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 Most industrial control systems consist of a significant number of control loops. Generally, 
large processes are divided into many interconnected subsystems affecting each other, thus 
creating multivariable systems known as multiple–input multiple–output (MIMO) process. 
Generalized Predictive Control (GPC) based control algorithm is most suitable for MIMO 
systems. In this study, multivariate nonlinear (NL) GPC and discrete–time PID control of 
calcium oxide catalyst–packed reactive distillation (RD) column used for biodiesel production 
from waste cooking oil were investigated. Temperatures of reaction and reboiler sections 
were controlled by using non–decoupled and decoupled MIMO NLGPC and discrete–time 
MIMO PID algorithms. Feed flow rate with constant molar ratio and reboiler heat duty 
parameters were selected as manipulating variables. All recommended control methods, 
except for non-decoupled MIMO NLGPC, have been found to perform satisfactorily reference 
tracking and disturbance rejection in RD column. Consequently, the best control results were 
obtained in the decoupled MIMO NLGPC. 

 
 

 
 
 

1. INTRODUCTION  
 

In recent years, requirements for high quality 
process control have increased significantly in parallel to 
the growing complexity of plants and sharper 
specifications of product feature. But, smart and model–
based control techniques have also been developed to 
accomplish strict control algorithms. On the other hand, 
computing power has increased to a very high level. 
Thus, computationally expensive computer models 
become appropriate to solve much complex problems. 

The idea of the control strategy for a process is to 
maintain the desired operational variables smoothly and 
consistently. Thus, operating conditions of the system 
are fixed by control action to reach the target in the most 
effective way possible. When the process conditions 
change, the controllers need to be adjusted again to 
attain acceptable control results. Generalized Predictive 
Control (GPC) is considered as to be excellent to get 
satisfactory controls. This receding horizon method 
predicts the output of the plant in several sampling 
intervals, using assumptions about future control actions 

(Clarke et al. 1987). It is also possible by GPC to achieve 
stable control of process with variable dead–time and an 
instantaneously–changing model order, providing the 
sufficient input/output data for reasonable plant 
recognition. It is effective for a plant which is 
simultaneously open–loop unstable and nonminimum–
phase and with over parameter, as well. To establish the 
GPC algorithm, it is necessary to use a linearized model 
in terms of ARIMAX form (Clarke and Mohtadi 1989). 

In the literature, there are a few model structures 
proposed for the definition of the nonlinear systems. 
Volterra series and Block oriented models are some 
examples for nonlinear patterns. The nonlinear 
difference equation model, NARIMAX, known as the 
Nonlinear Auto Regressive Moving Average with 
Exogenous, provides a combined representation for a 
wide range of nonlinear systems. Namely, a general 
nonlinear input/output polynomial model is used to 
recognize the system. It is well known that system 
identification is one of the most important and time–
consuming tasks regarding proper application. Several 
control approaches to nonlinear process have been 
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developed and successfully applied to certain systems 
(Ahn et al. 1999; Chen and Xu 2001; Karacan 2003). 

Some countries are looking for alternative methods 
to meet the need for an environmentally friendly and 
renewable fuel supply due to increased fuel demand and 
global concerns about the effects of greenhouse gases. 
Biodiesel is an alternative source to replace fossil diesel 
(Donato et al. 2009). It is produced by transesterification 
of long chain fatty acids (FA) derived from vegetable oils 
and animal fats with aliphatic alcohols in the presence of 
a suitable catalyst to form long chain fatty acid methyl 
ester (FAME) and glycerol (Srivastava and Prasad 2000). 

Although there are many biodiesel production 
facilities in the world, the main technical challenge is how 
to make biodiesel profitable, given the high expense of 
crude vegetable oil used as a source of triglyceride. 
Economic evaluation results show that raw material 
price constitute a significant part of the total cost 
production. Using waste cooking oil (WCO) instead of 
virgin oil to produce biodiesel is a way to lower the 
charge since it is considered as to be about half price of 
the virgin oil (Kulkarni and Dalai 2006). 

Transesterification reaction can be catalyzed by an 
acid, base, or enzymes. Homogeneous and heterogeneous 
alkali and acid catalysts have been studied (Zhang et al. 
2003). Heterogeneous catalysts have advantages of 
effortlessly separation and regeneration techniques 
(Sharma et al. 2008). Heterogeneous basic catalysts 
include alkaline–earth metal oxides such as calcium 
oxide (CaO), MgO, SrO, and hydrotalcites (Kouzu et al. 
2008). Being superior catalytic, easily accessible, and 
cheaper, CaO has been mentioned in a series of articles 
examining heterogeneous catalytic reaction for biodiesel 
synthesis (DiSerio et al. 2008). 

Reactive separation is a process combining reaction 
and separation at the same time. It allows simultaneous 
production and removal of products in a single unit. 
Thus, it increases efficiency and selectivity, reduces 
energy consumption, eliminates the need for solvents, 
and leads to integrated high–efficiency systems. In the 
process, separation could be improved through reaction 
by overcoming azeotropes, removing contaminants. On 
the other hand, reactions could be enhanced by means of 
separation via increasing overall rates, overcoming 
equilibrium limitations, improving selectivity. So, 
maximum effect can be accomplished by considering 
both features simultaneously (Harmsen 2007). 

Before synthesis in a real facility, it is very important 
to establish a prototype and simulate it using a process 
simulator such as Aspen HYSYS. Thus, it could be 
anticipated how its real–time production would be. 
There are several simulation studies on biodiesel 
production in a batch and continuous flow reactor 
system with a homogeneous alkali or acidic catalyst 
(Martín and Grossmann 2012). However, there are very 
few simulation studies on biodiesel production in the 
reactive distillation (RD) column. Çağatay and Karacan 
(2018) investigated the simulation and optimization of 
packed RD column utilized in the production of FAME. 
Biodiesel was procured by transesterification reaction 
between WCO and methanol in the presence of 
heterogeneous basic CaO catalysis. The simulation of 

CaO–packed RD column was designed by Aspen HYSYS 
and optimum values of the parameters were specified. 

In this study, multivariate NLGPC, based on 
NARIMAX model, and discrete–time PID control, based 
on ARX model, were inspected in the temperature 
control of reaction, and reboiler sections of a CaO 
catalysis–packed RD column used for biodiesel synthesis 
from WCO. Before process control studies, PRBS signals 
and recursive system identification algorithms were 
utilized to estimate the polynomial parameters of 
NARIMAX and ARX models. Lastly, process control 
performances were compared. 
 

2. METHOD 
 

2.1. Materials 
 

WCO was collected from local restaurants in Ankara, 
Turkey. Heterogenous basic CaO catalyst was employed 
in the biodiesel synthesis. Methanol and CaO were 
purchased from Sigma–Aldrich. The composition of WCO 
(see Table 1) was revealed by Perkin Elmer Clarus 500 
model gas chromatography using Agilent HP–88 (100 m 
x 0.25 mm x 0.2 μm) capillary column and Flame 
Ionization Detector with helium as the carrier gas. 
Analysis was made according to “CoI/T.20/Doc.No.17, 
2001” method acknowledged by International Olive Oil 
Council. The oven temperature was programmed at 175 
°C for 12 min, and ramped to 225 °C at a rate of 2 °C/min 
for 12 min. In addition, the injector and detector 
temperatures were hold at 250 °C and 280 °C, in turn. 
 

Table 1. FA composition (%w) and properties of WCO 
Parameters Value 

palmitic 20.99 

stearic 4.92 

oleic 38.12 

linoleic 29.73 

water content %0.09 

acid value 1.09 (mg KOH/g oil) 

color golden yellow 
 

Transesterification was carried out in a packed RD 
column demonstrated in Fig. 1 and 2. The column has a 
height of 1.2 m and a diameter of 0.05 m, excluding 
condenser and reboiler. It consisted of a cylindrical 
condenser with a diameter and height of 0.05 and 0.225 
m, respectively. The column was partitioned into two 
subdivisions. The upper and lower sections were the 
reaction and stripping parts, in turn. The stripping unit 
was packed with Raschig rings, while the reaction 
division was filled with small lumps ~3–20 mm CaO solid 
catalysis and Raschig rings. The reboiler was spherical 
with a volume of 4 liters. WCO and methanol were fed to 
the column at the upper inlet. Condensed methanol at the 
condenser was totally recycled to the column.  

Besides, all signal inputs of feed flow rate and 
reboiler heat duty, and signal outputs of temperatures of 
upper, reaction and lower units were implemented and 
measured on−line using MATLAB/Simulink, and 
input/output (I/O) modules connected to the equipment 
and computer system. 
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Figure 1. Pictorial view of packed RD column 
 

2.2. Kinetics Model  
 

The overall vegetable oil methanolysis reaction 
could be presented by the following equation, 

TG + 3 ROH ↔ 3 R′CO2R + GL (1) 

and the intermediate reaction steps are; 

TG + ROH ↔ DG +  R′CO2R (2) 

DG + ROH ↔ MG +  R′CO2R (3) 

MG + ROH ↔ GL +  R′CO2R (4) 

where, TG is triglyceride, DG is diglyceride, MG is 
monoglyceride, ROH is methanol, GL is glycerol and 
R'CO2R is methyl ester. The heterogeneously catalyzed 
reaction is very complex due to happening in a three–
phase system consisting of a solid catalysis and two 
immiscible oil and methanol phases. There are also some 
side reactions, such as saponification of glycerides and 
methyl esters, and neutralization of free fatty acids with 
the catalyst. Assuming the transesterification one–step 
reaction, the rate law could be expressed as one–way 
forward reaction as in Eq. 5 (Vujicic et al. 2010). 

−ra = −
d[TG]

dt
= k′ [TG] [ROH]3 (5) 

 

 
Figure 2. Sketch view of packed RD column 
 

In Eq. (5), [TG] is the concentration of triglycerides, 
[ROH] is concentration of methanol and k' is the 
equilibrium rate constant. This overall reaction follows a 
second order reaction rate law. However, due to the high 
molar ratio of methanol to oil, the change in methanol 
concentration could be presumed ignorable, and the 
concentration can be considered as constant during the 
reaction. So, by taking excess methanol, it can be 
assumed that the reaction behaves like a first–order 
chemical reaction. Accordingly, the reaction obeys 
pseudo–first order kinetics and the rate expression can 
be written as, 

−ra = −
d[TG]

dt
= k [TG] (6) 

where k is modified rate constant and k = k′. [ROH]3. 

k = A0 e(−Ea RT⁄ ) (7) 

The activation energy of reaction could be calculated 
by using Arrhenius equation (Eq. (7)). The slope and 
intercept of the graph of lnk vs 1/T gives the activation 
energy (Ea) and frequency factor (A0). Birla et al. (2012) 
used calcined snail shell (CaO) catalyst to produce 
biodiesel from WCO and investigated the kinetic 
parameters. The activation energy and frequency factor 
of waste frying oil were determined as 79 kj/mol and 
2.98 x 1010 min–1, respectively. 
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2.3. Generalized Predictive Control Law  
 

The GPC method was proposed by Clarke et al. 
(1987) and become one of the most popular MPC 
methods in industry and academia. It has been 
successfully applied in many industrial applications with 
good performance and a certain degree of robustness. 
This algorithm preserves steady control of processes 
with variable dead time and instantaneously changing 
model order providing the sufficient input/output data 
to allow reasonable process description. It is also 
effective with the non–minimum phase and open–loop 
unstable system where the model is over–parameterized, 
without taking special measures for the prediction 
method. The basic GPC scheme for nonlinear system can 
be seen in Fig. 3. It consists of a plant to be controlled, a 
nonlinear model and the Cost Function Minimization 
algorithm verifying the input required to produce the 
desired performance of that plant. 

 
Figure 3. Basic structure of nonlinear GPC 
 

GPC assumes an ARIMAX model for linear systems. 
The ARIMAX model describing the process in discrete–
time GPC design is shown in Eq. (8). 

A(z−1) y(t) = B(z−1) u(t − 1) +
C

∆
 e(t) (8) 

where, 

A(z−1) = 1 + a1 z−1 +  … … … + ana z−na (9) 

B(z−1) = b0 + b1 z−1 +  … … … + bnb z
−nb (10) 

C(z−1) = 1 + c1 z−1 +  … … … + cnc z
−nc (11) 

The NARIMAX model is used in nonlinear (NL) GPC 
design. In this study, the exponential input term, u(t)m, 
was used to describe the nonlinearity. So, the NARIMAX 
model could be given as follows, 

y(t) =
B

A
um(t − 1) +

C

A∆
e(t) (12) 

where difference operator expressed as ∆ = (1 − z−1). 
While making GPC design, the cost function given in Eq. 
(13) is tuned to minimize its value. 

J(N1, N2, Nu) = E { ∑ [y(t + j) − r(t + j)]2

N2

j=N1

+ λ ∑[Δum(t + j − 1)]2

Nu

j=1

} 

(13) 

where, 
N1  : Minimum costing prediction horizon 
N2  : Maximum costing prediction horizon  
Nu : Length of control horizon  
y(t + j) : Predicted output 
u(t)  : Manipulated input  
r(t)  : Reference trajectory  
λ  : Weighing factor, lambda  

 

To solve this minimization problem, it is necessary 
to make predictions beyond the j steps ahead based on 
the future and instantaneous values of the control 
increment. The estimation procedure involves the 
application of “Diophantine Equations” obtained from 
the NARIMAX model of the process. For the last term in 
Eq. (12), Diophantine Equation for step–forward forecast 
can be written as follows. 

C = EjA∆ + z−jFj (14) 

where Ej and Fj are polynomials and are defined as, 

Ej = 1 + e1z−1 + ⋯ + ej−1 z
−j+1 (15) 

Fj = f0 + f1z−1 + ⋯ + fj−1 z
−j+1 (16) 

If Eqs. (14)–(16) are placed in Eq. (12) and 
rearranged, 

y(t + j) =
Fj

C
y(t) +

EjB

C
∆um(t + j − 1)

+ Eje(t + j) 
(17) 

Eq. (17), where the last term represents the future 
charges, is achieved. It can be rewritten as follows, 

y(t + j) =
Fj

C
y(t) +

EjB

C
∆um(t + j − 1) (18) 

Since Eq. (18) comprises future and past input data, 
a new Diophantine Equation (Eq. (19)) for the last term 
is defined to separate them. 

EjB

C
= Gj + z−j

Hj

C
 (19) 

where Hj and Gj are polynomials and are defined as, 

Hj = h0 + h1z−1 + ⋯ + hj−1 z
−j+1 (20) 

Gj = g0 + g1z−1 + ⋯ + gj−1 z
−j+1 (21) 

When Eqs. (18)–(21) are combined, 

y̅(t + j) = Gj∆um(t + j − 1)

+
Hj

C
∆um(t − 1) +

Fj

C
y(t) 

(22) 

Eq. (22) is found. The last two terms in the equation 
represent the free response of the process. Thus, the 
predicted output of temperature response at j step ahead 
for the single–input single–output (SISO) NLGPC process 
can be given as, 

y̅(t + j) = Gj∆um(t + j − 1) + fj (23) 

Once Eq. (23) is located at the cost function (Eq. 
(13)), in the vector form, Eq. (24) is achieved. 

Cost Function 
Minimization 

Algorithm 

r(t) 

Nonlinear Model 
of Process 

Process y(t) 

GPC 
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J(N1, N2, Nu) = (y̅ − r)2 + λ(∆um)2 (24) 

If the steps are carried out and reorganized, 

J(N1, N2, Nu) = (G ∆um)T(G ∆um)
+ (G ∆um)T(f − r)
+ (f − r)T(G ∆um)
+ (f − r)T(f − r)
+ λ(∆um)T∆um 

(25) 

Eq. (25) is obtained. In terms of minimizing the cost 
function, the equation is derived and equated to zero. 
Reordering it, Eq. (26) has been found. 

(GTG + λI) (∆um)T + (f − r)TG = 0 (26) 

Modifying Eq. (26), the future input data at step j can 
be calculated using Eq. (27) and (28). 

∆um = (GTG + λI)−1 GT(r − f) (27) 

um(t) = um(t − 1) + (GTG + λI)−1 GT(r − f) (28) 

Thus, SISO NLGPC algorithm will be fulfilled via 
control law, Eq. (27) and (28). The first element of the 
∆um vector, including predicted (t+j) solutions for the 
value of j from 1 to Nu, is applied to the process and 
temperature response is read from the process. Here, Eq. 
(23) is used to calculate the theoretical temperature 
response of the system for the next (t+1) th step by using 
the value of 1 of j. These periods are repeated cyclically 
in this way until the system response reaches the set 
value. During the procedure, the control gain remains 
constant and only the f and r vectors are calculated at 
each sampling time, repeatedly.  

The block diagram developed to be used in system 
identification and experimental control studies, which 
will enable the application of manipulating variable 
values to the process, reading system temperatures, and 
recording all data automatically in a computer-controlled 
environment is as shown in Fig. 4.  
 

2.4. Design of MIMO NLGPC  
 

The reboiler temperature y1 was controlled by the 
heat duty (∆u1

m) manipulating variable. Likewise, the 
reaction temperature y2 was controlled by the flow rate 
(∆u2

m) manipulating variable at constant molar ratio. 
 

2.4.1. Design of non–decoupled MIMO NLGPC 
 

In non–decoupled MIMO NLGPC method, the SISO 
control law, Eq. (27), is written separately for reboiler 
and reaction sections, as seen in Eq. (29) and (30). 

∆u1
m = (G11

T G11 + λ1I)−1 G11
T  (r1−f11) (29) 

∆u2
m = (G22

T G22 + λ2I)−1 G22
T  (r2−f22) (30) 

Solving these equations alone, the vectors  ∆u1
m and  

∆u2
m are found and using them, the future values of the 

manipulating variables, u1
m and u2

m, are attained. 
Accordingly, system responses are obtained by applying 
the first term of those to the process at time t. Here, the 
responses are calculated theoretically for the next (t+1) 
th step for the value of 1 of j through Eq. (31) and (32). 

 
Figure 4. Block diagram for on–line control of process 

y̅1(t + 1) = Gj,11∆u1
m(t) + fj,11

+ Gj,12∆u2
m(t) + fj,12 

(31) 

y̅2(t + 1) = Gj,21∆u1
m(t) + fj,21

+ Gj,22∆u2
m(t) + fj,22 

(32) 

Thus, the effect of both manipulating variables on 
both sides due to interaction is taken into account via Eq. 
(31) and (32) while calculating the system response of 
each region for the next control step. Repeating this 
period cyclically, process response is intended to reach 
the desired set values. The free response functions 
described in the equations are defined in Eq. (33). 
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fj,11 =
Hj,11

C11

∆u1
m(t − 1) +

Fj,11

C11

y11(t) 

(33) 

fj,12 =
Hj,12

C12

∆u2
m(t − 1) +

Fj,12

C12

y12(t) 

fj,21 =
Hj,21

C21

∆u1
m(t − 1) +

Fj,21

C21

y21(t) 

fj,22 =
Hj,22

C22

∆u2
m(t − 1) +

Fj,22

C22

y22(t) 

2.4.2. Design of decoupled MIMO NLGPC 
 

In the decoupled MIMO NLGPC method, the block 
diagram could be given as presented in Fig. 5. 
 

 
Figure 5. Decoupled MIMO NLGPC diagram 
 

The predicted temperature responses of the reboiler 
and reaction sections at the j step ahead are defined as 
Eq. (34) and (35). 

y̅1(t + j) = G11∆u1
m(t + j − 1) + f11

+ G12∆u2
m(t + j − 1) + f12 

(34) 

y̅2(t + j) = G21∆u1
m(t + j − 1) + f21

+ G22∆u2
m(t + j − 1) + f22 

(35) 

If the cost function is applied to Eq. (34) and (35), 
Eq. (36) and (37) are achieved. 

J1(N1, N2, Nu) = (G11 ∆u1
m(t + j − 1)

+ G12 ∆u2
m(t + j − 1)

+ f11 + f12 − r1)2

+ λ1(∆u1
m(t + j − 1))

2
 

(36) 

J2(N1, N2, Nu) = (G21 ∆u1
m(t + j − 1)

+ G22 ∆u2
m(t + j − 1)

+ f21 + f22 − r2)2

+ λ2(∆u2
m(t + j − 1))

2
 

(37) 

For minimization, if derivatives of them are taken 
separately depending on u1

m and u2
m, equated to zero and 

the adjustments are made, Eq. (38) and (39) are found. 

(G11
T G11 + λ1I) ∆u1

m(t + j − 1)
+ (G11

T G12) ∆u2
m(t + j − 1)

= G11
T (r1 − f11 − f12) 

(38) 

(G22
T G21) ∆u1

m(t + j − 1)
+ (G22

T G22 + λ2I) ∆u2
m(t + j

− 1) = G22
T (r2 − f21 − f22) 

(39) 

To obtain predicted vectors,  ∆u1
m and ∆u2

m, a matrix 
solution is made simultaneously using Eq. (38) and (39). 

Φ1 = G11
T G11 + λ1I 

(40) 
Φ2 = G11

T G12 

Φ3 = G22
T G21 

Φ4 = G22
T G22 + λ2I 

If the definitions, Eq. (40) and (41), are put in Eq. 
(38) and (39), matrix solution form, Eq. (42), is attained. 

Γ1 = G11
T (r1 − f11 − f12)  

(41) 
Γ2 = G22

T (r2 − f21 − f22) 

The solution algorithm was developed in MATLAB 
environment and the vectors, ∆u1

m and ∆u2
m, were 

acquired by multiplying the right–side matrix by the 
inverse of the coefficient matrix. Then, using them, u1

m 
and u2

m input values were calculated and the first terms 
of them were applied to the process. As in the non–
decoupled MIMO NLGPC, the responses are calculated 
theoretically for the next (t+1) th step for the value of 1 
of j via Eq. (31) and (32). Likewise, repeating the cycle 
periodically, the process responses are intended to reach 
the desired set values. 

[
Φ1 Φ2

Φ3 Φ4
] [

 ∆u1
m(t + j − 1) 

 ∆u2
m(t + j − 1) 

] = [
 Γ1 

 Γ2 
] (42) 

2.5. Discrete–time PID Control Law 
 

Typically, in the PID control systems, the input to be 
applied to the process is calculated by Eq. (43) including 
proportional, integral, and derivative impact. Its 
magnitude depends on the error which is difference 
between the process output and the set value at time t. 

Δu = Kc {ε(t) +
1

τI

∫ ε(t)d(t) + τD

dε(t)

dt

t

0

} (43) 

From the mathematical definitions of integral and 
derivative, Eq. (44) is obtained for the (n)th step. 

un = u0 + Kc {εn(t)

+
Δt

τI

∑ εk(t) +
τD

Δt

n

k=0

(εn(t)

− εn−1(t))} 

(44) 

Next, if Eq. (44) is rewritten for the (n–1)th step and 
subtracted from the developed for the (n)th step, Eq. (45) 
and (46) are found in terms of the operator, z−j. 

∆u = Kc (1 +
Δt

τI

+
τD

Δt
) εn

− Kc (1 +
2τD

Δt
) εnz−1

+ Kc

τD

Δt
εnz−2 

(45) 

G12 

G21 

G22 

∆u1
m 

∆u2
m 

f11 

f12 

f21 

f22 

y̅1 

y̅2 

G11 
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∆u(z)

εn(z)
= Kc {(1 +

Δt

τI

+
τD

Δt
) − (1 +

2τD

Δt
) z−1

+ (
τD

Δt
) z−2} 

(46) 

Here, a new polynomial, S, is defined by Eq. (47). 

S = s0 + s1z−1 + s2z−2 (47) 

where, 

s0 = Kc (1 +
Δt

τI

+
τD

Δt
) 

(48) s1 = Kc (1 +
2τD

Δt
) 

s2 = Kc (
τD

Δt
) 

As mentioned before, the error, Eq. (49), is defined 
as the difference between the set value and the output in 
the PID control. If Eqs. (46)–(49) is restructured, the 
control law, Eq. (50), is attained for discrete–time SISO 
PID control application. 

ε(z) = [r(t) − y(t)] (49) 

u(t) =
S

∆
[r(t) − y(t)] (50) 

2.6. Design of Discrete–time MIMO PID Control 
 

In discrete–time PID control design, the process was 
stated in linear ARX model as shown in Eq. (51) and (52). 

y(t) =
B(z−1)

A(z−1)
u(t − 1) (51) 

y(t) = G(z−1) u(t − 1) (52) 

2.6.1. Non–decoupled MIMO PID control 
 

The discrete–time, interactive and non–decoupled 
MIMO PID control system is demonstrated as in Fig. 6. 
 

 
Figure 6. Non–decoupled MIMO PID control diagram 
 

Process temperature responses y1 and y2 at time t 
are defined as in Eq. (53) and (54) in the non–decoupled 
MIMO PID system. 

y1(t) = G11(z−1)u1(t − 1) + G12(z−1)u2(t − 1) (53) 

y2(t) = G21(z−1)u1(t − 1) + G22(z−1)u2(t − 1) (54) 

If discrete–time SISO PID control law, Eq. (50), is 

applied singly at each region Eq. (55) and (56) are gotten. 

u1(t) =
S1

∆
 [r1(t) − y1(t)] (55) 

u2(t) =
S2

∆
 [r2(t) − y2(t)] (56) 

Then, calculated manipulating variables are applied 
to the process.  Here, the interacted process responses 
are computed theoretically for the next (t+1) th step by 
Eq. (53) and (54) by using manipulating variable values 
achieved at time t. In this way, the cycle is continued 
repeatedly until reaching the desired set values. 
 

2.6.2. Decoupled MIMO PID control 
 

The discrete–time, interactive and decoupled MIMO 
PID control system is presented as in Fig. 7. In control 
scheme, the process temperature output y1 and y2 at time 
t will be as given by Eq. (57) and (58). 
 

 
Figure 7. Decoupled MIMO PID control diagram 

y1(t) = G11(z−1)[u1(t − 1) + T2u2(t − 1)]

+ G12(z−1)[u2(t − 1)

+ T1u1(t − 1)] 
(57) 

y2(t) = G22(z−1)[u2(t − 1) + T1u1(t − 1)]

+ G21(z−1)[u1(t − 1)

+ T2u2(t − 1)] 
(58) 

Eq. (59) and (60) are found if adjustments are made. 

y1(t) = [G11(z−1) + G12(z−1) T1] u1(t − 1)

+ [G12(z−1)

+ G11(z−1) T2] u2(t − 1) 
(59) 

y2(t) = [G21(z−1) + G22(z−1) T1] u1(t − 1)

+ [G22(z−1)

+ G21(z−1) T2] u2(t − 1) 
(60) 

When the terms including u1 in Eq. (60) and u2 in Eq. 
(59) are equated to zero, Eq. (61) is acquired. 

T1 = −[G21(z−1)  G22(z−1)⁄ ] 
(61) 

T2 = −[G12(z−1)  G11(z−1)⁄ ] 

In the control, initially, process inputs u1 and u2 are 
calculated by the control laws, Eq. (55) and (56), at time 
t. Then revised inputs, {u1(t)–[u2(t)G12(z-1)/G11(z-1)]} and 
{u2(t)–[u1(t)(G21(z-1)/G22(z-1)]}, are applied to process. 
Once again, Eq. (53) and (54) are used to get theoretical 
responses for the next (t+1) th step as mentioned above. 
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3. RESULTS  
 

This section describes our experience in applying 
multivariate NLGPC and discrete–time PID control of the 
packed RD column. The aim of the control study is to keep 
the temperatures of reaction and reboiler sections at the 
desired set value during the reaction taken place in the 
column. This goal was achieved by changing the feed flow 
rate at constant molar ratio and reboiler heat duty. 
 

3.1. System Identification Outcomes 
 

The parameters of NARIMAX and ARX models were 
ascertained experimentally. First, PRBS impacts were 
given to the process. Next, the temperature responses of 
reaction and reboiler sections for each PRBS effect were 
measured individually. The PRBS effect of WCO flow rate 
(Fig. 8a) was applied at 350 watts reboiler heat duty and 
1.8–4.0 ml/min WCO flow rate range with constant 8.19 
molar ratio. Likewise, the PRBS effect of reboiler heat 
duty (Fig. 8b) was implemented to the process at 4.0 
ml/min WCO flow rate with constant molar ratio of 8.19 
and 280–420 watt reboiler heat duty range. 

After application of WCO flow rate and heat duty 
PRBS effects to the process separately, the temperature 
responses were obtained experimentally and used in 
defining the parameters of the models. To do so, two 
separate ".m" files, containing the "rarmax" tool created 
in MATLAB for use in ARMAX models but with the 
intention of using in NLGPC and the "arx" tool developed 
in MATLAB for use in ARX models employed in discrete-
time PID controls, were formed in MATLAB environment. 

 
(a) 

 
(b) 

Figure 8. PRBS effect, (a) WCO flow rate with constant 
MR=8.19 (Q=350 watt), (b) Heat duty (FWCO=4.0 ml/min) 

On account of the "rarmax" tool has been used for 
the ARMAX model in MATLAB application, in the study, 
the use of ΔA and ΔB polynomials was taken as a basis 
instead of A and B to be able to use this command for the 
ARIMAX model with integral effect. Polynomial degrees 
of n_ΔA, n_ΔB, nc and nk for ARIMAX models and na, nb 
and nk for ARX models, given in the Table 2 and 4, were 
ascertained by regression method based on comparison 
of the theoretical temperature outputs gotten from the 
models for the different values of these parameters with 
the temperature responses achieved experimentally. 
 

Table 2. Exponential, degree and IAE, ISE values of 
NARİMAX models 

 G_11 G_21 G_12 G_22 

m 8 8 4 4 

n_ΔA 4 5 3 3 

n_ΔB 3 4 3 3 

nc 1 1 1 1 

nk 1 1 1 1 

IAE 3.9464 9.4072 1.5658 4.1056 

ISE 0.0386 0.0461 0.0154 0.0097 

 

Table 3. Polynomial coefficients of NARİMAX models 

G_11 

ΔA_11 
[ 1.0000  –0.9572  –0.0279  0.0143      
–0.0293] 

ΔB_11 *106 [–0.2219  0.6929  –0.4685] 

C_11 [ 1.0000  –0.6232] 

G_21 

ΔA_21 
[ 1.0000  –0.8929  –0.1112  0.0119       
–0.0308  0.0231] 

ΔB_21 *106 [–0.0144  0.3466  –0.4639    0.1291] 

C_21 [ 1.0000  –0.5114] 

G_12 

ΔA_12 [ 1.0000  –0.9933  –0.0064  –0.0003] 

ΔB_12 *1011 [–0.0455  0.1221  –0.0754] 

C_12 [ 1.0000  –0.6435] 

G_22 

ΔA_22 [ 1.0000  –0.9915  –0.0270   0.0186] 

ΔB_22 *1012 [ 0.1414  –0.5421   0.4637] 

C_22 [ 1.0000  –0.4701] 

 

Table 4. Degree and IAE, ISE values of ARX models 

 G_11 G_21 G_12 G_22 

na 4 5 3 3 

nb 3 4 3 3 

nk 1 1 1 1 

IAE 27.8004 24.7444 25.9701 26.3009 

ISE 0.3280 0.2599 0.3010 0.2975 

 

Table 5. Polynomial coefficients of ARX models 

G_11 
A_11 

[ 1.0000  –0.4059  –0.2698  –0.1929   
–0.1314] 

B_11 [–0.0018  0.0040  –0.0024] 

G_21 
A_21 

[ 1.0000  –0.4981  –0.3018  –0.1489  
–0.0821  0.0308] 

B_21 * 103 [–0.0347  0.0164  –0.3535  0.2235] 

G_12 
A_12 [ 1.0000  –0.4412  –0.3055  –0.2533] 

B_12 * 104 [–0.0816  0.1540  –0.0679] 

G_22 
A_22 [ 1.0000  –0.4491  –0.3439  –0.2070] 

B_22 * 104 [ 0.4864  –0.3771  –0.1044] 
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(a) 

 
(b) 

Figure 9. Temperature responses in WCO flow PRBS 
effect and curve fittings of NARIMAX models 
 

In regression method, the most suitable degree of 
parameters, presented in Table 2 and 4, were established 
with the help of curve fitting of models with the 
experimental data via assessing the sum of absolute 
value of error (IAE) and squares of error (ISE) given in 
Table 2 and 4. Relating to the polynomial coefficients, 
discrete–time PID ones, stated at Table 5, were obtained 
from the accepted solution iteration step for degree of 
parameters with the help of “arx” tools. As for the 
polynomial coefficients of NARIMAX models, additional 
calculations in the same manner were repeated at the 
different exponential, m, values of the manipulating 
variables. Accordingly, the most appropriate m value, 
where the best fit of the theoretical output and 
experimental temperatures was achieved depending on 
IAE and ISE shown in Table 2, and related coefficients 
presented at Table 3, were taken as the solution with the 
help of “rarmax” tools, as stated above. Experimental 
temperature responses and model outputs for reaction 
and reboiler sections were exhibited in Fig. 9 and 10. 
 

3.2. Theoretical Control with MIMO NLGPC 
 

In the control studies with NLGPC, firstly, Gj 
polynomials used in the equations in which the value of 
future time manipulating variable and temperature 
responses for j th step were calculated were obtained. 
For this purpose, with the first Diophantine Equation, Eq. 
(14), the C polynomial was divided into ΔA polynomial. 
In other words, to obtain the Ej polynomial at the j th 
step, division process was continued till j th step number.   

(a) 

 
(b) 

Figure 10. Temperature responses in reboiler heat duty 
PRBS effect and curve fittings of NARIMAX models 
 

Thus, at the end of the division at each the j th step, the Ej 
polynomial from the coefficients of the quotient and the 
Fj polynomial used in the f free response vector from the 
coefficients of the remainder were obtained. Then, with 
the help of the second Diophantine Equation, Eq. (19), at 
each j th step, Ej polynomial with j th step size and B 
polynomial was multiplied and divided by C polynomial 
till the j th step size. Likewise, at the end of the division 
at each j th step, the Gj polynomial from the coefficients 
of the quotient, the Hj polynomial used in the f free 
response vector from the coefficients of the remainder 
and the jxj size G matrix containing Gj polynomials were 
obtained. To carry out these processes autonomously, 
algorithms containing necessary codes were developed 
in MATLAB and with the help of the programs embedded 
in the control algorithms, Ej, Fj, Gj and Hj polynomials 
could be easily calculated and Gj,j matrix can be created 
from Gj by the computer during the control mechanism. 

In the NLGPC design, N1, N2 and Nu were selected as 
1, 20 and 20, respectively. Later, optimum value of 
lambda, λ, was determined depending on the response 
time, error value and oscillation in reaching to the set 
temperature through the non–decoupled and decoupled 
MIMO NLGPC algorithms developed for control action. In 
the literature, the 2nd, 3rd, and 4th powers of the 
manipulated variable were used in the control studies 
with the NLGPC method using the NARIMAX model 
(Hapoğlu et al. 2000; Karacan 2003; Özkan et al. 2006; 
Zeybek et al. 2006). Additionally, a control study was 
examined using exponential value of 0.8–2.2 and λ values 
of 1.4x10–12 – 9.0x10–16 (Hapoğlu 2002). 
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(a) 

(b) 

Figure 11. Temperature responses in non–decoupled 
MIMO NLGPC (T_rxn_sp = 63.5 °C, T_reb_sp = 79.0 °C) 

 
(a) 

 
(b) 

Figure 12. Changing of manipulating variables in non–
decoupled MIMO NLGPC 

(a)

(b) 

Figure 13. Temperature responses in decoupled MIMO 
NLGPC (T_rxn_sp = 63.75 °C, T_reb_sp = 78.0 °C) 

 
(a) 

 
(b) 

Figure 14. Changing of manipulating variables in 
decoupled MIMO NLGPC 
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Table 6. λ values of NLGPC algorithms 
    λ values 

Control with non–
decoupled MIMO NLGPC 

Reaction Section 1 x 10–13 

Reboiler Section 1 x 10–27 

Control with decoupled 
MIMO NLGPC 

Reaction Section 1 x 10–14 

Reboiler Section 1 x 10–24 
 

In this study, λ values used in theoretical control 
with NLGPC were presented in Table 6. Accordingly, 
exponential values of 8 and 4, and λ values of 1.0x10–13 – 
1.0x10–27 were used for the reaction and reboiler region, 
in turn. 

Temperature responses and manipulating variables 
variations obtained in synchronized control of reaction 
and reboiler regions with non–decoupled MIMO NLGPC 
were presented in Fig. 11 and 12. It was noticed that the 
specified set values could not be reached.  

Although it is not possible to control the reaction 
and reboiler region temperature simultaneously with 
non–decoupled MIMO NLGPC, it has been observed that 
the desired set values have been reached with decoupled 
MIMO NLGPC. Temperature responses and manipulating 
variable changes were given in Fig. 13 and 14. 
 

3.3. Theoretical Control with MIMO PID Control 
 

Initially, codes were formed in MATLAB for PID 
control algorithms. Parameters of gain factor (KC), 
integral time (τI) and derivative time constant (τD) were 
ascertained depending on the magnitude of the error 
originating from the difference between temperature 
response and desired set value and oscillation frequency 
defining whether temperature response reaches the set 
value immediately or not. So, the most appropriate 
values were postulated and presented in Table 7. 

It was observed that the desired set values were 
reached with both the non–decoupled and decoupled 
MIMO PID control in the simultaneous control of the 
reaction and reboiler regions.  

Upon examined Fig. 14, 16 and 18, it was seen that 
the profiles of manipulating variables varied occasionally 
above or below operating ranges and sometimes in the 
negative region. It should be remembered that the signs 
and magnitudes of the coefficients of A, B and C 
polynomials presented in Table 3 and 5 were the values 
determined by PRBS effects of the manipulating 
variables at their definite ranges, with the effect of the 
interaction in the process. However, in the theoretical 
control studies, while the calculation of the magnitude of 
the manipulating variables to be applied to the process 
for the next control step were not restricted as minimum 
and maximum constraints specifying the operating 
range. Thus, some situations such as below or above the 
required limits and positive or negative values were 
encountered in line with the contribution of each related 
 

Table 7. Control constants of PID algorithms 
 KC τI τD 

Control with non–
decoupled MIMO PID 

Reaction Section 80 1850 1 

Reboiler Section 1000 1 1 

Control with 
decoupled MIMO PID 

Reaction Section 60 2150 1 

Reboiler Section 1000 1 1 
 

A and B polynomials depending on the sign and size of 
each coefficient of them to the temperature responses 
computed by Eq. (53) and (54) using the next control 
step value of manipulating variable for discrete-time PID 
control. Similarly, the effect of Gj and the free response 
parameter fj, including the polynomials Fj, Hj and C, on 
calculation of predicted manipulating variables by Eq. 
(29), (30) and (42) and, computing of the temperature 
responses by Eq. (31) and (32) are the same for NLGPC. 
If briefly explained as an example, the coefficients of the 
related B polynomial were multiplied with the related 
current and past time step value of manipulating variable 
and the products were summed. While doing this, 
calculation of temperature response of each region, it 
sometimes led to obtain and use the positive or negative 
value of manipulating variables to provide the response 
be able to reach the targeted set value as soon as possible.  

It might be important to remember just here that, as 
mentioned before, in determining the control constants 
of discrete-time PID control and lambda for NLGPC, it 
was taken as a basis that the process response reached 
the set value in the shortest time with steeper slope 
without oscillation under the given set value without any 
restriction. Therefore, the program moved in this 
direction while calculating the manipulating variable for 
the next control step and evaluated the required value. 
Besides, it was also assessed that the magnitude and sign 
of set values applied simultaneously to both regions, and 
the interactions in the process were also influential in 
getting at this scale and size of manipulating variables 
and response time. 

Moreover, it should not be overlooked that, with the 
software working in this way, the opportunity to 
compare the temperature responses were obtained 
without any intervention and restriction to the system. 
Namely, it was seen that how the software would work, 
and process response and the manipulating variable 
variation would–be under the same set value effect for 
both control algorithms. Accordingly, it was observed 
that although the process reached the set values in the 
range of positive and/or negative values of the 
manipulating variable in both algorithms, superiority of 
the NLGPC was obvious when the profiles of temperature 
response and manipulating variable were evaluated in 
terms of the rate of slope of the curve reaching to the set 
value, oscillation, and the scale and size of range of 
manipulating variables and the response time. 

In the application of these algorithm in experimental 
control studies as they are, if the manipulating variable 
calculated in each control period for the next control step 
is outside the operating range, the maximum or 
minimum value of the operating range should be 
assigned to the manipulating variable and applied to the 
process for this control phase. Thus, each section could 
be intended to achieve the temperature set value 
cyclically within the range of manipulating variable. 
 

4. DISCUSSION 
 

Examining Table 2, 4, Fig. 9 and 10, in terms of 
compliance, NARİMAX models were found to represent 
the process fittingly in comparison to ARX models as for 
system identification. 
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(a) 

 
(b) 

Figure 15. Temperature responses in non–decoupled 
MIMO PID control (T_rxn_sp=64.0 °C, T_reb_sp=76.0 °C) 

 
(a)

 
(b) 

Figure 16. Changing of manipulating variables in non–
decoupled MIMO PID control 

 
(a) 

 
(b) 

Figure 17. Temperature responses in decoupled MIMO 
PID control (T_rxn_sp = 63.5 °C, T_reb_sp = 78.5 °C) 

 
(a) 

 
(b) 

Figure 18. Changing of manipulating variables in 
decoupled MIMO PID control 
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Table 8.  IAE and ISE values in theoretical MIMO control 

Control Method 
IAE ISE 

T_rxn T_reb T_rxn T_reb 

Non–decoupled 
MIMO NLGPC 

2.22E+15 1.63E+16 9.12E+28 6.22E+30 

Decoupled MIMO 
NLGPC 

0.82 6.09 0.24 2.87 

Non–decoupled 
MIMO PID Cont. 

1348.10 74.74 1097.50 6.50 

Decoupled MIMO 
PID Control 

1082.50 41.66 382.19 2.35 

 

Further, IAE and ISE values were calculated to 
compare the performances of non–decoupled and 
decoupled MIMO NLGPC and discrete–time PID control 
and presented in Table 8. With respect to PID control, it 
was seen that the gain constant is smaller, and the 
integral constant is larger in decoupled PID control 
compared to the non–decoupled one for the reaction 
side, if examined Table 7. This resulted in obtaining a 
lower value of manipulating variable than that of the 
non–decoupled one. Thus, it was ensured that the effects 
from reboiler to reaction side and from reaction to 
reboiler side due to the interaction were taken into 
account throughout the calculation of the manipulating 
variable. So, examining Fig. 15–18, it was seen that the 
profiles of temperature response and manipulating 
variable altered in a narrower range compared to the 
non–decoupled PID control, and thus, the error values 
presented in Table 8 were obtained smaller. Particularly, 
the lesser ISE value obtained for the decoupled PID 
control compared to the other one supported that the 
error values calculated in the control steps varied in a 
smaller range and resulted in a better control 
performance in comparison with the non–decoupled PID 
control. Finally, it was seen that theoretical control with 
non–decoupled MIMO NLGPC is not possible, but, owing 
to the smallest IAE and ISE in all control mechanisms, the 
obvious superiority of the control with decoupled MIMO 
NLGPC was revealed, if inspected Table 8 and Fig. 11–14. 
 

5. CONCLUSION  
 

In this study, we investigated multivariable control 
of CaO catalyst–packed RD column used for biodiesel 
production from WCO. For this aim, non–decoupled and 
decoupled MIMO NLGPC and discrete–time MIMO PID 
algorithms were utilized. At the beginning, system 
identification was performed for NARIMAX and ARX 
models via PRBS impacts. Subsequently, coefficients of 
model polynomials of A, B and C were determined by a 
parameter estimation technique. Later, those models 
were used in NLGPC and PID control algorithms.  

The aim of the process control was to keep the 
temperatures of reaction and reboiler section at its set 
point. This goal was achieved by manipulating the feed 
flow rate with constant molar ratio and reboiler heat 
duty. Except for non–decoupled MIMO NLGPC, it has 
been seen that process control is well possible using 
control laws and codes developed for NLGPC and PID 
controls. Consequently, it should be noted that the 
decoupled MIMO NLGPC method is excellent with the 
best control results in all cases examined. 
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