ fk
∂v1

(W ) . . . ∂ fk
∂vk

(W )
∂g0
∂u0

(W ) ∂g0
∂u1

(W ) . . . ∂g0
∂uk

(W ) ∂g0
∂v0

(W ) ∂g
∂v1

(W ) . . . ∂g0
∂vk

(W )
∂g1
∂u0

(W ) ∂g1
∂u1

(W ) . . . ∂g1
∂uk

(W ) ∂g1
∂v0

(W ) ∂g1
∂v1

(W ) . . . ∂g1
∂vk

(W )

...
...

...
...

...
...

...
...

∂gk
∂u0

(W ) ∂gk
∂u1

(W ) . . . ∂gk
∂uk

(W ) ∂gk
∂v0

(W ) ∂gk
∂v1

(W ) . . . ∂gk
∂vk

(W )


.

Theorem 2.4. (Linearized stability)

1. If all the eigenvalues of the Jacobian matrix A lie in the open unit disk |λ | < 1, then the equilibrium point W of system (2.2) is
asymptotically stable.

2. If at least one eigenvalue of the Jacobian matrix A have absolute value greater than one, then the equilibrium point W of system (2.2)
is unstable.

2.2. Lucas sequence

The integer sequence defined by the recurrence relation

Ln+1 = Ln +Ln−1, n ∈ N,

with the initial conditions L0 = 2 and L1 = 1, is known as the Lucas numbers and was named after François Edouard Anatole Lucas
(1842-91). This is the same recurrence relation as for the Fibonacci sequence, but with different initial conditions (F0 = 0,F1 = 1). The first
few terms of the recurrence sequence are 2,1,3,4,7,11,18,29,47,76, . . .. The Binet’s formula for this recurrence sequence can easily be
obtained and is given by

Ln = α
n +β

n,

where

α =
1+
√

5
2

(the so− called golden number), β =
1−
√

5
2

.

That is,

lim
n→∞

Ln+1

Ln
= α.

For more informations associated with Lucas sequence, see [15] and [29].
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3. Closed-Form solutions and stability of system (1.1)

For the rest of our discussion we assume Ln, the n-th Lucas number, to satisfy the recurrence equation

Ln+1 = Ln +Ln−1, n ∈ N0,

with initial conditions L0 = 2 and L1 = 1.

3.1. Linear second order differences equations with constants coefficients.

As is well-known, the equation

zn+1 +5zn +5zn−1 = 0, n ∈ N0, (3.1)

(the homogeneous linear second order difference equation with constant coefficients), where z0 and z−1 ∈ R, is usually solved by using the
characteristic roots λ1 and λ2 of the characteristic polynomial λ 2 +5λ +5 = 0, so

λ1 =
√

5β , λ2 =−
√

5α,

and the formulas of general solution is

xn = c1λ
n
1 + c2λ

n
2 .

Using the initial conditions z0 and z−1 with some calculations we get

c1 =−
√

5
(

z−1−
z0

5
λ1

)
,

c2 =−
√

5
( z0

5
λ2− z−1

)
.

So,

zn =
√

5
(

z−1 [λ
n
2 −λ

n
1 ]−

z0

5

[
λ

n+1
2 −λ

n+1
1

])
,

=
√

5

(
z−1(
√

5)n [(−1)n
α

n−β
n]− z0(

√
5)n+1

(
√

5)2

[
(−1)n+1

α
n+1−β

n+1
])

,

by put

Nn = ((−1)n
α

n−β
n) ,

is obtained that the general solution of equation (3.1) is

zn = (
√

5)n
[
z−1
√

5Nn− z0Nn+1

]
. (3.2)

Similarly, let

zn+1−5zn +5zn−1 = 0, n ∈ N0, (3.3)

so, by put

Mn = (αn− (−1)n
β

n) ,

is obtained that the general solution of equation (3.3) is

zn =−(
√

5)n
[√

5z−1Mn− z0Mn+1

]
. (3.4)

3.2. Linear system of second order difference equations with constant coefficients.

Let the linear system of second order difference equations

un+1 = 5vn−5un−1, vn+1 = 5un−5vn−1, n ∈ N0. (3.5)

From (3.5) we get

vn =
1
5
(un+1 +5un−1) . (3.6)

We replace (3.6) in the second equation of the system (3.5), we get

1
5

un+2−3un +5un−2 = 0,

which can be written both as

(un+2−5un+1 +5un)︸ ︷︷ ︸
sn+1

+5(un+1−5un +5un−1)︸ ︷︷ ︸
sn

+5(un−5un−1 +5un−2)︸ ︷︷ ︸
sn−1

= 0, n ∈ N,



206 Universal Journal of Mathematics and Applications

which is in the form of equation (3.1) and as

(un+2 +5un+1 +5un)︸ ︷︷ ︸
kn+1

−5(un+1 +5un +5un−1)︸ ︷︷ ︸
kn

+5(un +5un−1 +5un−2)︸ ︷︷ ︸
kn−1

= 0, n ∈ N, (3.7)

which is in the form of equation (3.3). Form (3.4) and (3.2) we can write

{
s2n = (

√
5)2n [5s−1F2n + s0L2n+1] ,

s2n+1 = (
√

5)2n+2 [s−1L2n+1 + s0F2n+2] .

Hence

u2n+1−5u2n +5u2n−1 = (
√

5)2n[5(u0−5u−1 +5u−2)F2n +(u1−5u0 +5u−1)L2n+1], (3.8)

and

u2n+2−5u2n+1 +5u2n = (
√

5)2n+2[(u0−5u−1 +5u−2)L2n+1 +(u1−5u0 +5u−1)F2n+2].

Similarly, form (3.3) and (3.7) we can write{
k2n = −(

√
5)2n [5k−1F2n− k0L2n+1] ,

k2n+1 = −(
√

5)2n+2 [k−1L2n+1− k0F2n+2] .

Hence

u2n+1 +5u2n +5u2n−1 =−(
√

5)2n [5(u0 +5u−1 +5u−2)F2n− (u1 +5u0 +5u−1)L2n+1] , (3.9)

and

u2n+2−5u2n+1 +5u2n =−(
√

5)2n+2 [(u0 +5u−1 +5u−2)L2n+1− (u1 +5u0 +5u−1)F2n+2] .

Now, by subtracting equation (3.9) from equation (3.8), we obtain

u2n =−(
√

5)2n[5v−1F2n−u0L2n+1]. (3.10)

Also, by equation (3.9) and equation (3.8), we obtain

v2n =−(
√

5)2n [5u−1F2n− v0L2n+1] . (3.11)

By a similar calculation, we obtain

u2n+1 =−(
√

5)2n+2[u−1L2n+1− v0F2n+2], (3.12)

and

v2n+1 =−(
√

5)2n[v−1L2n+1−u0F2n+2]. (3.13)

Now we consider the system of two first-order difference equations

zn+1 =
5wn−5

wn
, wn+1 =

5zn−5
zn

, n ∈ N0. (3.14)

where the initial conditions z0 and w0 are non zero real numbers.
Through an analytical approach. We put

zn =
un

vn−1
, wn =

vn

un−1
.

Hence we have the system

un+1 = 5vn−5un−1, vn+1 = 5un−5vn−1. (3.15)

by formulas, (3.5), (3.2), (3.4), (3.10), (3.11), (3.12) and (3.13) is obtained that the general solution of system (3.15) is
u2n = −(

√
5)2n [5v−1F2n−u0L2n+1] ,

u2n+1 = −(
√

5)2n+2 [u−1L2n+1− v0F2n+2] ,

v2n = −(
√

5)2n [5u−1F2n− v0L2n+1] ,

v2n+1 = −(
√

5)2n+2 [v−1L2n+1−u0F2n+2] .

From all above mentioned we see that the following theorem holds.
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Theorem 3.1. Let {zn,wn}n≥−1 be a solution of (3.14). Then, for n = 2,3, . . . ,

z2n =
5F2n− z0L2n+1

L2n−1− z0F2n
,

z2n+1 =
5L2n+1−5w0F2n+2

5F2n−w0L2n+1
,

w2n =
5F2n−w0L2n+1

L2n−1−w0F2n
,

w2n+1 =
5L2n+1−5z0F2n+2

5F2n− z0L2n+1
.

where {Ln}n is the Lucas sequence, {Fn}n is the Fibonacci sequence and the initial conditions z0 and w0 ∈R−G1, with G1 is the Forbidden
Set of system (3.14) given by

G1 =
∞⋃

n=−1
{(z0,w0) : L2n−1− z0F2n = 0, 5F2n−w0L2n+1 = 0} .

Let {
x( j)

n = x(k+1)n− j,

y( j)
n = y(k+1)n− j.

(3.16)

where j ∈ {0,1, . . .k}.
Using notation (3.16), we can write (1.1) as

x( j)
n+1 =

5y( j)
n −5

y( j)
n

,

y( j)
n+1 =

5x( j)
n −5

x( j)
n

. n ∈ N,

for each j ∈ {0,1, . . . ,k}.
So, from Theorem (3.1) we get for n = 2,3, . . . ,

x( j)
2n =

5F2n− x( j)
0 L2n+1

L2n−1− x( j)
0 F2n

,

x( j)
2n+1 =

5L2n+1−5y( j)
0 F2n+2

5F2n− y( j)
0 L2n+1

,

y( j)
2n =

5F2n− y( j)
0 L2n+1

L2n−1− y( j)
0 F2n

,

y( j)
2n+1 =

5L2n+1−5x( j)
0 F2n+2

5F2n− x( j)
0 L2n+1

.

From all above mentioned we see that the following theorem holds.

Theorem 3.2. Let {xn,yn}n≥−1 be a solution of (1.1). Then, for n = 2,3, . . . ,

x(k+1)2n− j =
5F2n− x− jL2n+1

L2n−1− x− jF2n
,

x(k+1)(2n+1)− j =
5L2n+1−5y− jF2n+2

5F2n− y− jL2n+1
,

y(k+1)2n− j =
5F2n− y− jL2n+1

L2n−1− y− jF2n
,

x(k+1)(2n+1)− j =
5L2n+1−5x− jF2n+2

5F2n− x− jL2n+1
.

where j ∈ {0,1, . . . ,k}, {Ln}n the Lucas sequence, {Fn}n the Fibonacci sequence and the initial conditions x−k, x−k+1, . . .x0, y−k,
y−k+1, . . . ,y1 and y0 ∈ R−G j, with G j is the Forbidden Set of system (1.1) given by

G j =
∞⋃

n=−1

{
(x−k,x−k+1, . . . ,x0,y−k,y−k+1, . . . ,y0,) : L2n−1− x− jF2n = 0, 5F2n− y− jL2n+1 = 0, j = 0,1, . . . ,k

}
.
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3.3. Global stability of positive solutions

In this section we study the global stability character of the solutions of system (1.1). It is easy to show that (1.1) has a unique real positive
equilibrium point given by

E = (x,y) =
(√

5α,
√

5α

)
,

where α is the golden number.
Let I = J = (0,+∞) and consider the functions

f : Ik+1× Jk+1 −→ I, g : Ik+1× Jk+1 −→ J

defined by

f (u0,u1, . . . ,uk,v0,v1, . . . ,vk) =
5vk−5

vk
,

g(u0,u1, . . . ,uk,v0,v1, . . . ,vk) =
5uk−5

uk
.

Theorem 3.3. The equilibrium point E is locally asymptotically stable.

Proof. The the linearized system about the equilibrium point

W =
(√

5α, . . . ,
√

5α,
√

5α, . . . ,
√

5α

)
∈ Ik+1× Jk+1

is given by

Xn+1 = AXn, Xn = (xn,xn−1, . . . ,xn−k,yn,yn−1, . . . ,yn−k)
T ,

and

A =



0 0 . . . 0 0 0 . . .
1

α2
1 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 . . . 1 0 0 . . . 0

0 0 . . .
1

α2 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 1


.

So, after some elementary calculations, we get

P(λ ) = det(A−λ I2k+2) = λ
2k+2− 1

α4 .

Now, consider the two functions defined by

a(λ ) = λ
2k+2, b(λ ) =

1
α4 .

We have

|b(λ )|< |a(λ )| ,∀λ : |λ |= 1.

Thus, by Rouche’s Theorem, all zeros of P(λ ) = a(λ )−b(λ ) = 0 lie in |λ |< 1. So, by Theorem (2.4), we get that E is locally asymptotically
stable.

Theorem 3.4. The equilibrium point E is globally asymptotically stable.

Proof. Let {xn,yn}n≥−k be a solution of (1.1). By Theorem (3.3) we need only to prove that E is global attractor, that is

lim
n→∞

(xn,yn) = E.

To do this, we prove that for j = 0,1, . . . ,k we have

lim
n→+∞

x(k+1)2n− j = lim
n→+∞

x(k+1)(2n+1)− j = lim
n→+∞

y(k+1)2n− j = lim
n→+∞

y(k+1)(2n+1)− j =
√

5α.

For j = 0,1, . . . ,k, it follows from Theorem (3.2) that

lim
n→+∞

x(k+1)2n− j = lim
n→+∞

5F2n− x− jL2n+1

L2n−1− x− jF2n

= lim
n→+∞

5− x− j
L2n+1
F2n

L2n−1
F2n
− x− j

.
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Using

lim
n→+∞

Fn+1

Ln
=

α√
5
, lim

n→+∞

Ln+1

Fn
=
√

5α

we get

lim
n→+∞

x(k+1)2n− j = α
√

5.

Similarly we get

lim
n→+∞

x(k+1)(2n+1)− j = lim
n→+∞

y(k+1)2n− j = lim
n→+∞

y(k+1)(2n+1)− j =
√

5α.

3.4. Numerical confirmation

This subsection is included to verify and confirm the results we obtained in this work. As an illustration of our results, we consider the
following numerical examples.

Example 3.5. Let k = 0 in system (1.1), then we obtain the system

xn+1 =
5yn−5

yn
, yn+1 =

5xn−5
xn

, n ∈ N0. (3.17)

Assume x0 = 0.7 and y0 = 1.5. ( See Fig (3.1))

0 10 20 30 40 50
−2

−1

0

1

2

3

4

5

6

7

8

n

x
(n

),
y
(n

)

x(n)

y(n)

Figure 3.1: This figure shows that the solution of the system (3.17) is globally asymptotically stable

Example 3.6. Let k = 2 in system (1.1), then we obtain the system

xn+1 =
5yn−2−5

yn−2
, yn+1 =

5xn−2−5
xn−2

, n ∈ N0. (3.18)

Assume x−2 = 0.5, x−1 = 0.7, x0 = 1.6, y−2 = 0.6, y−1 =−50 and y0 = 1.7. (See Fig(3.2))

Example 3.7. Let k = 3 in system (1.1), then we obtain the system

xn+1 =
5yn−3−5

yn−3
, yn+1 =

5xn−3−5
xn−3

, n ∈ N0. (3.19)

Assume x−3 = 0.8, x−2 = 0.7, x−1 = 0.6, x0 = 0.9, y−3 = 1.1, y−2 = 1.8, y−1 = 1.3 and y0 = 1.6. ( See Fig(3.3))
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Figure 3.2: This figure shows that the solution of the system (3.18) is globally asymptotically stable
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Figure 3.3: This figure shows that the solution of the system (3.19) is globally asymptotically stable

4. Conclusion

In this work, we have successfully established a theoretical explanation related to the closed-form solution of the system of two higher-order
difference equations

xn+1 =
5yn−k−5

yn−k
, yn+1 =

5xn−k−5
xn−k

, n,k ∈ N0.

Also, we obtained stability results for the positive solutions of this system. Particularly, we have shown that the positive solutions of this
system tends to a computable finite number, and is in fact expressible in terms of the well-known golden number.
This work we leave to the interested readers.
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