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Abstract: Resonance and anti-resonance frequencies are important parameters that determine the dynamic behavior of 

mechanical systems. Changes in these parameters, which depend on the system's physical properties such as mass and stiffness, 

also affect the system's dynamic behavior. Finding the necessary structural modifications to adjust the resonance and anti-

resonance frequencies of a system to the desired values is a study area of inverse structural modification. In this study, an 

inverse structural modification method for one and multi-rank modifications is presented. With the presented method some 

resonance or anti-resonance frequencies of mechanical systems can be shifted to prescribed values by calculating the necessary 

modifications. The presented method is based on Sherman-Morrison (SM) formula and uses the frequency response functions 

(FRF) of the original system directly. For one modification an exact solution is obtained on the other hand for two or more 

modifications some nonlinear set of equations has to be solved. A meta-heuristic optimization technique known as Grey Wolf 

Optimizer (GWO) is applied for the solution of the nonlinear equations. The method is applied to a six-degrees-of-freedom 

mass-spring system. Some resonance and anti-resonance frequencies in the frequency bandwidth of the system are selected as 

target frequencies. The necessary modification masses are calculated to match these frequencies. After applying the calculated 

masses to the system the target frequencies are obtained successfully. 
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Bir Mekanik Sistemin Kütle Eklenerek ve Bozkurt Optimizasyon Tekniği Kullanılarak FTF 

Tabanlı Yapısal Değişikliği 
 

Öz: Rezonans ve ters rezonans frekansları, mekanik sistemlerin dinamik davranışını belirleyen önemli parametrelerdir. 

Sistemin kütle ve rijitlik gibi fiziksel özelliklerine bağlı olan bu parametrelerin değişimi sistemin dinamik davranışını da 

değiştirmektedir. Bir sistemin rezonans ve ters rezonans frekanslarını istenilen değerlere ayarlamak için gerekli yapısal 

değişiklikleri bulmak, ters yapısal değişiklik çalışma alanının konusudur. Bu çalışmada, tek ve çoklu değişiklikler için bir ters 

yapısal değişiklik yöntemi sunulmuştur. Bu yöntem ile mekanik sistemlerin bazı rezonans ve ters rezonans frekansları gerekli 

değişiklikler hesaplanarak istenilen değerlere kaydırılabilir. Sunulan yöntem Sherman-Morrison (SM) formülüne dayalı olup 

doğrudan orijinal sistemin frekans tepki fonksiyonlarını (FTF) kullanmaktadır. Tek bir değişiklik için kesin bir çözüm elde 

edilebilmektedir diğer yandan iki veya daha fazla değişiklik için bazı doğrusal olmayan denklem takımlarının çözülmesi 

gerekmektedir. Doğrusal olmayan bu denklemlerin çözümü için bu çalışmada, meta-sezgisel bir optimizasyon tekniği olan 

bozkurt optimizasyonu kullanılmıştır. Yöntem kütle ve yaylardan oluşan altı serbestlik dereceli bir sisteme uygulanmıştır. 

Sistemin frekans aralığında bazı rezonans ve ters rezonans frekansları hedef frekanslar olarak seçilmiştir. Bu frekansları 

yakalamak için gerekli kütle değişiklikleri hesaplanmıştır. Bu değişikliklerin uygulanmasıyla hedeflenen frekanslar başarılı bir 

şekilde elde edilmiştir. 

 

Anahtar kelimeler: Frekans tepki fonksiyonu, frekans kaydırma, bozkurt optimizasyonu, yapısal değişiklik. 
 

1. Introduction 

 

Resonance frequencies (natural frequencies) and anti-resonance frequencies are very important parameters 

that determine the dynamic behavior of mechanical systems. If a mechanical system is excited with a harmonic 

force with the same value as any of its natural frequencies, a resonance phenomenon occurs and the structure 

vibrates at high amplitudes. This situation can cause destructive effects on systems. For all that, at the anti-

resonance frequencies, a certain point on the system does not vibrate against the harmonic force applied from a 

certain location of the system. For this reason, designers should consider these features while designing, 

manufacturing, and improving dynamic systems. 

Resonance frequencies are the general (global) feature of the system. Therefore, they appear in all FRF graphs 

of the system, except for the nodal points. Anti-resonance frequencies are local features and they may not be seen 
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in every FRF. In Figure 1 a point FRF and a transfer FRF are illustrated. It can be said from the graph that the 

resonance frequencies are seen in both points FRFs (the response and the excitation at the same location) and 

transfer FRFs (the response and the excitation at different locations), while the anti-resonance frequencies do not 

necessarily occur in transfer FRFs however they occur after every single resonance frequency in point FRFs. 

 

 
Figure 1. Point and cross FRFs of six degrees of freedom mass-spring system 

 

The dynamic properties of a system, such as its natural frequencies, anti-resonance frequencies, and mode 

shapes depend on the physical properties of the system, such as mass, stiffness, and damping. When these physical 

properties of the system change, its dynamic behavior also changes. The relationship between the physical 

parameters and their effects on the dynamic characteristics is examined in the scope of the structural modification. 

Numerous studies e.g. mass-spring modification [1-4], rotational receptance modification [5], beam modification 

[6-9], transfer receptance based modification [10], and pole-zero cancelation [11] have been made over the last 

decades. The process of determining the dynamic properties of the modified system as a result of these structural 

modifications is called direct structural modification. The process of finding the modifications that must be made 

in the existing system to provide the desired dynamic properties is called inverse structural modification. 

In structural modification applications, the results obtained from the finite element (FE) solution or when the 

FE model is difficult to form, the results obtained by the experimental modal analysis are used. In addition, FRFs 

are used directly in many studies [12-16]. FRFs can be obtained from numerical solutions or they can be obtained 

by measuring over physical structure in experimental applications. Experimental FRFs are preferred by many 

researchers in structural modification applications [17-18]. Researchers have been trying to find effective methods 

by continuing their studies for years on direct and inverse structural modifications. Tsuei and Yee [19] have 

presented a simple and effective method for inverse structural modification that uses FRFs of the system by 

changing the mass and stiffness values on an undamped system. They continued to work similarly on the damped 

systems to shift the damped natural frequencies to the desired values [20]. Ouyang and Zhang [21] have carried 

out structural modifications on two different mass-spring systems that are connected sequentially and complexly. 

They used two different methods in their work. One of the methods is based on the use of orthogonal similarity 

transformation and the real symmetric matrix obtained by using the eigenvalues planned to make structural 

modifications with the mass and stiffness matrices of the system transformed into the upper triangular matrix. In 

the other method, the new matrix to be created for structural modification is obtained by minimizing the difference 

between the desired eigenvalues and the isospectral matrices. Since the obtained changes are made in the specified 

region, it is suitable for structural modifications in the masses and springs in the desired location on the system 

and can be easily applied to physical systems. Liu et al. [22] presented a method based on the principle of using 

additional mass-spring systems for an undamped physical system and using FRFs of the system directly. Although 

the original system has not been changed and there are advantageous aspects of the method, the degree of freedom 

of the system increases due to the added masses. Mottershead and Ram [23] conducted a study on vibration 

isolation using the structural modification technique. Ouyang et al. [24] conducted a structural modification study 

using the FRFs of a dynamic system. They have made some limiting approaches to make the structural 

modification within the range of changes determined in terms of applicability and cost. Since the method they 
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proposed resolves the change to be made within a specified range and provides optimum value, it can be easily 

applied to real physical systems. 

In many structural modification studies, it is seen techniques based on Sherman-Morrison (SM) formula [25] 

are used. The SM is a formula used to calculate the inverse of a modified matrix by using the inverse of the original 

matrix and the modifications and can be used effectively in structural modification problems based on FRFs. Çakar 

[26] proposed a method based on SM to calculate the stiffness of a spring to preserve a specified natural frequency 

value after adding a known mass on any specified location on a cantilever beam. In a different study [27], he used 

this method to prevent the desired natural frequency of the system from changing after the mass modification. In 

this study, a single frequency was taken into account and a successful result was obtained with an additional spring 

added between the structure and the ground in a chosen coordinate. However, as aircraft and spacecraft, it is 

impossible to make modifications by using grounded springs. Considering this situation, Hüseyinoğlu and Çakar 

[28] have kept the location of more than one frequency value fixed by adding more than one spring between two 

generalized coordinates instead of a grounded spring. Later, Çakar [29-30] presented studies including 

experimental applications related to shifting a certain number of natural frequencies of a system to desired values 

with mass modification. With the results obtained, it has shown that the proposed method is quite effective in 

calculating the masses required to shift one and more natural frequencies to desired values. Also, Çakar [31], Şen, 

and Çakar [32] proposed the same method to shift one and more anti-resonance frequencies to desired values 

successfully. 

In this study, the resonance and anti-resonance frequencies of a six-degrees-of-freedom mass-spring system 

have been shifted to desired values with mass modifications based on the SM formula without the need for any 

matrix inversion. With the presented study, it can be said SM based-structural modification method can be used 

effectively on mechanical systems to solve some vibration problems. An exact solution is obtained for one 

modification, and for two or more modifications, some nonlinear set of equations is obtained. These nonlinear sets 

of equations should be solved numerically. There are many methods for solving nonlinear equation sets in 

literature. Recently, meta-heuristic optimization techniques have been widely used for this purpose e.g. Bee 

Colony Ant Colony and Particle Swarm [33], Spider [34, 35], and Grey Wolf [36] optimization techniques.  In this 

study, GWO is used to solve the obtained set of nonlinear equations. 

This paper is organized as follows: In Section 2, the mathematical formulations where the relevant equations 

used for numerical simulations are presented. In Section 3, numerical results for shifting both resonance and anti-

resonance frequencies are given. The results are tabulated for the number of modifications and different 

modification coordinates. Finally, Section 4, presents the conclusions of this work. 

 

2. Structural Modification Based on SM Formula 

 

The SM is a formula for calculating the inverse of the new matrix resulting from a change to an existing 

matrix, using the inverse of the original matrix and modification vectors as given in Equation 1. 

 

[𝐴∗]−1 = [𝐴]−1 −
([𝐴]−1{𝑢})({𝑣}𝑇[𝐴]−1)

1+{𝑣}𝑇[𝐴]−1{𝑢}
                        (1) 

 

Here, [A] is a non-singular square matrix. If the inverse of this matrix is available or known, the inverse of 

the modified [A*] matrix resulting from a change to this matrix can be calculated using the inverse of [A] and the 

modification vectors. The change is expressed as the product of two vectors as follows. 

 

[∆] = {𝑢}{𝑣}𝑇                       (2) 

 

Also, for a dynamic system, the dynamic stiffness matrix [Z] and the modified dynamic stiffness matrix [Z*] 

resulting from the modification of [ΔZ] can be expressed as follows. 

 

[𝑍∗] = [𝑍] + [∆𝑍]                      (1) 

 

Here, the modification in dynamic stiffness can be expressed as the product of two vectors as follows. 

 

[∆𝑍] = {𝑢}{𝑣}𝑇                       (4) 
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The inverse of the new matrix resulting from a modification in the dynamic stiffness matrix can be expressed 

in the form of the SM formula as in Equation 5, using the inverse of the original matrix and the modifications. 

 

[𝑍∗]−1 = [𝑍]−1 −
([𝑍]−1{𝑢})({𝑣}𝑇[𝑍]−1)

1+{𝑣}𝑇[𝑍]−1{𝑢}
                        (5) 

 

Considering the relationship (α=Z-1) between the receptance and the dynamic stiffness, the FRFs of a modified 

system [α*] can be calculated by using the FRFs of the original system [α] and the modifications {u}, {v} without 

the need for any matrix inversion as in Equation 6. 

 

[𝛼∗] = [𝛼] −
([𝛼]{𝑢})({𝑣}𝑇[𝛼])

1+{𝑣}𝑇[𝛼]{𝑢}
                           (6) 

 

In Equation 6, the receptance type FRF matrix contains all elements in symmetric and square form. However, 

measuring the entire FRF matrix experimentally is a very laborious task. Therefore, Equation 6 given above can 

also be expressed with the active (response, excitation, and modification) coordinates only [29]. In this case, for a 

single mass modification, the following equation can be written for only the active p (response), q (excitation), 

and r (modification) coordinates for a specified element of the FRF matrix in the frequency range of interest of the 

modified system [13, 14]. 

 

𝛼𝑝𝑞
∗ =

𝛼𝑝𝑞−𝜔2𝛿𝑚(𝛼𝑟𝑟𝛼𝑝𝑞−𝛼𝑝𝑟𝛼𝑟𝑞)

1−𝜔2𝛿𝑚𝛼𝑟𝑟
                  (7) 

 

Here, δm is the modification mass and ω is the frequency in (rad/s).  For Equation 7 the rth elements of the 

modification vectors, {u} and {v} are ur=1 and vr=-ω2δm respectively and other elements are zero. 

The resonance frequencies represent the poles of a system, and the anti-resonance frequencies represent 

zeroes. Based on this statement, if the denominator of Equation 7 is equated to zero, it is expected that peaks will 

form at these frequencies of the modified system. Therefore, the denominator of Equation 7 must be zero for the 

corresponding frequency value for the receptance of a modified system by adding a mass to the coordinate r to 

have a resonance frequency at a frequency of ωs. 

 

1 − 𝜔2𝛿𝑚𝛼𝑟𝑟 = 0                     (8) 

 

Using Equation 8, the modification mass that needs to be applied to the rth coordinate for this modification 

can be easily calculated with the following equation as an exact solution. 

 

𝛿𝑚 =
1

𝜔2𝛼𝑟𝑟
                      (9) 

 

Similarly, if the numerator of Equation 7 is equated to zero, it is expected that reverse peaks will form at the 

FRFs for these frequencies of the modified system. Therefore, the numerator of Equation 7 must be zero for the 

corresponding frequency value for the receptance of a modified system by applying a modification mass to the 

coordinate r to have an anti-resonance frequency at a frequency ωs. 

 

𝛼𝑝𝑞 − 𝜔𝑠
2𝛿𝑚(𝛼𝑟𝑟𝛼𝑝𝑞 − 𝛼𝑝𝑟𝛼𝑟𝑞) = 0               (10) 

 

By using Equation 10, the required modification mass to be applied to the coordinate r for this modification 

can be easily calculated with the following equation as an exact solution. 

 

𝛿𝑚 =
𝛼𝑝𝑞

𝜔𝑠
2(𝛼𝑟𝑟𝛼𝑝𝑞−𝛼𝑝𝑟𝛼𝑟𝑞)

       (𝑝, 𝑞 ≠ 𝑟)               (11) 

 

In case of more than one modification, this formula can be applied sequentially. In this case, if n number of 

mass modifications are handled then this formula can be rewritten as follows. 

 

[𝛼𝑎
𝑖 ] = [𝛼𝑎

𝑖−1] −
−𝜔2𝑚(𝑖)([𝛼𝑎

𝑖−1]{𝑢𝑖})({𝑣𝑖}𝑇[𝛼𝑎
𝑖−1])

1−𝜔2𝑚(𝑖){𝑣𝑖}𝑇[𝛼𝑎
𝑖−1]{𝑢𝑖}

        (𝑖 = 1, 2, … , 𝑛)         (12) 
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For a single FRF, Equation 12 can be written as follows. 

 

𝛼𝑝𝑞
𝑖 =

𝛼𝑝𝑞
𝑖−1−𝜔2𝑚(𝑖)(𝛼𝑟𝑟

𝑖−1𝛼𝑝𝑞
𝑖−1−𝛼𝑝𝑟

𝑖−1𝛼𝑟𝑞
𝑖−1)

1−𝜔2𝑚(𝑖)𝛼𝑟𝑟
𝑖−1                      (13) 

 

If the system under consideration wanted to have n number of resonance frequencies at the frequencies of 

ωs1, ωs2, ..., ωsn, this can be achieved sequentially with n mass modifications. For this, the FRFs of the last system 

obtained after mass modifications must go to infinity at these frequency values. In this case, for i=n in Equation 

13 and the denominator of the equation must be equal to zero for each frequency value. Thus n number of 

interconnected nonlinear equations are obtained for n modifications on the system as follows. 

 

𝐹1(𝑚𝑖) = 1 − 𝜔𝑠1
2 𝑚(𝑛)𝛼𝑟𝑟

𝑛−1(𝜔𝑠1) = 0

𝐹2(𝑚𝑖) = 1 − 𝜔𝑠2
2 𝑚(𝑛)𝛼𝑟𝑟

𝑛−1(𝜔𝑠2) = 0
… … … … … … … … … … … … … … … … …
𝐹𝑛(𝑚𝑖) = 1 − 𝜔𝑠𝑛

2 𝑚(𝑛)𝛼𝑟𝑟
𝑛−1(𝜔𝑠𝑛) = 0

               (14) 

 

In the same way, to shift n number of anti-resonance frequencies, n number of interconnected nonlinear sets 

of equations can be expressed for n modifications on the system as follows. 

 

𝐹1(𝑚𝑖) = 𝛼𝑝𝑞
𝑛−1(𝜔𝑠1) − 𝜔𝑠1

2 𝑚(𝑛) (𝛼𝑟𝑟
𝑛−1(𝜔𝑠1)𝛼𝑝𝑞

𝑛−1(𝜔𝑠1) − 𝛼𝑝𝑟
𝑛−1(𝜔𝑠1)𝛼𝑟𝑞

𝑛−1(𝜔𝑠1)) = 0

𝐹2(𝑚𝑖) = 𝛼𝑝𝑞
𝑛−1(𝜔𝑠2) − 𝜔𝑠2

2 𝑚(𝑛) (𝛼𝑟𝑟
𝑛−1(𝜔𝑠2)𝛼𝑝𝑞

𝑛−1(𝜔𝑠2) − 𝛼𝑝𝑟
𝑛−1(𝜔𝑠2)𝛼𝑟𝑞

𝑛−1(𝜔𝑠2)) = 0
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …

𝐹𝑛(𝑚𝑖) = 𝛼𝑝𝑞
𝑛−1(𝜔𝑠𝑛) − 𝜔𝑠𝑛

2 𝑚(𝑛) (𝛼𝑟𝑟
𝑛−1(𝜔𝑠𝑛)𝛼𝑝𝑞

𝑛−1(𝜔𝑠𝑛) − 𝛼𝑝𝑟
𝑛−1(𝜔𝑠𝑛)𝛼𝑟𝑞

𝑛−1(𝜔𝑠𝑛)) = 0

           (15) 

 

Equations 14-15 contain unknown nested mass values. By solving this set of equations numerically, the 

necessary modification mass values can be calculated. It should be noted here that each modified FRF needed in 

Equations 14-15 can be obtained from Equation 13. To solve these equations, the GWO technique was used in this 

study. This technique is developed and well described in the reference [36] which uses the social hierarchy, 
encircling prey, hunting, attacking, and searching for prey of the wolves. So, detailed mathematical formulations 

for this optimization technique are not given in this study.  

 

3. Numerical Applications 

 

In this section, the applications for shifting some natural frequencies and some anti-resonance frequencies of 

a six-degree-of-freedom system consisting of masses and springs, which are frequently used in the literature [29] 

to the desired values are given respectively. 

Numerical applications have been performed on the system given in Figure 2, all masses are considered as 1 

kg and all springs are equal to 1 N / m. 

 
Figure 2. Six degrees of freedom mass-spring system [29] 
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In the applications, it is aimed to obtain the desired frequencies by making mass modifications on the selected 

FRFs shown in Figure 3. 

The FRFs of the original system were obtained in the 0.0000-0.3500 Hz frequency bandwidth at intervals of 

0.0001 Hz and for this system the FRFs of α33 and α34 are illustrated in Figure 3 together.   

 

 
Figure 3. The FRFs of the original system (α33 and α34). 

 

In addition, the natural frequencies and eigenvectors of the system are given in Table 1. 

 

Table 1. The natural frequencies, anti-resonance frequencies for α33 and eigenvectors of the original system. 

 

 

 

 

 

 

 

 

3.1. Mass Modifications for Shifting Natural Frequencies 

 

As mentioned earlier, the proposed method can be used to shift a single natural frequency or a single anti-

resonance frequency to a desired value with a single mass modification as an exact solution. The main problem 

here is to shift more than one natural frequency or anti-resonance frequency to the desired values with multiple 

mass modifications.  

For shifting the natural frequencies to the desired values, the objective functions can be expressed as follows. 

 

𝐹𝑜𝑏𝑗 = |𝐹𝑖|          (𝑖 = 1, 2, . . . , 𝑛 )                (16) 

 
A number of grey wolves and the iteration were chosen as 50 and 500 respectively. Also, the constraints were 

chosen for the modification mass values as follows. 

 

𝑚𝑚𝑖𝑛 < 𝑚𝑖 < 𝑚𝑚𝑎𝑥           (𝑖 = 1, 2, . . . , 𝑛 )              (17) 

 

For all masses lower and upper bounds are chosen as mmin = -1 and mmax=1 respectively. 

Modes 1 2 3 4 5 6 

Natural Frequencies 

(Hz) 
0.1089 0.1450 0.2046 0.2610 0.3135 0.3369 

Anti-resonance 

Frequencies α33 (Hz) 
0.1146 0.1871 0.2420 0.3027 0.3250 - 

 

Eigenvectors 

0.0962 -0.4027 0.7451 -0.3310 -0.3761 -0.1496 

0.1473 -0.4712 0.2588 0.2280 0.7068 0.3711 

0.2769 -0.6199 -0.3965 0.4019 -0.2455 -0.4001 

0.2769 -0.2541 -0.3965 -0.5049 -0.2455 0.6216 

0.4242 0.0685 -0.1377 -0.5590 0.4613 -0.5206 

0.7973 0.4027 0.2110 0.3310 -0.1602 0.1496 
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In Table 2, applications of some modifications for desired natural frequencies with some selected coordinates 

are given. Calculated masses and obtained natural frequencies by using these applied mass values are given for 

both two and three modification cases. 

 

Table 2. The natural frequencies of the system after multi-mass modifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The desired frequencies in the frequency range and the modification coordinates, are selected randomly. The 

negative calculated mass value means the mass has to be removed from the system. According to the results in 

Table 2, the desired resonance frequencies are obtained successfully. 

Some FRFs of the modified systems for the applications given in Table 2 are given in Figures 4-5 below. 

 

 
Figure 4. The FRFs of the original and the modified system for two desired resonance frequencies 

 

 
Figure 5. The FRFs of the original and the modified system for three desired resonance frequencies  

Desired 

Frequencies 

Modification 

Coordinates 

Calculated 

Masses 
Natural Frequencies of Modified System 

0.1840 
0.3030 

1 

3 

0.1964 

0.8786 
0.1027 0.1262 0.1840 0.2503 0.3030 0.3284 

1 

4 

0.1077 

0.9162 
0.1043 0.1395 0.1840 0.2366 0.3030 0.3184 

0.1000 

0.2000 

2 

5 

0.2174 

0.9037 
0.1000 0.1411 0.2000 0.2274 0.2861 0.3187 

1 
6 

0.0663 
0.2759 

0.1000 0.1419 0.2000 0.2571 0.3113 0.3359 

0.0915 

0.2015 

0.3015 

1 

4 

6 

    -0.2709 

0.7015 

0.5440 

0.0915 0.1374 0.2015 0.2538 0.3015 0.3317 

0.1000 
0.2000 

0.3000 

3 
5 

6 

0.2263 
0.5289 

0.1079 

0.1000 0.1375 0.2000 0.2329 0.3000 0.3216 
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As seen in Figures 4-5, the desired frequencies were obtained successfully after applying the calculated mass 

values to the system. 

 

3.2. Mass Modifications for Shifting Anti-resonance Frequencies 

 

In Table 3, applications of some modifications for desired anti-resonance frequencies with some selected 

coordinates are given. Calculated masses and obtained anti-resonance frequencies by using these applied mass 

values are given for both two and three modification cases. The modifications were made for α33 and the 

modification coordinates were selected randomly. 

 

Table 3. The anti-resonance frequencies of the system after multi-mass modifications. 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Also, some FRFs of the modified systems for the applications of shifting anti-resonance frequencies given in 

Table 3 are illustrated in Figure 6 and Figure 7 below. 

 

 
Figure 6. The FRFs of the original and the modified system for two desired anti-resonance frequencies 

 

 

Desired 

Frequencies 

Modification 

Coordinates 

Calculated 

Masses 
Anti-resonance Frequencies of Modified System 

0.1700 
0.2200 

1 

5 

0.2816 

0.6644 
0.1077 0.1700 0.2200 0.2943 0.2949 

2 

4 

0.6092 

0.3308 
0.1140 0.1700 0.2200 0.2627 0.3115 

0.1000 

0.3000 

1 

6 

0.0718 

0.3927 
0.1000 0.1824 0.2367 0.3000 0.3227 

4 
6 

0.0256 
0.3927 

0.1000 0.1864 0.2367 0.3000 0.3227 

0.1000 

0.2000 

0.3000 

1 

4 

5 

-0.1790 

0.0070 

0.4401 

0.1000 0.1905 0.2000 0.3127 0.3000 

0.1050 
0.2050 

0.3050 

2 
4 

5 

-0.0201 
0.3805 

0.8688 

0.1050 0.1876 0.2050 0.2606 0.3050 
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Figure 7. The FRFs of the original and the modified system for three desired anti-resonance frequencies 

 

 

4. Results and Discussion 

 

In this study, to contribute to the solution of vibration problems, a method is presented for shifting one or 

more natural frequencies and anti-resonance frequencies of mechanical systems to desired values by making mass 

modifications in specified coordinates and its validity is proven by some numerical applications. The proposed 

method in the study is based on the SM formula known from mathematics and calculates the required masses 

directly using the FRFs of the system. In this respect, it is quite suitable for practical applications as the FRFs can 

be obtained from real mechanical systems with modal tests. An equation with an exact solution is obtained in the 

case of a single frequency shifting. In case of shifting more than one frequency, the nonlinear equation sets 

consisting of equations as many as the number of frequencies to be shifted must be solved numerically. In this 

study, these nonlinear equation sets are solved by using the GWO technique. The presented method is applied to 

a six-degrees-of-freedom mass-spring system. The frequency-magnitude FRF graphs are obtained within a 

bandwidth containing all the resonance frequencies. In this bandwidth, some target frequencies are matched with 

calculated mass modifications successfully. The results are given with tables and FRF graphs. According to the 

results gained from the numerical applications, the presented method can be said to be very effective and applicable 

to physical systems. In this presented study, for multi-rank modifications, the number of modifications and target 

frequencies are considered the same. In this case, non-linear equation sets combined with equations with the same 

number of modifications are obtained for both resonance and anti-resonance frequency shifting. But, it can also be 

possible for a different number of modifications and equations as under-determined or over-determined equation 

sets. Also, an optimization study of coordinates and modification type as stiffness and/or mass can be used for 

obtaining more feasible results for future studies. 
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