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Abstract

This paper deals with the form, the stability character, the periodicity and the global behavior
of solutions of the following four rational difference equations

xn+1 =
±1

xn (xn−1±1)−1

xn+1 =
±1

xn (xn−1∓1)+1
.

.

1. Introduction

Difference equation or discrete dynamical system is a diverse field which impact almost every branch of pure and applied mathematics.
Lately, there has been great interest in the study of solving difference equations and systems of difference equations, see [1-20]. In these
studies, the authors deal with the closed-form, stability, periodicity, boundedness and asymptotic behavior of solutions of nonlinear difference
equations and systems of difference equations. There are many recent investigations and interest in the field which difference equations have
been studied by several authors, as in the examples given below:
In [2], Tollu et al. considered the following difference equations

xn+1 =
1

1+ xn
, yn+1 =

1
−1+ yn

, n = 0,1, ..., (1.1)

such that their solutions are associated with Fibonacci numbers.
In [6], Halim and Bayram investigated the solutions, stability character, and asymptotic behavior of the difference equation

xn+1 =
α

β + γxn−k
, n ∈ N0, (1.2)

where the initial conditions x−k,x−k+1, ...,x0 are nonzero real numbers, such that its solutions are associated to Horadam numbers, which are
generalized Fibonacci numbers.
Then, in [7] Halim considered the system of difference equations

xn+1 =
1

1+ yn−2
, yn+1 =

1
1+ xn−2

, n = 0,1, ..., (1.3)

such that their solutions are associated with Fibonacci numbers, where N0 = N∪{0} and the initial conditions x−2, x−1, x0, y−2, y−1, and
y0 are real numbers.
In [8], Halim and Rabago studied the systems of difference equaions

xn+1 =
1

±1± yn−k
, yn+1 =

1
±1± xn−k

, n,k ∈ N0, (1.4)
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where the initial conditions x−k, x−k+1, ..., x0, y−k, y−k+1, ..., y0 are nonzero real numbers.
Then, in [9], the authors studied the rational difference equation

xn+1 =
αxn−1 +β

γxnxn−1
, n ∈ N0, (1.5)

where N0 =N∪{0}, α , β , γ ∈R+ and the initial conditions nonzero real numbers and also investigated the two-dimensional case of the this
equation given by

xn+1 =
αxn−1 +β

γynxn−1
, yn+1 =

αyn−1 +β

γxnyn−1
, n ∈ N0. (1.6)

Also, the solutions of Eq. (1.5) and system of (1.6) are associated to generalized Padovan numbers.
As far as we examine, there is no paper dealing with the following difference equations. Hence, in this study, we study the following four
difference equations

xn+1 =
1

xn (xn−1 +1)−1
, n = 0,1, ..., (1.7)

xn+1 =
−1

xn (xn−1−1)−1
, n = 0,1, ..., (1.8)

xn+1 =
1

xn (xn−1−1)+1
, n = 0,1, ..., (1.9)

xn+1 =
−1

xn (xn−1 +1)+1
, n = 0,1, .... (1.10)

2. Preliminaries

Let I be some interval of real numbers and let f : Ik+1→ I be a continuously differentiable function. A difference equation of order (k+1)
is an equation of the form

xn+1 = f (xn,xn−1, ...,xn−k), n = 0,1, .... (2.1)

A solution of Eq.(2.1) is a sequence {xn}∞
n=−k that satisfies Eq.(2.1) for all n≥−k.

Definition 2.1. A solution of Eq.(2.1) that is constant for all n≥−k is called an equilibrium solution of Eq.(2.1). If

xn = x, for all n≥−k

is an equilibrium solution of Eq.(2.1), then x is called an equilibrium point, or simply an equilibrium of Eq.(2.1)..

Definition 2.2 (Stability, 1). Let x an equilibrium point of Eq.(2.1).

(a) An equilibrium point x of Eq.(2.1) is called locally stable if, for every ε > 0; there exists δ > 0 such that if {xn}∞
n=−k is a solution of

Eq.(2.1) with

|x−k− x|+ |x1−k− x|+ ...+ |x0− x|< δ ,

then

|xn− x|< ε, for all n≥−k.

(b) An equilibrium point x of Eq.(2.1) is called locally asymptotically stable if, it is locally stable, and if in addition there exists γ > 0 such
that if {xn}∞

n=−k is a solution of Eq.(2.1) with

|x−k− x|+ |x−k+1− x|+ ...+ |x0− x|< γ,

then we have

lim
n→∞

xn = x.

(c) An equilibrium point x of Eq.(2.1) is called a global attractor if, for every solution {xn}∞
n=−k of Eq.(2.1), we have

lim
n→∞

xn = x.

(d) An equilibrium point x of Eq.(2.1) is called globally asymptotically stable if it is locally stable, and a global attractor.
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(e) An equilibrium point x of Eq.(2.1) is called unstable if it is not locally stable.Suppose that the function f is continuously differentiable in
some open neighborhood of an equilibrium point x. Let

qi =
∂ f
∂ui

(x,x, ...,x), for i = 0,1, ...,k

denote the partial derivative of f (u0,u1, ...,uk) with respect to ui evaluated at the equilibrium point x of Eq.(2.1).

Definition 2.3. The equation

yn+1 = q0yn +q1yn−1 + ...+qkyn−k, n = 0,1, ... (2.2)

is called the linearized equation of Eq.(2.1) about the equilibrium point x, and the equation

λ
k+1−q0λ

k− ...−qk−1λ −qk = 0 (2.3)

is called the characteristic equation of Eq.(2.2) about x.

Theorem 2.4 (The Linearized Stability Theorem, 1). Assume that the function f is a continuously differentiable function defined on some
open neighborhood of an equilibrium point x. Then the following statements are true:

(a) When all the roots of characteristic equation (2.3) have absolute value less than one, then the equilibrium point x of Eq.(2.1) is locally
asymptotically stable.

(b) If at least one root of characteristic equation (2.3) has absolute value greater than one, then the equilibrium point x of Eq.(2.1) is
unstable.

(c) The equilibrium point x of Eq.(2.1) is called hyperbolic if no root of characteristic equation (2.3) has absolute value equal to one.
(d) If there exists a root of characteristic equation (2.3) with absolute value equal to one, then the equilibrium x is called nonhyperbolic.
(e) An equilibrium point x of Eq.(2.1) is called a repeller if all roots of characteristic equation (2.3) have absolute value greater than one.
(f) An equilibrium point x of Eq.(2.1) is called a saddle if one of the roots of characteristic equation (2.3) is greater and another is less than

one in absolute value.

3. Main Results

In this section, we present our main results for the above mentioned difference equations. Our aim is to investigate the general solutions in
explicit form of the above mentioned difference equations and the asymptotic behavior of solutions of these difference equations.

3.1. The Difference Equation (1.7)

Theorem 3.1. Let {xn}∞

n=−1 be a solution of Eq.(1.7). Then, for n = 0,1,2, ..., the forms of solutions {xn}∞

n=−1 are given by

x2n−1 =
(1−n)x−1x0 +n
nx−1x0 + x0−n

(3.1)

x2n =
nx−1x0 + x0−n
−nx−1x0 +n+1

(3.2)

where the initial conditions x−1, x0 ∈ R−F1, with F1 is the forbidden set of Eq.(1.7) given by

F1 = ∪∞
n=−1 {(x−1,x0) : nx−1x0 + x0−n = 0 or −nx−1x0 +n+1 = 0} .

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption holds for n−1. That is,

x2n−3 =
(2−n)x−1x0 +n−1

(n−1)x−1x0 + x0− (n−1)

and

x2n−2 =
(n−1)x−1x0 + x0− (n−1)

(1−n)x−1x0 +n
.

From this and from Eq.(1.7), it follows that

x2n−1 =
1

x2n−2 (x2n−3 +1)−1

=
1

(n−1)x−1x0+x0−(n−1)
(1−n)x−1x0+n

(
(2−n)x−1x0+n−1

(n−1)x−1x0+x0−(n−1) +1
)
−1

=
(1−n)x−1x0 +n
nx−1x0 + x0−n

.

Hence, similarly, we obtain

x2n =
1

x2n−1 (x2n−2 +1)−1

=
1

(1−n)x−1x0+n
nx−1x0+x0−n

(
(n−1)x−1x0+x0−(n−1)

(1−n)x−1x0+n +1
)
−1

=
nx−1x0 + x0−n
−nx−1x0 +n+1

.
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Theorem 3.2. The following statements are true.

(i) The equilibrium points of Eq.(1.7) are x1 = 1 and x2 =−1.
(ii) The positive equilibrium point of Eq.(1.7), x1 = 1, is nonhyperbolic point.
(iii) The negative equilibrium point of Eq.(1.7), x2 =−1, is nonhyperbolic point.

Proof.

(i) Equilibrium points of Eq.(1.7) satisfy the equation

x =
1

x(x+1)−1
.

After simplification, we have the following cubic equation

x3 + x2− x−1 = 0. (3.3)

The roots of the cubic equation (3.3) are −1, −1, 1. Therefore, Eq.(1.7) has two equilibra, one positive and one negative, such that

x1 = 1, x2 =−1.

(ii) Now, let I = (0,∞) and consider the function

f : I2→ I

defined by

f (x,y) =
1

x(y+1)−1
. (3.4)

Then, it follows that

∂ f (x,y)
∂x

=
−(y+1)

(x(y+1)−1)2 ,

∂ f (x,y)
∂y

=
−x

(x(y+1)−1)2 .

Therefore, the linearized equation of Eq.(1.7) about the equilibrium point x1 = 1 is

zn+1 = pzn +qzn−1,

where

p =
∂ f (x1,x1)

∂x
=−2,

q =
∂ f (x1,x1)

∂y
=−1,

and the corresponding characteristic equation is

λ
2 +2λ +1 = 0.

Therefore, from Theorem 2.4, it is clearly seen that

λ1,2 =−1

and

|λ1|= |λ2|= 1.

So, x1 is nonhyperbolic point.
(iii) Similarly, from (3.4), the linearized equation of Eq.(1.7) about the equilibrium point x2 =−1 is

zn+1 = pzn +qzn−1,

where

p =
∂ f (x2,x2)

∂x
= 0,

q =
∂ f (x2,x2)

∂y
= 1,

and its characteristic equation is

λ
2−1 = 0.

Thus, it follows that

λ1,2 =±1

and

|λ1|= |λ2|= 1.

So, x2 is nonhyperbolic point.



120 Universal Journal of Mathematics and Applications

Theorem 3.3. Let {xn}∞

n=−1 be a solution of Eq.(1.7). Then, the negative equilibrium point of Eq.(1.7), x2, is a global attractor.

Proof. From Theorem 3.1, we have

lim
n→∞

x2n−1 = lim
n→∞

(1−n)x−1x0 +n
nx−1x0 + x0−n

= lim
n→∞

(1−n)
(
x−1x0 +

n
1−n
)

n
(
x−1x0 +

x0
n −1

)
= lim

n→∞

(1−n)
(
x−1x0−1+ 1

1−n
)

n
(
x−1x0 +

x0
n −1

)
=−1,

and

lim
n→∞

x2n = lim
n→∞

nx−1x0 + x0−n
−nx−1x0 +n+1

= lim
n→∞

n
(
x−1x0 +

x0
n −1

)
−n
(
x−1x0−1− 1

n
)

=−1.

Hereby, it implies

lim
n→∞

xn =−1.

3.2. The Difference Equation (1.8)

Theorem 3.4. Let {xn}∞

n=−1 be a solution of Eq.(1.8). Then, for n = 0,1,2, ..., the forms of solutions {xn}∞

n=−1 are given by

x2n−1 =
−((1−n)x−1x0 +n)

nx−1x0− x0−n
(3.5)

x2n =
−(nx−1x0− x0−n)
−nx−1x0 +n+1

(3.6)

where the initial conditions x−1, x0 ∈ R−F2, with F2 is the forbidden set of Eq.(1.8) given by

F2 = ∪∞
n=−1 {(x−1,x0) : nx−1x0− x0−n = 0 or −nx−1x0 +n+1 = 0} .

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption holds for n−1. That is,

x2n−3 =
−((2−n)x−1x0 +n−1)

(n−1)x−1x0− x0− (n−1)

and

x2n−2 =
−((n−1)x−1x0− x0− (n−1))

−(n−1)x−1x0 +n
.

From this and from Eq.(1.8), it follows that

x2n−1 =
−1

x2n−2 (x2n−3−1)−1

=
−1

−((n−1)x−1x0−x0−(n−1))
−(n−1)x−1x0+n

(
−((2−n)x−1x0+n−1)
(n−1)x−1x0−x0−(n−1) −1

)
−1

=
−((1−n)x−1x0 +n)

nx−1x0− x0−n
.

Hence, similarly, we obtain

x2n =
−1

x2n−1 (x2n−2−1)−1

=
−1

−((1−n)x−1x0+n)
nx−1x0−x0−n

(
−((n−1)x−1x0−x0−(n−1))

−(n−1)x−1x0+n −1
)
−1

=
−(nx−1x0− x0−n)
−nx−1x0 +n+1

.

Theorem 3.5. The following statements are true.

(i) The equilibrium points of Eq.(1.8) are x1 = 1 and x2 =−1.
(ii) The positive equilibrium point of Eq.(1.8), x1 = 1, is nonhyperbolic point.
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(iii) The negative equilibrium point of Eq.(1.8), x2 =−1, is nonhyperbolic point.

Proof.

(i) Equilibrium points of Eq.(1.8) satisfy the equation

x =
−1

x(x−1)−1
.

After simplification, we have the following cubic equation

x3− x2− x+1 = 0. (3.7)

The roots of the cubic equation (3.7) are −1, 1, 1. Therefore, Eq.(1.8) has two equilibra, one positive and one negative, such that

x1 = 1, x2 =−1.

(ii) Now, let I = (0,∞) and consider the function

f : I2→ I

defined by

f (x,y) =
−1

x(y−1)−1
. (3.8)

Then, it follows that

∂ f (x,y)
∂x

=
(y−1)

(x(y−1)−1)2 ,

∂ f (x,y)
∂y

=
x

(x(y−1)−1)2 .

Therefore, the linearized equation of Eq.(1.8) about the equilibrium point x1 = 1 is

zn+1 = pzn +qzn−1,

where

p =
∂ f (x1,x1)

∂x
= 0,

q =
∂ f (x1,x1)

∂y
= 1,

and the corresponding characteristic equation is

λ
2−1 = 0.

Therefore, from Theorem 2.4, it is clearly seen that

λ1,2 =±1

and

|λ1|= |λ2|= 1.

So, x1 is nonhyperbolic point.
(iii) Similarly, from (3.8), the linearized equation of Eq.(1.8) about the equilibrium point x2 =−1 is

zn+1 = pzn +qzn−1,

where

p =
∂ f (x2,x2)

∂x
=−2,

q =
∂ f (x2,x2)

∂y
=−1,

and its characteristic equation is

λ
2 +2λ +1 = 0.

Thus, it follows that

λ1,2 =−1

and

|λ1|= |λ2|= 1.

So, x2 is nonhyperbolic point.
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Theorem 3.6. Let {xn}∞

n=−1 be a solution of Eq.(1.8). Then, the positive equilibrium point of Eq.(1.8), x1, is a global attractor.

Proof. From Theorem 3.4, we obtain

lim
n→∞

x2n−1 = lim
n→∞

−((1−n)x−1x0 +n)
nx−1x0− x0−n

= lim
n→∞

(n−1)
(
x−1x0 +

n
1−n
)

n
(
x−1x0− x0

n −1
)

= lim
n→∞

(n−1)
(
x−1x0−1+ 1

1−n
)

n
(
x−1x0− x0

n −1
)

= 1,

and

lim
n→∞

x2n = lim
n→∞

−(nx−1x0− x0−n)
−nx−1x0 +n+1

= lim
n→∞

−n
(
x−1x0− x0

n −1
)

−n
(
x−1x0−1− 1

n
)

= 1.

Herewith, it implies

lim
n→∞

xn = 1.

So, the proof is complete.

3.3. The Difference Equation (1.9)

Lemma 3.7. Let {xn}∞

n=−1 be a solution of Eq.(1.9). Then, {xn}∞

n=−1 is periodic with period four.

Proof. From Eq.(1.9),

xn+4 =
1

xn+3 (xn+2−1)+1

=
1(

1
xn+2(xn+1−1)+1

)(
1

xn+1(xn−1)+1 −1
)
+1

=
1 1(

1
xn+1(xn−1)+1

)(
1

xn(xn−1−1)+1
−1
)
+1

 1(
1

xn(xn−1−1)+1

)
(xn−1)+1

−1

+1

=
1 1 1

1
xn(xn−1−1)+1

(xn−1)+1

( xn(1−xn−1)
xnxn−1−xn+1

)
+1

( 1−xn
xnxn−1

)
+1

=
1

xn−1

(
1−xn

xnxn−1

)
+1

= xn.

Hence, the result holds.

Theorem 3.8. Let {xn}∞

n=−1 be a solution of Eq.(1.9). Then, for n = 1,2, ...,

x4n−3 =
1

x−1x0− x0 +1

x4n−2 =
x−1x0− x0 +1

x−1x0
(3.9)

x4n−1 = x−1

x4n = x0

where the initial conditions x−1, x0 ∈ R−F3, with F3 is the forbidden set of Eq.(1.9) given by

F3 =

{
(x−1,x0) : x−1x0 = 0 or x−1 =

x0−1
x0

}
.
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Proof. From (1.9), for n = 0, the result holds. Suppose that n > 0 and that our assumption holds for n−1. That is,

x4n−7 =
1

x−1x0− x0 +1
,

x4n−6 =
x−1x0− x0 +1

x−1x0
,

x4n−5 = x−1,

x4n−4 = x0.

Now, from Eq.(1.9), it follows that

x4n−3 =
1

x4n−4 (x4n−5−1)+1
=

1
x−1x0− x0 +1

.

From this and from Eq.(1.9), it follows that

x4n−2 =
1

x4n−3 (x4n−4−1)+1
=

1
1

x−1x0−x0+1 (x0−1)+1
=

x−1x0− x0 +1
x−1x0

.

Again from Eq.(1.9), we get

x4n−1 =
1

x4n−2 (x4n−3−1)+1
=

1
x−1x0−x0+1

x−1x0

(
1

x−1x0−x0+1 −1
)
+1

=
x−1x0

x0
= x−1.

Similarly, from Eq.(1.9), we have

x4n−4 =
1

x4n−1 (x4n−2−1)+1
=

1

x−1

(
x−1x0−x0+1

x−1x0
−1
)
+1

=
1

x−1−1+ 1
x0
− x−1 +1

= x0.

Thus, the proof is complete.

Theorem 3.9. Eq.(1.9) has unique positive equilibrium point x = 1 and 1 is nonhyperbolic point.

Proof. Equilibrium point of Eq.(1.9) satisfy the equation

x =
1

x(x−1)+1
.

After simplification, we have the following cubic equation

x3− x2 + x−1 = 0. (3.10)

The roots of the cubic equation (3.10) are −i, i, 1. Therefore, the unique positive equilibrium point of Eq.(1.9) is x = 1.
Now, we prove that the equilibrium point of Eq.(1.9) is nonhyperbolic.
Let I = (0,∞) and consider the function

f : I2→ I

defined by

f (x,y) =
1

x(y−1)+1
.

The linearized equation of Eq.(1.9) about the equilibrium point x = 1 is

zn+1 = pzn +qzn−1,

where

p =
∂ f (x,x)

∂x
= 0,

q =
∂ f (x,x)

∂y
=−1,

and the corresponding characteristic equation is

λ
2 +1 = 0.

Therefore, from Theorem 2.4, it is clearly seen that

λ1,2 =±i

and

|λ1|= |λ2|= 1.

So, this completes the proof.
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3.4. The Difference Equation (1.10)

Lemma 3.10. Let {xn}∞

n=−1 be a solution of Eq.(1.10). Then, {xn}∞

n=−1 is periodic with periods four.

Proof. From Eq.(1.10),

xn+4 =
−1

xn+3 (xn+2 +1)+1

=
−1(

−1
xn+2(xn+1+1)+1

)(
−1

xn+1(xn+1)+1 +1
)
+1

=
−1 −1(

−1
xn+1(xn+1)+1

)(
−1

xn(xn−1+1)+1
+1
)
+1

 −1(
−1

xn(xn−1+1)+1

)
(xn+1)+1

+1

+1

=
−1 −1 −1

−1
xn(xn−1+1)+1

(xn+1)+1

( xn(xn−1+1)
xnxn−1+xn+1

)
+1

(− xn+1
xnxn−1

)
+1

=
−1

xn−1

(
− xn+1

xnxn−1

)
+1

= xn.

Hence, the result holds.

Theorem 3.11. Let {xn}∞

n=−1 be a solution of Eq.(1.10). Then, for n = 1,2, ...,

x4n−3 =
−1

x−1x0 + x0 +1

x4n−2 =
−(x−1x0 + x0 +1)

x−1x0
(3.11)

x4n−1 = x−1

x4n = x0

where the initial conditions x−1, x0 ∈ R−F4, with F4 is the forbidden set of Eq.(1.10) given by

F4 =

{
(x−1,x0) : x−1x0 = 0 or x−1 =

−(x0 +1)
x0

}
.

Proof. From (1.10), for n = 0, the result holds. Suppose that n > 0 and that our assumption holds for n−1. That is,

x4n−7 =
−1

x−1x0 + x0 +1
,

x4n−6 =
−(x−1x0 + x0 +1)

x−1x0
,

x4n−5 = x−1,

x4n−4 = x0.

Now, from Eq.(1.10), it follows that

x4n−3 =
−1

x4n−4 (x4n−5 +1)+1
=

−1
x−1x0 + x0 +1

.

From this and from Eq.(1.10), it follows that

x4n−2 =
−1

x4n−3 (x4n−4 +1)+1
=

−1
−1

x−1x0+x0+1 (x0 +1)+1
=
−(x−1x0 + x0 +1)

x−1x0
.

Again from Eq.(1.10), we get

x4n−1 =
−1

x4n−2 (x4n−3 +1)+1
=

−1
−(x−1x0+x0+1)

x−1x0

(
−1

x−1x0+x0+1 +1
)
+1

=
−x−1x0

−x0
= x−1.

Similarly, from Eq.(1.10), we have

x4n =
−1

x4n−1 (x4n−2 +1)+1
=

−1

x−1

(
−(x−1x0+x0+1)

x−1x0
+1
)
+1

=
−1

−x−1−1− 1
x0
+ x−1 +1

= x0.

Thus, the proof is complete.
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Theorem 3.12. Eq.(1.10) has unique negative equilibrium point x =−1 and the equilibrium point −1 is nonhyperbolic point.

Proof. Equilibrium point of Eq.(1.10) satisfy the equation

x =
−1

x(x+1)+1
.

After simplification, we have the following cubic equation

x3 + x2 + x+1 = 0. (3.12)

The roots of the cubic equation (3.12) are −i, i, −1. Therefore, the unique negative equilibrium point of Eq.(1.10) is x =−1.
Now, we demonstrate that the equilibrium point of Eq.(1.10) is nonhyperbolic.
Let I = (0,∞) and consider the function

f : I2→ I

defined by

f (x,y) =
−1

x(y+1)+1
.

The linearized equation of Eq.(1.10) about the equilibrium point x =−1 is

zn+1 = pzn +qzn−1,

where

p =
∂ f (x,x)

∂x
= 0,

q =
∂ f (x,x)

∂y
=−1,

and the corresponding characteristic equation is

λ
2 +1 = 0.

Therefore, from Theorem 2.4, it is clearly seen that

λ1,2 =±i

and ∣∣λ1,2
∣∣= 1.

Thus, the proof is complete.
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