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ABSTRACT  
In the present paper, we showed how confidence intervals (CIs) are valuable and useful in 

research studies when they are used in the correct form with correct interpretations.  The sixth 

edition of the APA (2010) Publication Manual strongly recommended reporting CIs in research 

studies, and it was described as “the best reporting strategy” (p. 34).  Misconceptions and correct 

interpretations of CIs were presented from several textbooks. In addition, limitations of the null 

hypothesis statistical significance test (NHSST) were discussed, and using CIs was discussed as 

an alternative to the NHSST. Finally, the calculation and the visual representation of CIs for 

mean and effect size were illustrated to help readers comprehend the concept of CIs. 

Keywords: confidence intervals, misconception, correct interpretation, confidence intervals for 

effect sizes. 

 

 

GÖRSEL SUNUM İLE GÜVEN ARALIKLARI KAVRAMINI 

ANLAMA 
 

 

ÖZET   
Bu çalışmada doğru kullanım ve yorumlama ile güven aralıklarının araştırmalarda sunulmasının 

önemi üzerinde durulmuştur. American Psychological Association (APA) (2010) yayım kılavuzu, 

güven aralıkları değerlerine çok önem vermekte ve çalışmalarda rapor edilmesi gerektiğini 

belirtmektedir. Araştırmacılar tarafından eksik ve yanlış da yorumlanabilen güven aralıkları bu 

çalışmada ayrıntılı olarak ele alınmış, kitaplardan da örnekler verilerek doğru ve yanlış tanımlar 

değerlendirilmiş ve görsel sunum ile örneklendirilerek okuyucuların güven aralıkları konusunu 

daha kolay anlamaları amaçlanmıştır. 

Anahtar sözcükler: güven aralıkları, kavram yanılgısı, doğru yorumlama, etki büyüklüğü için 

güvenaralıkları. 
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1. INTRODUCTION  

 

In educational research studies, we usually use statistics in order to estimate the 

parameter of the population. Because it is often impossible to access all data of the 

population, we use special calculations to make the best estimations. Estimating the 

confidence intervals (CIs) is a method of telling something about the population by 

using data from the sample. In addition, sample statistics are used for two types of 

estimation: point and interval.  Point estimation is used to estimate the population 

parameter when the value of sample statistics is obtained.  Even though we would like 

to know a fixed population parameter by using a sample statistic (e.g., using M to 

estimate µ), it is not an easy step because sample statistic and population parameter will 

most likely be unequal.  At that point, interval estimation is a way to characterize the 

uncertainty of our estimate (Kline, 2004). Cumming and Finch (2001) described the CIs 

as follows:  

 

CIs provide a mechanism for making statistical inferences that give 

information in units with practical meaning for both the researcher and 

the reader. They give a best point estimate of the population parameter 

of interest and an interval about that to reflect likely error—the precision 

of the estimate. (p. 533) 

 

Cumming and Finch (2001) listed four main advantages of CIs: (a) CIs are easier to 

understand and interpret because CIs give point and interval information; (b) null 

hypothesis statistical significance testing (NHSST) is directly related with CIs; (c) CIs 

help understand previous studies and support meta-analysis and meta-analytic thinking; 

(d) CIs could be estimated before and after an experiment, which also provides 

information about precision. 

 

Reporting CIs in studies has many advantages. For example, comparing the intervals 

from previous studies gives us a better picture of the population parameters (Wilkinson 

& APA Task Force on Statistical Inference, 1999). In the sixth edition of APA (2010) 

Publication Manual, reporting the CIs is strongly recommended and it is stated as “the 

best reporting strategy” (p.34). 

 

Social science researchers do not tend to report CIs in their studies even though its 

importance is widely accepted (Cumming & Finch, 2001; Finch, Cumming, & 

Thomason, 2001). They just produce statements, whether the result is significant or not, 

by using NHSST and erroneously believe NHSST evaluates result replicability 

(Thompson, 1996). They use p-values in order to come to conclusions. For example, Di 

Stefano (2004) reviewed 45 published papers in a journal, Forest Ecology and 

Management, and found that only five of them had CIs reported. Byrd (2007) suggested 

using CIs with NHSST as follows: “Reporting exact p values is warranted and should 

be used in combination with CIs. However, considering that statistical significance is 

influenced by sample size, reporting only exact p values is not recommended.” (p. 388). 

Cumming and Finch (2001) also pointed out the importance of using CIs and suggested 

to report them for effect size measures as well. 
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Byrd (2007) reviewed the quantitative studies, which were published from 1997 to 2006 

by Educational Administration Quarterly (EAQ), and the author found that CIs were 

not reported and interpreted properly between these years even though EAQ is one of 

the journals, which requires authors to follow the rules of the APA Publication Manual 

in its studies.  According to Thompson (2002), CIs are not reported in research studies 

because “It is conceivable that some researchers may not fully understand statistical 

methods that they (a) rarely read in the literature and (b) infrequently use in their own 

work” (p. 26).  Later studies supported Thompson’s view on this issue.  For example, 

Cumming, Williams, and Fidler (2004) and Belia, Fidler, Williams, and Cumming 

(2005) indicated that CIs have not been truly understood by many researchers in 

psychology, behavioral neuroscience, and medicine; and results showed that authors 

have had serious misconceptions about CIs. 

 

2. MISCONCEPTIONS ABOUT CIs 

 

The estimation of CIs is very straightforward. On the other hand, there are many 

misconceptions about interpreting CIs. According to the APA Task Force on Statistical 

Inference (Wilkinson & APA Task Force on Statistical Inference, 1999), the common 

misunderstanding is “assuming a parameter is contained in a confidence interval” (p. 

599).   

 

The common mistake when interpreting an estimated CI in a given study is the 

consideration of only that study itself. However, it is critical that the interpretation of 

the CI in that study should be considered with CIs from previous related studies 

together (Fidler & Thompson, 2001; Thompson, 2002, 2006a). Thompson (2006a) 

emphasized that “the certainty level involved in constructing a given sample CI applies 

to constructing infinitely many CIs drawn from a population, and not to the single CI 

constructed in a single sample” (p. 204).  We can also draw this conclusion if we think 

of estimating the CIs. In the estimation, we use the sampling distribution (computing of 

standard error) in order to apply the procedure properly.  We know that the sampling 

distribution consists of statistics of infinite samples. Therefore, when we interpret the 

CIs, we should consider that the result is not coming from a single sample. The correct 

interpretation of a 95% CIs was given by Thompson (2007) as “if we drew infinitely 

many random samples from the population, exactly 95% of the CIs would capture the 

parameter, and exactly 5% would not” (p. 427). It is important to note that using CIs 

also helps us to understand the results across prior studies, and the results of prior 

studies versus our current study (Fidler & Thompson, 2001; Thompson, 2002, 2006a). 

 

Thompson (2006a) criticized some researchers for interpreting large confidence levels 

(95% or 99%) as “100% certainty” (p. 203).  Because 100 does not equal 99 or 95, we 

should always keep in mind that if our levels are lower than 100%, there is always 

another probability against certainty.  For example, we have 19 blue balls and 1 red ball 

in a box.  If I randomly pick a ball from this box, the probability of grabbing a blue ball 

is 95%. I cannot say that the probability of getting a blue ball is 100% even though this 

95% percentage is close to 100%. 

 

Another common misconception is the view that CIs do not do more than the NHSST 

(e.g., Hagen, 1997; Knap & Sawilowsky, 2001).  The application of this view is that if 
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our CI subsumes zero, we are not able to reject the null hypothesis.  On the other hand, 

if our CI does not subsume zero, we are able to get the same statistically significant 

result from the NHSST.  Thompson (2001) stated that this aspect of CI use and NHSST 

use could be clearly distinguished because NHSST cannot be conducted unless there is 

a null hypothesis; on the other hand, CIs can be drawn without a null hypothesis.  Also, 

Schmidt (1996) indicated that researchers do not have to interpret CIs regardless of 

whether they subsume zero to do statistical significance testing.  

 

Another good answer to researchers who believe that CIs do nothing more than NHSST 

is that in the NHSST, there is only one hypothesis to test, but we can test multiple 

hypotheses with a given CI; values captured by intervals are more likely than values 

outside, and values close to the point estimate are more likely than values at the ends 

(Fidler & Loftus, 2009).  Instead of interpreting CIs by looking at whether or not they 

subsume hypothesized parameters, researchers should interpret them by comparing 

them with CIs from previous related studies to find true population parameters via 

meta-analytic thinking (Thompson, 1998, 2002, 2006a).  

 

Some researchers wrongly interpret their 95% CIs as “I can be 95% certain that my 1- 

(α=.05) CI captured the true population parameter” (Thompson, 2006b, p. 592).  We 

cannot interpret a given CI in this way because “our confidence interval comes from an 

infinite sequence of potential confidence intervals” (Cumming & Finch, 2005, p. 171).  

Similarly, saying there is 95% probability that our 95% CI captures the true population 

parameter is misleading because the probability of capturing the true population 

parameter by a single CI is “1 or 0” (Cumming & Fidler, 2009, p. 5).  Also, Thompson 

(2002) indicated that “a given interval either does or does not capture the parameter.  

This is a binary outcome with only these discrete possibilities, just as one can only be 

pregnant or not pregnant, but cannot be 95% pregnant” (p. 27). Thus, researchers 

should avoid using probability statements for CIs.  If we say that there is 95% 

probability that a 95% CI captures the true population parameter, it might be understood 

that the population parameter is a variable, but in fact, population parameters are fixed 

values (Cumming, 2011; Cumming & Finch, 2005).  When we interpret CIs, we should 

never forget Thompson’s inequality: 1 ≠ ∞ (Thompson, 2006b).  According to 

Thompson (2007), we cannot say we are X% confident with our drawn X% CI 

capturing the true population parameter.  Instead, if we drew infinitely many CIs in a 

given level (X), X% of these CIs would capture the true population parameter, and 

(100-X)% would not capture the true population parameter (Thompson, 2006a). 

 

In the previous paragraphs, the common misconceptions and true interpretations of 

them were explained.  Now, we will examine some textbook definitions and 

interpretations for CIs to make our discussion more concrete. 

 

2.1. Correct and Incorrect Definitions for CIs from Textbooks 
Keller and Warrack (2003) presented the correct definition of CIs, and they explained 

CIs with a few examples.  An X % CI was described as if the same sample size was 

repeatedly chosen from a population and if X% CIs were drawn for these samples, X% 

of these CIs would include true population parameter, and (1-X) would not, and also it 

was stated that the probability of a given CI that includes the true population parameter 

is 1 or 0.   
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Good and Hardin (2003) also gave a useful definition and interpretation for CIs: 

A common error is to misinterpret the confidence interval as a statement 

about the unknown parameter.  It is not true that the probability that a 

parameter is included in a 95% confidence interval is 95%.  What is true 

is that if we derive a large number of 95% confidence intervals, we can 

expect the true value of the parameter to be included in the computed 

intervals 95% of the time. (p. 101) 

 

This is a correct definition of CI and another good explanation of why some of the 

definitions below have been criticized because of their statements about probability. 

 

Ott and Longnecker (2010) defined CIs for mean as “When using the formula M ± 1.96 

σ/√n ; that is, 95% of the time in repeated sampling, intervals calculating using the 

formula M ± 1.96 σ/√n  will contain the mean µ” (p. 226).  (The value 1.96 corresponds 

to z.95 in the z distribution table for two-tailed test).  This is another correct 

interpretation for CIs. 

 

Oakes (1986) stated that CI is a “plausible range of values for the unknown population 

parameter” (p. 52).  Even though the definition is correct, much more should be said 

about CIs. 

 

Lomax (2001) also gave an interpretation of CI: 

If we form 68% confidence intervals for 100 sample means, then 68 of 

those 100 intervals would contain or include the population mean.  

Because the applied researcher typically only has one sample mean and 

does not know the population mean, he or she has no way of knowing if 

this one confidence interval actually contains the population mean or 

not. (pp. 87-88) 

 

This interpretation is true but not clear enough.  Again, we will refer to Thompson’s 

inequality (1≠∞) (Thompson, 2006b) because in the present definition, the author seems 

to be confident that 68 of 100 CIs totally capture the true parameter.  However, it 

cannot be said that 68 out of 100 include the true population parameter because these all 

100 CIs may or may not include the true population parameter, or the number of CIs 

that include the true population parameter might be any number between 0 and 100. It is 

true that on average 68 of 100 CIs capture the true population parameter for repeated 

samples, but we cannot certainly say 68 of 100 CIs capture true population parameter. 

 

Lynch (2007) explained CIs as such: “a 95% CI is that 95% of the CIs that could be 

drawn from the sampling distribution for sample mean would capture the population µ” 

(p. 342).  Even though his explanation is correct, in his book he suggested CIs as an 

alternative of statistical inference, but as we explained above, the meaning of CIs is 

more than NHSST. 

 

Pagano (2009) defined a CI as “a range of values that probably contains the population 

value” (p. 331), and he gave the interpretation for 95% CI as “an interval such that the 

probability is 0.95 that the interval contains the population value” (p. 331).  This is a 
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deficient definition for CIs because we cannot talk about probability such as 0.90 or 

0.95 for a given CI because the probability of a given CI regardless of whether it 

includes the true population parameter is “1 or 0” (Cumming & Fidler, 2009, p. 5). 

 

An additional erroneous definition for CIs includes the misconception that “An interval, 

with limits at either end, [has] a specified probability of including the parameter being 

estimated” (Howell, 2008, p. 296).  This is an incorrect statement for defining CIs 

because we should never interpret a given confidence level as a probability statement 

for a given CI.  Instead, as it is stated above, the probability of a given CI with some 

confidence level is “1 or 0”, not 95% or 99% (Cumming & Fidler, 2009, p. 5). 

 

As seen from the above CI definitions, authors may have misconceptions about the 

probability of a single CI interval.  They state confidence level as a probability for a 

given single CI, but we can only say for a given CI whether or not it includes the true 

population parameter is “1 or 0” (Cumming & Fidler, 2009, p. 5).  And, the other 

misconception is that they are not aware of 1≠∞ (Thompson’s inequality).  We should 

not forget that our single 95% CI does not capture the population parameter with a 95% 

chance. Instead, if we drew infinitely many CIs in the same sample size from the same 

population, 95% of the CIs would include the true population parameter and 5% of 

them would not include the true population parameter (Thompson, 2007). 

 

3. VISUAL REPRESENTATIONS 

 

3.1. Understanding CIs based on Cumming’s (2011) Book and Software 

So far, we have explained how to understand CIs, some common misconceptions, and 

true interpretations of these misconceptions. Now, more interpretations and 

explanations for CIs will be given by using graphical representations created through 

the acclaimed software, the Exploratory Software for Confidence Intervals (ESCI) 

developed by Geoff Cumming (see Cumming, 2011; Cumming & Finch, 2001, 2005). 

These interpretations will be mainly based on Cumming’s book (2011). The software 

works under Excel 2007 and 2010 and could be downloaded at the following link: 

http://www.latrobe.edu.au/psy/research/projects/esci 

 

Correct Interpretation of CIs and Graphing Them by ESCI 

We can never say that our single 95% CI captures the true population parameter with 

95% chance (Thompson, 2006a). Instead, the true interpretation is that if infinitely 

many CIs were drawn in a given sample size, 95% of these CIs would capture true 

population parameter, and 5% would not capture the true parameter (Thompson, 2007). 

The APA Task Force on Statistical Inference (Wilkinson & the APA Task Force on 

Statistical Inference, 1999) and the APA Publication Manuals (2001, 2010) strongly 

recommended the use of graphical representations whenever possible; and the ESCI 

program gives perfect graphical representations for the above statement. Figure 1 

somewhat illustrates “Thompson’s inequality” (Thompson, 2007, p. 427) (1≠∞) by 

drawing CIs by using the ESCI. 

 

 



Bilgin NAVRUZ, Erhan DELEN  

352 

 

 
Figure 1. Twenty-five randomly drawn 95% CIs for M when µ=50, and σ is unknown 

 

In the present example, a population of normally distributed scores has been created. 

The population standard deviation (σ) is unknown and the population mean (µ) is 50. 

This population is shown in the top of Figure 1. Every randomly drawn sample includes 

20 scores, and the first sample scores are shown with small empty circles. The 95% CI 

for the mean is presented below the small 20 circles representing the scores in the first 

sample. The Mx for the first sample was about 55 and 95% CI for the mean of 55 for the 

first sample ranged from ~45 to ~65. 

 

The second part of Figure 1 shows 25 95% CIs for the mean. Not all widths of CIs for 

the mean are equal because the population standard deviation is an unknown parameter. 

If we knew the population standard deviation, then all widths of CIs for the mean would 

be equal. The width of the CI is specified by the standard error and the confidence level 

for mean, so if the standard error is bigger, the width of the intervals in the same 

confidence level will be bigger. We would like to find small standard errors to be more 

confident about our point estimate. Thus, CIs for mean give us information about point 

estimate and precision of this point estimate because we can see the standard error via 
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the width of the intervals (Cumming, 2011; Thompson, 2006b). Even though an 

estimated interval width is narrower than other intervals, it might not capture the true 

population parameter. For example, in Figure 1, the tenth CI is the narrowest one, and it 

does not capture the true population mean. If we did not know the true population mean 

(µ =50), we would think that the tenth interval would give us more precision for our 

point estimate. However, our precise point estimate would be wrong even though the CI 

length is narrow (Thompson, 2006a). 

 

Figure 1 presents 25 CIs and one of them does not capture the true population 

parameter. It might be logical to say in average, 95% of the drawn 95% CIs will 

capture the true population parameter, but we should never forget that if we drew 

infinitely many 95% CIs, 95% of them would capture the true population parameter 

(Thompson, 2006b). In the present example, 96% (1/25) of 95% CIs capture the true 

population parameter; it is close to 95%, but this percentage could be 100% or 0% for 

these 25 95% CIs for mean. 

 

Plausibility of Estimations Based on Cat’s Eye Picture 

When we are estimating a population parameter, CIs provide valuable information for 

this parameter, because the values in the range of CIs are plausible population 

parameters, but we should never forget that our parameter might be outside of a 

particular CI (Cumming, 2011). For instance, if we found our 95% CI as [2.50, 7.50], it 

plausible to say that the population parameter would be between this interval, but we 

should remember that the parameter might be outside of this interval because of 

Thompson’s inequality (see Thompson, 2007). The values that are close to our sample 

mean (M=5) are more plausible for µ than the values at the end of the intervals: also the 

values in the range of intervals are more plausible for µ than values beyond intervals, 

but the values which are outside of the intervals are not totally implausible for µ 

(Cumming, 2011; Cumming & Finch, 2005). The “Cat’s Eye” Confidence Interval in 

Figure 2, which has been drawn by using ESCI, will illustrate this information. 
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Figure 2. Cat’s-Eye Confidence Interval. 

 

In Figure 2, the shadow area around the 90% CI is called the “Cat’s Eye” Confidence 

Interval, and it gives us information about plausibility (Cumming, 2011). It can be 

drawn for every confidence level such as 50%, 90%, 95%, 99%, etc. “The cat’s-eye 

picture describes how the plausibility, or relative likelihood, that a value is µ is greatest 

at M, in the center of the CI, then decreases smoothly to either end of the CI, then drops 

further beyond the interval” (Cumming, 2011, p. 100). In Figure 2, M=50, SD=40, and 

n=13, and based on this information 90% CI for mean is [30.23, 69.77]. 

 

As it is seen in Figure 2, the shadow area presents the plausibility of the values in the 

interval for the population mean. Values close to our sample mean are more likely to be 

the true population mean. Also, it is important to note that the true population could be 

beyond the intervals, as we mentioned above.  

 

4. LIMITATIONS OF NHSST 

 

One of the ways to evaluate sample statistics is to use NHSST by using a linkage 

between the sample and the population by assuming the sample was drawn from that 

population. This procedure is called inferential statistics and is evaluated by using 

estimated probability (i.e., pCALCULATED). In NHSST, the p value provides the 

probability of a sample statistic (e.g., mean, standard deviation, kurtosis, correlation 
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coefficient, effect size, etc.) supposing the sample is coming from the population that is 

defined by the null hypothesis and given a specified sample size (Thompson, 2006a). p 

value calculation is totally a mathematical procedure, so it does not say anything about 

practical importance or replicability (Thompson, 1996, 2006a). 

 

Effect size and sample size are two factors that affect pCALCULATED value. That means, in 

the case of non-zero effect size, we eventually will get statistically significant results at 

some sample size (Thomson, 2006a). The only time that we cannot obtain statistically 

significant results is the case of zero effect size. If we have a zero effect size, 

pCALCULATED will always be 1. Zero effect size means that sample statistic does not 

diverge from the null hypothesis at all, so the probability of our sample statistics 

coming from the population, which is defined in the null hypothesis, is 1. Thompson 

(1999) explained the relation of p values between effect size and sample size as: 

 

Because p values are confounded indices, in theory 100 studies with 

varying sample sizes and 100 different effect sizes could each have the 

same single pCALCULATED, and 100 studies with the same single effect size 

could each have 100 different values for pCALCULATED. (p.169-170) 

 

Because of the limitations on and criticism of NHSST, the APA Task Force on 

Statistical Inference (Wilkinson & the APA Task Force on Statistical Inference, 1999) 

discussed banning the use of NHSST but decided not to ban NHSST for the studies and 

instead indicated “Always provide some effect size estimate when reporting a p value” 

(p. 399).  

 

4.1. An Alternative to NHSST 

CIs include information on both location and the precision of your location. Also, we 

indicated previously that even though CIs can tell us whether our results are statistically 

significant or not, they do more than that. If we used CIs only as a tool to test whether 

our results are statistically significant or not, CIs would not be as useful as they are. 

Instead of using CIs to conclude whether our results are statistically significant or not, 

we should use them meta-analytically. 

 

CIs provide estimation and meta-analytic thinking rather than dichotomous thinking 

(Cumming, 2011). Estimation and meta-analytic thinking give more valuable 

information than dichotomous thinking for populations because dichotomous thinking 

is basically the decision, based on the NHSST, for the null hypothesis. The only 

knowledge based on this decision is whether a single parameter is equal to a fixed value 

or not. 

 

On the other hand, estimation thinking provides information about parameter estimates 

and their uncertainty based on the interval. (Cumming, 2011). Cumming (2011) 

explained estimation thinking as “Estimation thinking focuses on how much, by 

focusing on point and interval estimates” (p. 9). Also, Cumming (2011) gave the 

definition for meta-analytic thinking as “thinking that considers any results in the 

context of past and potential future results on the same question. It focuses on the 

cumulation of evidence over studies” (p. 9). As stated before, we can only find the true 

parameter by focusing all related previous studies by comparing CIs (Thompson, 1998, 
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2002, 2006a). Figure 3 illustrates the difference of dichotomous thinking and estimation 

thinking clearly. 

 

Figure 3 illustrates a heuristic example in which two studies have evaluated the 

effectiveness of new curriculum for mathematics achievement. Study 1 used two 

independent groups each of size n=16 (Total=32), and Study 2 used two groups each 

with n=18 (Total=36). For each study, Figure 1 reports the difference and meta-analysis 

result between the means for the new and current curriculum, with the 95% CIs on that 

difference. 

 

Researchers who advocate that CIs function no more effectively than NHSST in these 

studies may be classified as dichotomous thinkers. Thus, they will not find statistically 

significant results in both studies. In the Study 1: M(difference)=3.8, 

SD(difference)=7.92, SD(pooled)=5.6, and p=0.0645. In the Study 2: 

M(difference)=2.33, SD(difference) = 7.071, SD(pooled)=5, and p=0.1712. Based on 

these p values separately, both researchers fail to reject the null hypothesis at alpha (α) 

equals to 0.05. However, if researchers are estimating and are meta-analytic thinkers, 

they will clearly see that the new curriculum shows a statistically significant advantage 

over the current curriculum (p=0.0211, the null hypothesis of no difference is rejected).  

 

 

 
Figure 3. Difference between the means for mathematics achievement in the Study 1 

and 2, with 95% confidence intervals; and difference between the means for 

mathematics achievement, with 95% confidence intervals, from a meta-analysis of two 

studies that compared a new curriculum with the current curriculum. 

 

Also, in the meta-analytic study, the width of the CI is narrower; it gives us more 

precise information about point estimates. Also, as stated before, if a CI is drawn for a 

study and compared with CIs of previous studies, the true parameters will be finally 

found even if initial expectations are wildly wrong (Schmidt, 1996). 

 

5. CIs FOR EFFECT SIZES 

 

The APA Task Force on Statistical Inference (Wilkinson & the APA Task Force on 

Statistical Inference, 1999) strongly encouraged researchers to report effect size 

estimates with their p values. Also, CIs have been stated as “the best reporting strategy” 
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(APA, 2010, p.34). Thus, estimating CIs for effect sizes is unavoidable. However, there 

are some difficulties in estimating CIs for effect sizes. 

 

Calculating CIs for commonly used statistics, such as mean, is very straightforward. We 

can use a specific formula to estimate CIs around the mean: 

 

[M-tv SD/√n, M+ tv SD/√n]   

  (1) 

 

In the equation, tv is the 95% critical value for t, and v=n-1 is degrees of freedom. The 

CI for mean is symmetric around the mean. Also, if our sample size is bigger than 

n=30, we can use z critical values instead of t critical values. In this situation, the 

formula will be: 

 

         [M-zcritical SD/√n, M+zcritical SD/√n]   

  (2) 

 

However, there is no formula to estimate CIs for effect sizes. Instead, we use an 

iteration that is a computer intensive statistical procedure. When we calculate CIs for 

mean, we use central t distribution, so both upper and lower intervals are equal. On the 

other hand, when we estimate CIs for non-zero effect sizes, the distribution is not 

central, so the upper and lower intervals are not equal. Moreover, iteration is needed to 

estimate lower and upper CIs separately. For detailed information about estimating CIs, 

readers can see Cumming and Finch (2001). 

 

There are several computer programs that can iteratively estimate CIs, such as SPSS 

(Smithson, 2001), SAS (Algina & Keselman, 2003), R (Kelley, 2007), and EXCEL 

(Cumming, 2011; Cumming & Finch, 2001). In this paper, we used ESCI software to 

estimate CIs for Cohen’s d standardized effect size. ESCI is also very user friendly for 

estimating CIs for effect sizes. We used Study 1 statistics, which was our initial 

example, and CIs were drawn for mean difference in Figure 3. 

 

5.1. A Heuristic Example to draw CIs for Cohen’s d by using ESCI 
Study 1 had two independent groups, each of sample size 16 (n=32). As explained 

previously, a new curriculum was compared with the existing curriculum in terms of 

mathematics achievement. The mean difference (Mean of New Curriculum – Mean of 

Existing Group) was 3.8 with pooled SD=5.6. We did not provide the formula for 

pooling SDs, but it is commonly found in many statistic books. The mean difference 

and pooled SD are enough to estimate Cohen’s d standardized effect size estimate. 

 

d= M (difference) / SD (Pooled) 

(3) 

 

Based on the third equation (3), Cohen’s d will be (3.8/5.6) 0.68. Now we can use ESCI 

to estimate the CI for our effect size point estimate. What we need in ESCI software is 

the estimated Cohen’s d and sample sizes for two groups. Figure 4 shows 95% CI for 

the effect size d. 95% CI is estimated as [-0.039, 1.388]. 
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Figure 4. Lower and Upper CIs for Cohen’s d effect size. 

 

6. IMPLICATIONS FOR TEACHING 

 

In statistics education, students may become confused when trying to learn some 

concepts such as CIs. Teaching these concepts with mathematical formulas and verbal 

instruction may not be efficient. In these kinds of situations, teaching with more visual 

techniques such as graphical representations would be quite effective. In this paper, we 

summarized the concept of CIs and common misconceptions about them. Then, we 

used visual representation for CIs to make them more concrete for learners. We utilized 

Cumming’s (2011) book and his software called ESCI. 

 

We discussed limitations of NHSST by providing an alternative to NHSST. We 

definitely teach students what NHSST does, and what information it provides us about 

our population. Students and also researchers should understand that we would like to 

be as precise as possible about our population estimates by using our sample statistics. 

We do not say that NHSST does not provide any information about our population 

estimates, but NHSST provides less information than CIs. We can only increase our 

information about population estimates by using CIs meta analytically. 

 

We also provided information about CIs for effect sizes, specifically Cohen’s d. In 

theory, estimating CIs for any effect size is not an easy procedure because there are no 

mathematical CI formulas for any effect sizes. Instead, there are computer intensive 

methods to estimate CIs for effect sizes. Even though the CIs’ estimation for effect 

sizes can be done by using a statistical software, such as SPSS, we demonstrated an 

easier program (ESCI) to estimate CIs for Cohen’s d effect size. Further information 

about CIs and practice with them in ESCI can be found in Cumming’s (2011) book. 
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