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Abstract: M-estimation as generalization of maximum likelihood estimation (MLE) method is well-known approach to get 

the robust estimations of location and scale parameters in objective function 𝜌 especially. Maximum logq likelihood 

estimation (MLqE) method uses different objective function called as 𝜌logq
. These objective functions are called as M-

functions which can be used to fit data set. The least informative distribution (LID) is convex combination of two probability 

density functions 𝑓0 and 𝑓1.  In this study, the location and scale parameters in any objective functions 𝜌log, 𝜌logq
 and  

𝜓logq
(𝑓0, 𝑓1) which are from MLE, MLqE and LIDs in MLqE  are estimated robustly and simultaneously. The probability 

density functions which are 𝑓0 and 𝑓1 underlying and contamination distributions respectively  are chosen from exponential 

power (EP) distributions, since EP has shape parameter 𝛼 to fit data efficiently. In order to estimate the location 𝜇 and scale 𝜎 

parameters, Huber M-estimation, MLE of generalized t (Gt) distribution are also used. Finally, we test the fitting 

performance of objective functions by using a real data set. The numerical results showed that 𝜓logq
(𝑓0, 𝑓1) is more resistance 

values of estimates for 𝜇 and 𝜎 when compared with other 𝜌 functions. 
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En Az Bilgilendirici Dağılımlar için Konum ve Ölçek Parametrelerinin Sağlam Tahminleri 

Üzerine 

 

Öz: En çok olabilirlik tahmin (MLE) yönteminin genelleştirilmesi olarak M-tahmini, özellikle amaç fonksiyonda 𝜌 konum ve 

ölçek parametrelerinin sağlam tahminlerini elde etmek için iyi bilinen bir yaklaşımdır. En çok logq olabilirlik tahmini 

(MLqE) yönteminde 𝜌logq
 adı verilen farklı amaç fonksiyonu kullanır. Bu amaç fonksiyonlarına, veri kümesine uyması için 

kullanılabilen M-fonksiyonları denir. En az bilgilendirici dağılımlar, 𝑓0 and 𝑓1 olasılık yoğunluk fonksiyonlarının konveks 

kombinasyonudur.  Bu çalışmada, MLqE'de LID, MLqE ve MLE yöntemleri ile herhangi bir amaç fonksiyonda 𝜌log, 𝜌logq
  

ve 𝜓logq
(𝑓0, 𝑓1) konum ve ölçek parametreleri dayanıklı ve aynı anda tahmin edilmektedir. Dağılımın büyük bir çoğunluğu 𝑓0 

ve kontaminasyon dağılımı 𝑓1 olmak üzere üstel kuvvet (EP) dağılımından seçilmektedir; çünkü EP, verilere verimli bir 

şekilde uyacak şekil parametresi 𝛼'ya sahiptir. Konum μ ve ölçek σ parametrelerini tahmin etmek için Huber M-tahmini, 

genelleştirilmiş t (Gt) dağılımının MLE'si de kullanılmıştır. Böylelikle, gerçek bir veri seti kullanarak amaç fonksiyonların 

uyum performansını test etmekteyiz. Sayısal sonuçlar aracılığı ile 𝜓logq
(𝑓0, 𝑓1) amaç fonksiyonu diğer 𝜌 fonksiyonları 

karşılaştırıldığında, μ ve σ için tahminlerin daha fazla direnç değerine sahip olduğu gösterilmiştir. 

 

Anahtar kelimeler: En az bilgilendirici dağılımlar, maksimum logq olabilirlik tahmin yöntemi, dayanıklılık.  

 

1. Introduction 

 

In a dataset, it is possible to observe non-identical behavior. In other words, the working principle of a real 

world cannot be modeled by a hypothetical parametric model. Even if we assume that a dataset is a member of a 

parametric model with its true parameter values, a contamination into underlying distribution can be observed. In 

this case, robust estimation of true values of parameters of underlying distribution is a crucial role in the 

estimation theory. For this purpose, M-estimation method and the recently maximum logq likelihood estimation 

method are commonly used by [1-9].  

The deformed logarithms are member of fractional polynomial functions. However, as it is clearly known, 

the estimation is a process which performs the numerical integration. The numerical integration which is based 

on Riemann integration rule works on the difference principle [10]. These differences can be represented by 

functions. If we can accomplish to construct the neighborhood of a function, then we will be capable to make 

                                                           
* Corresponding author:  mehmet.cankaya@usak.edu.tr. ORCID Number of authors: 1 0000-0002-2933-857X 

mailto:fenbilimleri@firat.edu.tr


On the Robust Estimations of Location and Scale Parameters for Least Informative Distributions 

 

72 
 

different forms of non-identicality in a dataset, which shows us that the functions in the M-estimation principle is 

not enough reach to model not only versatile forms of  non-identicality but also the different values of parametric 

model which represents the underlying distribution. Thus, we can make a bridge to touch the non-identical case 

efficiently. M-estimation method is commonly used for the estimation of location and scale parameters, because 

the functions in this method can be appropriate for modeling datasets which accommodate with the structure of 

these functions. They are generally used for the estimations of location and scale parameters. The efficiency in 

the M-estimation method for the estimations of the different values of parameters of underlying distribution will 

be a deficiency, because the structure of function for the different values of parameters cannot be modeled 

efficiently. Then, the functions used to estimate some parameters cannot be successful for different values of 

parameters in the underlying distribution in the M-estimation method that is generalization of maximum 

likelihood estimation (MLE) [1-9].   

M-estimation is used to produce robust estimators for parameters of a probability density (p.d.) function 

𝑓0(𝑥; 𝜽). M-estimators are defined through an objective functions minimizing 𝜌(𝑥; 𝜽) = ∑ Λ[𝑓0(𝑥𝑖; 𝜽)]n
i=1  over 

𝛉 [1-4]. Here, Λ is a concave function that is capable of making one to one mapping from 𝑓0(𝑥; 𝜃) to Λ. M-

estimators are derived by fixed functions, such as Huber, Tukey, etc. LIDs are used to produce Huber, Tukey, etc 

[3,11]. MLE as a special case of M-estimation is a method for estimations of parameters in a p.d. function. It is 

based on logarithm and does not work properly to estimate parameters in a p.d. function efficiently and robustly 

when data set including outlier(s) are non identically distributed, therefore we will use function  logq that mimics 

MLE method [5,11,12]. In our proposition, the benefit of LIDs and a p.d. function in Λ is that one can propose 

the objective functions from arbitrary p.d. functions to get more precise estimators for parameters in p.d. 

functions. The more precision can be accomplished by the parameter q and also LID in MLqE method. In the M-

estimation principle, there are different functions used to fit datasets. Computational stage in the M-estimation 

method should be adopted according to the differentiability property of functions such as generalized 

divergences and deformed logarithms. For this aim, M-estimations are optimized according to parameters by 

using the Genetic Algorithm (GA). Thus, the local points in the optimization for the objective functions based on 

M-estimation can be discarded as it is pointed out that GA convergences to global points [13,14].  

The aim of this study is to obtain robust estimators of location μ and scale σ parameters for LID by using 

MLqE and to compare with the fitting performances of objective functions for the robust estimators obtained by 

MLE for Generalized t (Gt) distribution and Huber M-estimation [3,11]. While performing the robust estimation 

procedure, we aim to get the efficient estimators as well by using another well-known robust estimation method 

called as MLqE. We make a comparison among the objective functions or M-functions used in the robust M-

estimation method if we add the outliers into real datasets. The main motivation in LID is based on the convex 

combination of two functions which are 𝑓0 and 𝑓1 representing the underlying and contamination distributions, 

respectively. We use EP distribution to apply the LID in MLqE, because EP distribution has a shape parameter 𝛼 

which can model the peakedness of function. So, the efficiency of estimators can be performed not only the used 

shape parameter with fixed values but also 𝑓1 which will be responsible to model the outliers as well [11,15-16]. 

The organization of this paper is as follow: Section 2 gives the preliminaries about the maximum likelihood 

estimation method and its generalized forms. The LIDs in MLqE are introduced.  Different objective functions 

which will be used to fit data are given. Section 3 introduces the information criteria (IC). Section 4 is devoted to 

numerical illustration. Conclusions are given in the last section. 

 

2. Preliminaries 

 

2.1. Maximum likelihood estimation method 

 

As it is-well-known, MLE is asymptotically unbiased with minimum variance of estimators and references 

therein [2,3]. Let 𝑋1, 𝑋2,··· , 𝑋𝑛 be independent and identically distributed random variables, i.e., 𝑋𝑖 ∼
𝑓(𝑥; 𝜽), 𝑖 = 1,2, … , 𝑛 shows that 𝑋1, 𝑋2,··· , 𝑋𝑛 have identical distributions. 𝑛 represents the number of sample 

size as a sampling version of a p.d. function 𝑓 as a population. In this case, the maximum likelihood estimators 

(MLE) of the parameters 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑝) 

 

𝐿(𝜽; 𝑥) = ∏ 𝑓(𝑥𝑖; 𝜽) 

𝑛

𝑖=1

 (1) 
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is obtained by optimizing the likelihood function according to parameters 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑝). 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of observations and the likelihood function is a function of the parameters 

𝜃1, 𝜃2, … , 𝜃𝑝. When the log function of both sides of the given expression in equation (1) is taken to get a 

tractable expression, the following expression is obtained as follow: 

 

log(𝐿(𝜽; 𝑥)) = ∑ log(𝑓 (𝑥𝑖 ; 𝜽))

𝑛

𝑖=1

. (2) 

 

2.2. Maximum l𝐨𝐠𝐪  likelihood estimation method 

 

In the case of contamination, the robust and efficient estimations of the parameters of the 𝑓0 distribution are 

performed by using the maximum likelihood log𝑞 estimation (MLqE) method, which is a generalization of the 

likelihood estimation method and is also included in the M-functions [2,3], and 

 

log𝑞(𝐿(𝜽; 𝑥)) = ∑ log𝑞(𝑓 (𝑥𝑖; 𝜽))

𝑛

𝑖=1

 (3) 

 

is defined. log𝑞( 𝑓) =
𝑓1−𝑞−1

1−𝑞
, 0 < 𝑞 < 1. The log𝑞 function is called the 𝑞-deformed logarithm function. 𝑞 is a 

tuning constant used to adjust robustness and efficiency [5,11].  

 

2.3. Least informative distributions based on 𝐥𝐨𝐠𝐪 

 

Let the random variables 𝑋1, 𝑋2,··· , 𝑋𝑛 be independent and non-identically distributed. In this case, there is 

a contaminated distribution and 

 

𝑓𝜀(𝑥𝑖; 𝜽) = (1 − 𝜀)𝑓0(𝑥𝑖; 𝜽) + 𝜀𝑓1(𝑥𝑖; 𝜽) (4) 

 

is expressed as 𝑓𝜀 which indicates the contaminated distribution and is called as the least informative distribution 

(LID). The constant 𝜀 is the contamination rate. 𝑓0 is the underlying distribution and the estimation values of the 

parameters of 𝑓0 are tried to be obtained under 𝑓1 which is the contamination into underlying distribution 𝑓0.  

The deformed entropies and deformed logarithms derived from these entropies have found many 

applications in physics and many corresponding fields [22-32].  Let us rewrite the definition of LID given by 

 

𝑓𝜀 = (1 − 𝜀)𝑓0 + 𝜀𝑓1. (5) 

 

LIDs based on the maximum q-log-likelihood was proposed to find the optimal parameters 𝛉 in the 

function 𝑓𝜀 by [11]. The variational calculus is used to get a case in which the objective function 𝜌 sets out a 

minimal change with respect to the parameter 𝜀 when there exists a contamination into the underlying 

distribution 𝑓0 by a small amount of outlier distribution 𝑓1, i.e., we set 𝜀 in 𝑓𝜀  as a small value close to zero. In 

order to remove the role of 𝑓1, the function 𝜌(𝑓𝜀) is derived with respect to 𝜀  and set 𝜀  to zero. Thus, we can 

find the estimators of parameters 𝜇 and 𝜎 by using the following equation 

 

𝜓log𝑞
(𝑓0(𝑥; 𝜇, 𝜎), 𝑓1(𝑥; 𝜇, 𝜎)) = ∑ 𝑓0

𝑛

𝑖=1

(𝑥𝑖; 𝜇, 𝜎)−𝑞[𝑓1(𝑥𝑖; 𝜇, 𝜎) − 𝑓0(𝑥𝑖 ; 𝜇, 𝜎)]. (6) 

  

𝜓logq
(𝑓0(𝑥; 𝜇, 𝜎), 𝑓1(x; 𝜇, 𝜎)) is called as a new objective function to fit data sets. The LIDs in MLqE are 

used for the estimations of parameters. The distribution 𝑓1 in LIDs can have a role in fitting the data set as a 

flexible way to drive the efficiency in the estimation [3,11,12].   
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2.4. M-estimation method 

 

The main idea of M-estimation method is based on the minimizing an objective function 𝜌 with respect to 

parameters which will be estimated. The M-estimation method is introduced by the following equation: 

 

(𝜇,̂ 𝜎̂) ≔
∑ ρ(𝑥; 𝜇, 𝜎))

𝑛

𝑖=1

arg min 𝜇, 𝜎

 (7) 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of observations. 𝜇 and 𝜎 are location and scale parameters respectively. After 

minimizing the mathematical expression in equation (7), the M-estimators of parameters 𝜇 and 𝜎 are obtained. 

The analytical tractability of the function 𝜌 is necessary if we get the M-estimators which will be functions of 

random variables such as arithmetic mean which is well-known location estimator from MLE of location 

parameter 𝜇 in normal distribution [3].   

As it is well-known, these two parameters can be added to any arbitrary function. In our case, we consider 

to add these parameters into objective function 𝜌. The following subsection is divided for introducing how we 

give the mathematical expression for the objective functions which will be used to fit the data. 

 

2.5. Objective functions as M-functions and their M-estimations  

 

The objective functions are very popular in robustness literature to fit the data sets. They were proposed by 

Huber and his coworkers. The objective function 𝜌 notated by Huber and its derived form with respected to 

parameters is called as the function 𝜓.  𝜓 is based on the estimating equations originally proposed by Godambe 

[9]. Throughout this paper, we consider to use the function 𝜓 for representing LIDs in MLqE method. Thus, we 

have three objective functions in this paper. These are notated by 𝜌log(𝑓0), 𝜌logq
(𝑓0) and 𝜓logq

(𝑓0, 𝑓1).  

Let us introduce their analytical expression given below: 

 

𝜌log(𝑓0) = ∑ log (𝑓0(𝑥; 𝜇, 𝜎))

𝑛

𝑖=1

 (8) 

is from MLE taken by log function.  

𝜌logq
(𝑓0) = ∑ logq(𝑓0(𝑥; 𝜇, 𝜎))  

𝑛

𝑖=1

 (9) 

is from MLqE taken by logq  function. 

The following objective function is derived by using LIDs and MLqE method, as introduced by subsection 

2.3 [11].  

 

𝜓logq
(𝑓0, 𝑓1) =  ∑ 𝑓0

(𝑥; 𝜇, 𝜎)−𝑞[𝑓1
(𝑥; 𝜇, 𝜎) − 𝑓0

(𝑥; 𝜇, 𝜎)] 

𝑛

𝑖=1

,  (10) 

  

where 𝑓0 and 𝑓1 are chosen from exponential power (EP) distribution. EP is defined by  

 

𝑓EP(𝑥;  µ, 𝜎, 𝛼)  =  
α 

2σΓ( 
1

α
 )

exp{− (
|x−µ|

 σ 
)

α
 } ,  (11) 

  

where 𝛼 is shape parameter to arrange the peakedness of function and references therein [15,16]. 

The Gt distribution is given by  

 

𝑓Gt(𝑥;  µ, 𝜎, 𝛼, 𝜈)  =  
α 

2B(
1

α
,ν)ν1/α σ

(1 + ( 
|x−µ|

ν
1
ασ

  )
α

 )−(ν+1/α) ,  (12) 

  

where 𝛼 and 𝜈 are parameters for the shape of peakedness and the tail behaviour of function respectively. If the 

parameter 𝜈 goes to small values, then Gt distribution becomes heavy-tailed distribution. If we use a heavy-tailed 
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distribution to fit data set, then MLEs of the parameters 𝜇 and 𝜎 will be robust. The estimation of these 

parameters are not performed due to fact that we need to get the robust estimations of the parameters 𝜇 and 𝜎 

[17] and references therein. 

 

3. Information Criterions for Objective Functions 

 

Information criterion (IC) is a tool to test the fitting performance of functions. Different tools are proposed 

by [18,19]. After proposing objective functions, we will have another problem to test the fitting performance of 

𝜌log from MLE, 𝜌log𝑞
 from MqLE, 𝜓 from Huber M-Estimation and 𝜓logq

(𝑓0, 𝑓1) from LID. For this aim, robust 

information criterion (RIC) formulae are used to determine the value of tuning parameter q. We can consider the 

equations (11) and (12) including the function log from objective function in equation (2). Since we use equation 

(2), the lack of fit part of IC with the penalty term 𝑐𝑘 is given by 

 

𝐼𝐶(𝑓0, 𝑐𝑘) = −2𝜌log(𝑓0) + 𝑐𝑘 .  (13) 

 

IC in equation (13) have two parts that are the lack of fit and the penalty term. The difference between AIC 

and BIC is due to the penalty term 𝑐𝑘. The correct evaluation of AIC depends on the penalty term 𝑐𝑘  =  2𝑘, 

which is a deficiency of AIC [18]. As an alternative to AIC, BIC was proposed when 𝑐𝑘  =  log(n)𝑘. We 

propose robust version of ICs by replacing the objective function  𝜌log  with another objective function 

𝜓logq
(𝑓0, 𝑓1). Thus, we have robust versions of ICs which can be reconsidered as the following form for the 

objective function 𝜓logq
(𝑓0, 𝑓1) from LID 

 

𝑅𝐼𝐶𝑞(𝑓0, 𝑓1, 𝑐𝑘) = −2 𝜓logq
(𝑓0, 𝑓1)  + 𝑐𝑘 , (14) 

 

We make a comparison among LID in MLqE, MLqE, Huber M-estimation and MLE of location and scale 

parameters of Gt distribution. Note that the value of q as a tuning constant must be taken to be fixed in order to 

get robust estimators. For example, for a given value of q, the fitting performances of 𝜓logq
(𝑓0, 𝑓1) and 

ρlogq
(𝑓0) are tested until the smallest values of IC is obtained.  For the Huber M-estimation and MLE method, 

the lack of fit part −2logL or −2log𝑓  for one sample case, i.e., n = 1 are used, because they are based on the 

known logarithm function, i.e., log [11,22-32].   

Since the LID has shape parameter α of EP distribution, it is logical to expect that the estimates are better 

than Huber's ρ function. Note that Huber's M-function is based on 𝛼 = 2 for |𝑦| ≤ 𝑘 and 𝛼 = 1 for |𝑦| > 𝑘. In 

other words, Huber M-estimation is normal distribution in middle, i.e. |𝑦| ≤ 𝑘 and Laplace distribution in tail, 

i.e. |𝑦| > 𝑘. Since Huber's M-function has the fixed values of shape parameters, there is no flexibility of Huber's 

M-function. For the determining of values of shape parameter 𝛼 in EP distribution and tail parameter 𝜈 in Gt 

distribution, IC is used for the objective function 𝜌log, i.e., 𝜌log(𝑓𝐸𝑃) and 𝜌log(𝑓𝐺𝑡) respectively. Choosing the 

best values of these parameters 𝛼 and 𝜈 is processed while we are trying their different values of 𝛼 and 𝜈 until 

the smallest values of IC are obtained. These parameters are also considered as tuning parameters for the sake of 

conducting the robust estimation procedure.  For this reason, they will not be estimated [3,17]. 

 

4. Computation and Real Data Application 

 

Optimizing 𝜓logq
(𝑓0, 𝑓1) in equation (10) according to parameters in p.d. functions 𝑓0 and 𝑓1 produces M-

estimators µ̂ and 𝜎̂ from LID  

( µ̂𝜓, σ ̂𝜓) : =
 𝜓logq

(𝑓0, 𝑓1)

arg max 𝜇  and 𝜎 
 (15) 

  

If only 𝑓0 is chosen for 𝜌logq
, then M-estimators  µ̂ and 𝜎̂ will be obtained from a p.d. function 𝑓. Since 

𝜓logq
(𝑓0, 𝑓1) and 𝜌logq

 are nonlinear functions according to the parameters in the p.d. function 𝑓, an optimization 

method as a maximization or minimization is essential to get the estimates of these parameters [2,3,11].  

A data set is NCI60 cancer cell line panel. A protein data coded as BR:T-47D from Lysate Array at a 

website https://discover.nci.nih.gov/cellminer/ was analysed. The parameters 𝜇 and 𝜎 are estimated by using 
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objective functions to see tendency (location parameter 𝜇) and spread (scale parameter 𝜎) of protein in cancer 

cell. The maximum and minimum values which are added as two outliers are 12.5160 at positive and -12.5160 at 

negative sides of the real line, respectively. Thus, the symmetry of data has been kept. The search region in HGA 

at a module in MATLAB 2013a for the parameters 𝜇 and 𝜎 are taken as [−50, 50] and [0, 50], respectively. After 

running GA module in MATLAB 2013a, the estimates of parameters 𝜇 and 𝜎 are obtained as given in Table 1.  

Table 1 has the M-functions from LID in MLqE, i.e., 𝜓log𝑞=0.008
(𝑓0 = 𝐸𝑃(𝛼0 = 2.15), 𝑓1 = 𝐸𝑃(𝛼1 =

 1.4)) from EP distributions with fixed values of shape parameters 𝛼0 = 2.15 and 𝛼0 = 1.4, the estimates from 

MLqE for the parameters 𝜇 and 𝜎 in EP distribution with fixed value of shape parameter 𝛼 = 2.51 and Huber 

M-function with tuning parameter 𝑘 = 1.02. When the estimates of two parameters are compared, it is observed 

that the estimate of 𝜇̂ from LID in MLqE as a bold does not change if two outliers are added. The estimate of  
𝜎̂ has a small changing from LID in MLqE. However, Huber M-estimation and MLEs of parameters μ and σ in 

Gt distribution cannot have a resistance to outliers and the values of estimates of two parameters have changed. 

As  a result, LID in MLqE has robust estimates when it is compared with other objective functions in Table 1. 

 

Table 1. Estimates of parameters μ and σ by using different objective functions without and with two 

outliers for protein data in cancer cell 

 

M-functions: Objective functions based on logq 𝜇̂ 𝜎̂ 𝑅𝐴𝐼𝐶𝑞 𝑅𝐵𝐼𝐶𝑞 

𝜓logq=0.008
(𝑓0 = 𝐸𝑃(𝛼0 = 2.15), 𝑓1 = 𝐸𝑃(𝛼1 =  1.4)) 1.5752 1.5585 13.8654 20.0406 

Two Outliers 1.5752 1.5578 13.8650 20.0647 

ρlogq=0.5
(𝑓0 = 𝐸𝑃(𝛼 = 2.51)) 1.3616 1.3237 398.7907 404.9659 

Two Outliers 1.3617 1.3237 406.7909 412.9906 

M-functions: Objective functions based on log 𝜇̂ 𝜎̂ 𝐴𝐼𝐶 𝐵𝐼𝐶 

𝜓(𝑓0 = 𝐸𝑃(𝛼 = 2), 𝑓1 = 𝐸𝑃(𝛼 = 1), 𝑘 = 1.02) 1.3532 1.3851 657.3162 663.4914 

Two Outliers 1.3552 1.4933 695.6350 701.8348 

𝜌log(𝑓0 = 𝐺𝑡(𝛼 = 2.36, 𝜈 = 1.95)) 1.2039 2.0388 677.1910 683.3662 

Two Outliers 1.2027 2.0947 706.8218 713.0215 

 

Table 1 also shows the information criteria such as Akaike and Bayesian. 𝑅𝐴𝐼𝐶𝑞 and  𝑅𝐵𝐼𝐶𝑞 are 

abbrevations for the robust Akaike and robust Bayesian criteria in which the lack of fit part is based on q in 

logq[11]. They are based on q in logq. The values of 𝑅𝐴𝐼𝐶𝑞 and  𝑅𝐵𝐼𝐶𝑞  in two cases which are without outliers 

and two included outliers can be very near to each other when the objective function is 𝜓logq=0.008
(𝑓0 =

𝐸𝑃(𝛼0 = 2.15), 𝑓1 = 𝐸𝑃(𝛼1 =  1.4)). However, when the objective function is ρlogq=0.5
(𝑓0 = 𝐸𝑃(𝛼 = 2.51)), 

the values of 𝑅𝐴𝐼𝐶𝑞 and  𝑅𝐵𝐼𝐶𝑞  has been changed if there exist two outliers. As a result, the LID in MLqE can 

have robust information criteria as well due to the fact that the estimates obtained by objective functions based 

on logq  could not change more when we compare the values of 𝐴𝐼𝐶 and 𝐵𝐼𝐶 in Table 1. 
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Figure 1. Robust M-estimators and MLE of parameters in 𝑓0 and LIDs if outliers do not exist. 

 
 

Figure 2. Robust M-estimators and MLE of parameters in 𝑓0 and LIDs if there are two outliers. 

 

Figures 1 and 2 are given for illustrative purpose. Four objective functions depicted by Figures 1 and 2 are 

used to estimate the parameters 𝜇 and 𝜎. The p.d. functions abbreviated as PDF superimposed onto histograms 

are given by EP distributions with their corresponding fixed shape parameter 𝛼. Since the main aim was to plot 

the underlying distribution, we use the parameter 𝛼0 from p.d. function 𝑓0. There is also p.d. function of Gt 

distribution which has been used for plotting in Figures 1 and 2.  After plotting the  p.d. functions of EP with the 

estimates of M-estimators for the parameters 𝜇 and 𝜎 and the fixed values of shape and tail parameters of 

corresponding distribution, we can observe that 𝑓0 = 𝐸𝑃(𝑥; 𝜇̂ = 1.5752, 𝜎̂ = 1.5585, 𝛼0 = 2.15) has a good 

competance on fitting the data set well when it is compared by the others that are 𝑓0 = 𝐸𝑃(𝑥; 𝜇̂ = 1.3616, 𝜎̂ =
1.3237, 𝛼0 = 2.51), 𝑓0 = 𝐸𝑃(𝑥; 𝜇̂ = 1.3532, 𝜎̂ = 1.3851, 𝛼0 = 2) and 𝑓0 = 𝐺𝑡(𝑥; 𝜇̂ = 1.2039, 𝜎̂ =
2.0388, 𝛼0 = 2.36, 𝜈 = 1.95). 

 

 

5. Conclusion  

 

LIDs are obtained by using convex combinations of two p.d. functions for the estimations of location and scale 

parameters. Thus, the robust estimations of them have been performed by using the M-functions originally based 

on the M-estimation method. LIDs in MLqE, MLqE, M-estimation of Huber for the robust estimations of  the 

parameters 𝜇 and 𝜎  and also MLEs the parameters 𝜇 and 𝜎 of Gt distribution have been compared if there exist 

two outliers into data set. So the resistance of these M-functions while conducting the robustness procedure has 

been observed.  The role of MLqE method for LIDs have been examined when the parameters 𝜇 and 𝜎 are 

estimated simultaneously. The results showed the LID in MLqE can have robust to outliers not only for the 

estimates of two parameters but also information criteria. However,  ρlogq
 with only one p.d. function 𝑓, Huber 

M-estimation and MLEs of  the parameters 𝜇 and 𝜎 of Gt distribution with fixed values shape parameter 𝛼 and 

the tail parameter 𝜈 determined by using the information criteria gave the estimates that cannot be resistance to 

outliers even if they are the M-functions used to get robust M-estimates of parameters. Since LIDs have two 

distributions 𝑓0 and 𝑓1 at the same time, the efficiency was observed for case in which two outliers are added into 

a real data set. The robustness properties of the objective function 𝜓logq
(𝑓0, 𝑓1) for all parameters in a p.d. 

function 𝑓 will be a study in the future. 
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