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Abstract 

This study presents free vibration of cantilever beams with multiple cracks. The problem is solved analytically 

by the transfer matrix method, and is validated experimentally by the operational modal analysis. Six damage 

scenarios are considered to study crack effect on the natural frequencies and corresponding mode shapes. Graphs 

and tables for numerical results are given and discussed. Results show that crack occurrence in a beam 

significantly changes its dynamic behavior. 
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Çatlaklı Konsol Kirişlerin Serbest Titreşimi: Analitik ve Deneysel 
Modelleme 

Özet 

Bu çalışmada birden fazla çatlak içere konsol kirişlerin serbest titreşimleri incelenmiştir. Problem analitik olarak 

transfer matrisi metoduyla çözülmüş ve operasyonel modal analiz ile deneysel doğrulama yapılmıştır. Çatlağın 

doğal frekanslar ve mod şekillerini üzerindeki etkilerini incelemk üzere altı farklı hasar durumu göz önüne 

alınmıştır. Sayısal sonuçlar grafik ve tablolarla sunulmuştur. Sonuçlar, çatlak varlığının kirişin dinamik 

davranışını önemli ölçüde değiştirdiğini göstermiştir.     

Anahtar Kelimeler: Çatlak, Serbest titreşim, Transfer matrisi metodu, Deneysel model 

1. Introduction 

 

 Engineering structures are exposed to 

different types of environmental loads such as 

earthquakes, wind and traffic loads etc. Over 

time, stresses and strains due to these loadings 

lead to reduce in lifetime of the structure, and 

may cause damages (cracks), which is a serious 

threat to performance of structure. Early detection 

of any structural damage is important to prevent 

structural failures that causes human casualties 

and financial costs. Thus, an accurate and 

comprehensive study on structures including 

cracks are necessary.  

 Beams are structural elements in which 

cracks are commonly observed. Therefore, they 

have been frequently studied by researchers with 

through different analytical, numerical and 

experimental techniques. Dimarogonas [1] 

presented a comprehensive review of various 

methods in studying structural members with 

cracks. 

 Dimarogonas and Paipetis [2] proposed the 

local flexibility concept to model an open edge 

crack in a beam, which can be derived from the 

stress intensity factors in the theory of fracture 

mechanics. The cracked section in a beam can be 

replaced by massless rotational springs 

representing the local flexibility of the crack. 

Studies on vibrations of cracked beams using the 

local flexibility concept have generally focused 

on two main aspects: The first is to estimate the 

effects of cracks on the eigen-parameters of 

beams as a direct problem, and the second is to 

detect the location and size of the crack from the 

measured information as an inverse problem. 

Direct analysis of beam vibrations in the presence 

of cracks is, however, required for solution of the 

inverse problem. 

 Methods in studying free vibration of beams 

with cracks are, in general, divided into two main 



Free Vibration of Cracked Cantilever Beams: Analytical and Experimental Modelling 

2 

groups: continuous and discrete methods. In 

continuous methods, the beam is divided into 

several sub-beams connected by massless 

springs. Differential equations are, then, solved 

for each sub-beam individually with considering 

the boundary and continuity conditions. As a 

continuous method, the transfer matrix method is 

an efficient tool for free vibration of cracked 

beams, and have been widely preferred [3-8]. 

Viola et al. [9] derived the explicit dynamic 

stiffness matrix of a cracked axially loaded beam 

under coupled bending–torsion with considering 

the effects of the rotatory inertia and the shear 

deformation. Among discrete methods, the finite 

element method [10-12] and the discrete element 

method [13] can be mentioned. 

 Experimental measurements including 

ambient and forced vibration tests have also been 

used to extract the dynamic characteristics of 

cracked beams during operational conditions as 

well as to verify their analytical and/or numerical 

models [14-16]. Experimental measurements can 

also be used to identify cracks in a beam in 

inverse problems.   

 As can be seen in the literature summarized 

above, there are many studies on cracked beam 

vibrations using different analytical/numerical 

and experimental methods. However, the studies 

on extracting dynamic characteristics of cracked 

beams by operational modal analysis (OMA), and 

validating the experimental results with analytical 

solution are limited. This study presents free 

vibration analysis of cantilever beams with 

multiple cracks. The problem is solved 

analytically by the transfer matrix method 

(TMM), and is validated experimentally by the 

operational modal analysis (OMA). The 

cantilever beam is assumed to obey Bernoulli-

Euler theory. Six damage scenarios are 

considered to study crack effect on the natural 

frequencies and corresponding mode shapes. 

Comparative graphs and tables for numerical 

results are given and discussed.  

 

2. Theoretical Formulation 

 

2.1. Analytical model 

 

 Consider a cantilever beam with N  cracks 

along its length, and has a rectangular cross-

section of width b  and height h  shown in Fig. 1. 

The beam is assumed to be connected by 

massless rotational springs at cracked section as 

shown in Fig. 2. Equation of motion for each 

segment of the beam is given by 


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where ( , )iY x t  is the deflection function, EI  is 

the flexural rigidity,   is the mass density, 

A bh  is the cross-sectional area of the beam. 

Introducing 

 /x x L  (2) 

into (1) yields  
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where ( , ) ( , )Y x t y x t .  

 Assuming the solution of (3) as  

 ( , ) ( ) ( 1,2,... 1)i t

i iy x t X x e i N    (4) 

 
Figure 1. A cantilever beam with multiple cracks 

 

 
Figure 2. Cracked section represented by massless 

rotational spring. 
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where ( )iX x denotes the modal shape function, 

and   is the natural frequency of the beam, and 

substituting it into (3) gives the following: 
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d x
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where  
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 Solution of (5) is 
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where 
iA , 

iB , 
iC  and 

iD  are constants to be 

determined from the boundary and continuity 

conditions given by  
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where ( )if d  is a dimensionless function, which 

is given by single-sided open cracks as  
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where /i id a h  is dimensionless crack depth.  

 Substituting (4) into (9), we have the 

following: 
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where ( / ) ( )ih L f a   . From (11), we have 

 
1
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 Considering (15), the following relation 

between the constants of ( 1)N  th and those of 

first segment can be written: 
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where T  is the transfer matrix.  

 Using the first two conditions of (8) into (7) 

gives 
1 1D B   and 

1 1C A  . Substituting the 

latter two of (8) into (7) gives 
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 Substituting (16) into (17) gives  

 
1 Za 0  (19) 

where Z WT . Re-calling 
1 1D B   and 

1 1C A   and re-arranging equation (19), we have  
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Equation (20) has real roots different from zero 

when the determinant of its coefficient matrix is 

zero. Thus,  
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which gives a characteristic equation as 

( , , ) 0i if m x d   depending on natural 

frequencies, crack size and location. Using the 

roots 
n  ( 1,2,n  ) of the characteristic 

equation into (6), the natural frequencies of beam 

can be obtained from 

 
2

2
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n

EI
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For modal shape functions, constants 
ia  for each 

segment can, then, be obtained from (20) for 

1i   and (15) for 2,3,i  .  

 

2.2. Experimental model 

 

 Three steel cantilever beams are constructed 

for laboratory tests. A typical representation of 

the model is shown in Fig. 3. The beam has 

uniform rectangular cross-section along its 

length. In experimental measurements, B&K3560 

data acquisition system with 17 channels, 

B&K8340-type uni-axial accelerometers and uni-

axial signal cables are used as test equipment. Six 
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sensitive accelerometers are located on the 

laboratory model to extract natural frequencies 

and corresponding mode shapes of the beam 

shown in Fig. 4.  

 Measurements are performed during 10 

minutes for all cases (damaged and undamaged) 

considered. Frequency range, FFT analyzers and 

Multi-buffer are selected to be 0-800Hz, 800 

lines and 100 averages, 50 size and 500m update, 

respectively. The signals from the accelerometers 

are recorded on the computer with applying FFT 

process in PULSE [17] software. This 

transformed data is, then, filtered by the weight 

functions in OMA [18] software. Modal 

parameters are obtained by Enhanced Frequency 

Domain Decomposition (EFDD) method in 

frequency domain which gives the spectral 

density functions of the signals in each channel. 

Natural frequencies and modal damping ratios 

are, then, determined using the spectral density 

functions. Fig. 5 shows the spectral density 

functions obtained from OMA. In there, the peak 

points which are selected manually show natural 

frequencies of the beam. 

 

 
 

Figure 3. Dimensions of the steel cantilever beam. 

 

 

 
Figure 4. Laboratory model and accelerometer 

locations. 

 

Table 1. Damage scenarios considered. 

Scenario 
Crack location (mm) Crack depth (mm) 

x1 x2 x2 a1 a2 a3 

Damage-1 90 - - 3 - - 

Damage-2 90 270 - 3 3 - 

Damage-3 90 270 450 3 3 3 

Damage-4 90 270 450 6 3 3 

Damage-5 90 270 450 6 6 3 

Damage-6 90 270 450 6 6 6 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 5. Singular values of spectral density matrices. 
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3. Results 
 

 Comparisons between the calculated and 

measured values are given. Material properties 

are E = 206GPa and  = 7800kg/m3. Free 

vibration analyses are performed for six damage 

scenarios in Table 1. Analytical results are 

obtained through a computer code written in 

MATLAB environment.   
 

 
 

Figure 6. MAC representation between analytical and 

experimental mode shapes for undamaged case. 

 

 

 

 
 

Figure 7. MAC representation between analytical and 

experimental mode shapes for Damage-6 case. 

 

 Tables 2-4 show the first six natural 

frequencies of the cantilever beam for all cases 

considered. As can be seen, the natural 

frequencies decrease with increasing the damage 

severity. This is more notable when the crack 

depth increases, i.e., between Damage-3 and 

Damage-4 cases. Results obtained from TMM 

and OMA slightly differ. This may be from 

several reasons such that: (a) fixed support 

Table 2. First six natural frequencies (Hz) calculated from TMM. 

Mode 
Natural frequencies (Hz) 

Intact Damage-1 Damage-2 Damage-3 Damage-4 Damage-5 Damage-6 

1 10.25 10.10 10.04 10.03 9.18 8.87 8.77 

2 64.24 63.88 63.73 63.16 61.27 60.47 57.07 

3 179.83 179.64 178.07 178.02 177.11 168.58 168.58 

4 352.42 352.42 351.17 347.91 347.91 342.20 323.51 

5 582.60 581.61 580.83 580.75 575.82 571.73 571.73 

6 870.24 866.22 857.95 849.86 830.07 796.00 767.36 

        

Table 3. First six natural frequencies (Hz) measured by OMA 

Mode 
Natural frequencies (Hz) 

Intact Damage-1 Damage-2 Damage-3 Damage-4 Damage-5 Damage-6 

1 9.92 9.77 9.69 9.75 8.93 8.68 8.59 

2 62.53 62.26 61.98 61.56 59.96 59.34 57.54 

3 175.30 175.21 173.40 173.70 172.80 167.20 166.90 

4 342.10 341.80 340.90 338.60 338.30 334.80 325.30 

5 562.00 560.60 559.10 560.00 552.10 548.20 547.50 

6 856.70 850.30 844.40 828.60 808.60 776.70 763.50 

        

Table 4. Change in natural frequencies (%) with increasing damage severity. 

Case 
Change in natural frequencies (%) 

f1  f2  f3  f4  f5  f6  

Undamaged vs. Damage-1 1.48 0.55 0.10 0.00 0.17 0.46 

Damage-1 vs. Damage-2 0.59 0.24 0.87 0.35 0.13 0.95 

Damage-2 vs. Damage-3 0.11 0.89 0.03 0.93 0.01 0.94 

Damage-3 vs. Damage-4 8.44 2.98 0.51 0.00 0.85 2.33 

Damage-4 vs. Damage-5 3.35 1.30 4.82 1.64 0.71 4.11 

Damage-5 vs. Damage-6 1.14 5.63 0.00 5.46 0.00 3.59 
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condition at left-end cannot be provided exactly 

in laboratory environment, and (b) the beam 

cross-section, thus the flexural rigidity, cannot be 

uniform along the beam length. The modal 

updating, which is already out of the scope of this 

study, is therefore required.  

 Modal Assurance Criterion (MAC) is used to 

establish the correlation between the measured 

and the calculated results, which is defined by 

  
  

2

MAC ,

T

a e

a e T T

a a e e

X X
X X

X X X X
  (23) 

where 
aX  and 

eX  denote analytical and 

experimental mode shapes. MAC values are 

greater than 90% means the mode shapes are 

good correlated [19]. Figs. 6 and 7 show MAC 

values between analytical and experimental 

mode shapes for undamaged and Damage-6 

cases, respectively. As seen, the correlation 

between the calculated and measured mode 

shapes are very good, which verifies the 

laboratory measurements performed 

 

4. Conclusions 
 

 Free vibration of cracked cantilever beams is 

considered by analytical and experimental 

methods. Results are in good agreement. The 

followings can be drawn from the study: 

a) Natural frequencies are strongly affected 

by crack presence in the beam. 

b) Crack depth is more effective on the 

natural frequencies compared to the 

number of cracks. 

c) Operational modal analysis is very suitable 

for experimental analyses of cracked 

beams. For more accurate results, modal 

updating should be recommended. 

d) Transfer matrix method gives the 

frequency equation to solve the inverse 

problem for damage detection. However, 

the solution is required more symbolic 

computation and thus computing time 

when the number of cracks increases. 

 

5. References 

 
1.Dimarogonas, A.D. (1996). Vibration of cracked 

structures: a state of the art review. Engineering 

Fracture Mechanics, 55(5): 831-857. 

2. Dimarogonas, A.D. and Paipetis, S.A. (1983). 

Analytical Methods in Rotor Dynamics, Applied 

Science Publisher, London. 

3. Shifrin, E.I. and Ruotolo, R.. (1999). Natural 

frequencies of a beam with an arbitrary number of 

cracks. Journal of Sound and Vibration, 222(3): 409-

423. 

4. Lin, H.P., Chang, S.C. and Wu, J.D. (2002). Beam 

vibrations with an arbitrary number of cracks. Journal 

of Sound and Vibration, 258(5): 987-999. 

5. Zheng, D.Y. and Fan, S.C. (2003). Vibration and 

stability of cracked hollow-sectional beams. Journal of 

Sound and Vibration, 267: 933-954. 

6. Lin, H.P. (2004). Direct and inverse methods on 

free vibration analysis of simply supported beams with 

a crack. Engineering Structures, 26: 427–436. 

7. Loya, J.A., Rubio, L. and Fernández-Sáez, J. 

(2006). Natural frequencies for bending vibrations of 

Timoshenko cracked beams. Journal of Sound and 

Vibration, 290: 640-653. 

8. Attar, M. (2012). A transfer matrix method for free 

vibration analysis and crack identification of stepped 

beams with multiple edge cracks and different 

boundary conditions. International Journal of 

Mechanical Sciences, 57: 19-33. 

9. Viola, E., Ricci, P. and Aliabadi, M.H. (2007). Free 

vibration analysis of axially loaded cracked 

Timoshenko beam structures using the dynamic 

stiffness method. Journal of Sound and Vibration, 

304: 124-153. 

10. Ruotolo, R. and Surace, C. (2004). Natural 

frequencies of a bar with multiple cracks. Journal of 

Sound and Vibration, 272: 301-316. 

11. Lee, J. (2009). Identification of multiple cracks in 

a beam using natural frequencies. Journal of Sound 

and Vibration, 320: 482-490. 

12. Nandakumar, P. and Shankar, K. (2014). Multiple 

crack damage detection of structures using the two-

crack transfer matrix. Structural Health Monitoring, 

13(5): 548–561. 

13.Neves, A.C., Simões, F.M.F. and Pinto da Costa, 

A. (2016). Vibrations of cracked beams: Discrete mass 

and stiffness models. Computers and Structures, 168: 

68–77. 

14. Sinha, J.K., Friswell, M.I. and Edwards, S. (2002). 

Simplified models for the location of cracks in beam 

structure using measured vibration data, Journal of 

Sound and Vibration, 251: 13-38. 

15. Patil, D.P. and Maiti, S.K. (2005). Experimental 

verification of a method of detection of multiple 

cracks in beams based on frequency measurements. 

Journal of Sound and Vibration, 281: 439-451. 

16.Nandakumar, P. and Shankar, K. (2015). Structural 

crack damage detection using transfer matrix and state 

vector. Measurement, 68: 310–327. 



Volkan Kahya and Sebahat Karaca 

7 

17. PULSE (2006). Analyzers and Solutions, Release 

11.2. Bruel and Kjaer, Sound and Vibration 

Measurement A/S, Denmark. 

18.OMA (2006). Operational Modal Analysis, Release 

4.0. Structural Vibration Solution A/S, Denmark. 

19. Ewins, D.J. (1995). Modal Testing: Theory and 

Practice, John Wiley & Sons, Inc, New York.

 

 


