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Gözenekli Ortamda Kayma İnceltmeli Akışkan Akışının Fraktal 
Analizi 

Özet  

Newtonian, üs kanunu, Ellis ve Bingham akışkanlarının dolgulu yataklarda hacimsel debilerinin ve 

geçirgenliklerinin hesaplanması için fraktal modeller, kıvrımlı kanalların fraktal doğası göz önünde 

bulundurularak geliştirilmiştir. Newtonian ve Newtonian olmayan akışkanlar için fraktal geçirgenlik modeller, 

kıvrımlılığ ın fraktal boyutuna, gözenek alanının fraktal boyutuna, taneciklerin ve kümelerin büyüklüğüne, etkin  

gözeneklilige ve Newtonian olmayan akış davranışına bağlı olduğu bulunmuştur. Basıncın fonksiyonu olarak 

herbir akışkanın hacimsel debisi hem yakınsaklık-ıraksaklık yaklaşımından hem de modellerin birbiriy le 

kıyaslanması için geliştirilen ifadeden hesaplanmıştır. Dahası, hidrolik temaslılık fraktal ölçeklendirme 

parametresi cinsinden ayrıca elde edilmiştir. Üs kanunu ve Ellis akışkanlarını da içine alan kayma inceltmeli 

akışkanların hacimsel debileri kıvrımlık fraktal boyutunun artmasıyla azalmaktadır. Newtonian ve Ellis akışkanları 

için fraktal kılcal model, incelenen kıvrımlılık fraktal boyut değerleri için, yakınsaklık-ıraksaklık kanal yaklaşımı 

ile uyumlu olduğu bulunmuştur.  

Anahtar kelimeler: Kayma inceltmeli akışkan, Gözenekli ortamlar, Dolgulu yatak, Geçirgenlik, Fraktal modelleme. 

1. Introduction 

 
The flow of fluids through porous media is of 

great practical importance in many diverse 
applications, including the production of oil and 
gas from geological structures, the gasification of 
coal, the retorting of shale oil, filtration, ground 
water movement, regenerative heat exchange, 
surface catalysis of chemical reactions, 
adsorption, coalescence, dying ion exchange, and 
chromatography. Some applications mentioned 
above involve two or even three fluids, and 
multidimensional and unsteady flows. Attention 
here will be confined to steady one-dimensional 
flow of a single fluid relative to a fixed solid 
phase. In some applications, the details of 
volumetric flow rate and thus velocity field are of 
concern. 

In recent years there has been considerable 
interest shown in the flow of a non-Newtonian 
fluid in porous media. A lot of liquids 

encountered in daily life such as most of 
polymeric liquids, milk, blood and some oil 
products and their derivative are non-Newtonian. 
Therefore, the flows of non-Newtonian fluids in 
porous media are important and have several 
applications including oil recovery, composite 
material processing and polymer processing. The 
creeping flows of Newtonian fluids in porous 
media such as granular media or packed bed have 
been studied for several years and have good 
constitutive equations namely Darcy’s law, the 
Ergun equation and Blake-Kozeny equation. 
However, the mentioned constitutive equations 
are not applicable for non-Newtonian fluids or do 
not give as good results for non-Newtonian fluid 
as Newtonian ones. 

Darcy’s law was modified by Bird et al. [1] 
and Sabiri and Comiti [2] to obtain an equation 
valid for non-Newtonian fluid flows in porous 
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media. The majority of these models have been 
derived using the bundle-of-tube approximation 
employed in the Blake-Kozeny model. 

The Saffman-Taylor instability of air 
invasion into a non-Newtonian fluid in a 
rectangular Hele-Show cell was experimentally 
studied by Eslami and Taghavi [3]. The non-
Newtonian fluid used in the experiments 
exhibited yield stress, shear-thinning as well as 
elastic behaviors. They observed that the 
Bingham number (Ba), the capillary number (Ca), 
the Weber number (We), the Weissenberg 
number (Wi), the power-law index and channel 

aspect ratio ( >>1) are important parameters on 
viscous flow regimes.  

Rheological characterization of biologically 
immobilized aggregates under non-Newtonian 
flow was studied by Tijani et al. [4]. They 
concluded that the scaling relationships based on 
fractal geometry are vital for quantifying the 
effects of different laminar conditions on the 
aggregates’ morphology and characteristics such 
as density, porosity and projected surface area. 

The viscous fingering instability of miscible 
displacement involving a viscoelastic fluid was 
investigated by Shokri et al. [5] using both linear 
stability analysis and computational fluid 
dynamics. They observed that the elasticity has a 
significant effect on the fingering instability and 
the flow was more stabilized when elasticity 
(Weissenberg number) of the displaced or 
displacing viscoelastic fluid was increased. 

As stated previously, flows of non-
Newtonian fluids in porous media have been 
studied for several years. Balhoff and Thompson 
[6] developed a macroscopic model for the flow 
of power-law and Ellis fluids in packed beds using 
results from the network model based on the 
functionality of flow in capillary tubes. The model 
is in general similar to those developed using the 
bundle-of-tubes approach. They claimed that a 
developed bundle-of-tubes model cannot be 
properly used for a wide variety of shear-thinning 
fluids.  

Chhabra et al. [7] published a review paper 
on the flow of rheologically complex fluids 
through unconsolidated fixed beds and fluidized 
beds. They critically evaluated the prediction of 
macro-scale phenomena of flow regimes, pressure 
drop in fixed and fluidized beds, minimum 

fluidization velocity, dispersion and liquid-solid 
mass transfer. 

On the other hand, Yu and Liu [8] developed 
the fractal-phase permeability and the relative 
permeability based on the fractal nature of pores 
in the media. Both the fractal-phase permeability 
and the relative permeability were found to be a 
function of the tortuosity fractal dimension, the 
pore-area fractal dimension, the phase fractal 
dimension and microstructural parameters. In 
another study a fractal permeability model based 
on the fractal characteristics of pores was 
developed for bi-dispersed porous media by Yu 
and Cheng [9].  

The flowrate of non-Newtonian fluids 
depends on the pressure drop, rheological 
properties of the fluid, and geometry of the duct. 
It may be possible to develop complicated 
empirical correlations using these variables and 
data obtained from CFD modeling. Shear-
thinning behavior, viscoelasticity, yield stress, 
time-dependency etc. are features for the most of 
non-Newtonian materials. However, some of 
these features such as time-dependent viscosity, 
yields stress etc. are seldom measured. The 
development of simple and reliable methods for 
predicting flowrates of power-law, Ellis and 
Bingham fluids flowing through packed beds has 
been subject for many researchers. 

As expressed earlier, Balhoff and Thompson 
[6] developed approximate equations specific to 
the flow of shear-thinning fluids in ducts that are 
representative of throats in the network. They also 
indicated that some drawbacks exist in the 
approach of the capillary networks. In theory each 
throat could be transformed into a unique 
capillary tube and the resulting capillary network 
could be used to properly model flow for that 
specific power-law fluid although this may seem 
like a reasonable approach, several problems exist 
with method proposed by Balhoff and Thompson 
[6]. 

There is no guarantee that the same capillary 
network could be used for another power-law 
fluid with different rheological properties. 

An entirely new capillary network would 
have to be developed to model the flow of other 
non-Newtonian fluids since the capillary network 
could not be used for non-Newtonian fluid models 
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such as Bingham and Herschel-Bulkly models 
and others. 

In many situations, it is highly desirable to 
obtain closed-form equations analogous to 
Darcy’s law to predict the volumetric flow rate of 
non-Newtonian fluids in porous media. 

Therefore, the goal in this study is to develop 
closed-form equations analogous to Darcy’s law 
to predict the flow rates and permeabilities for 
non-Newtonian fluids in porous media. The 
fractal capillary expressions are developed based 
on the fractal nature of tortuous capillaries for the 
volumetric flow rates and permeabilities for 
Newtonian, power-law and Ellis fluids. The 
computed flow rates from the present model for 
the considered fluids are compared to theoretical 
work and data available in the literature and a 
good agreement for some fluid models is found. 

 

2. Theoretical 

 
Many polymers and suspensions are non-

Newtonian, exhibiting shear-dependent viscosity. 
Therefore, in this subsection it will be given some 
information regarding models of non-Newtonian 
fluids that are commonly used in the porous media 
or any other engineering field. The most 
successful attempts at describing the steady 
stress-shear rate behavior of non-Newtonian 
fluids have been largely empirical. It would be 
much more satisfying if one could derive these 
functions from theories based on molecular 
structure, but most of the materials of greatest 
interest are extremely complex and generally 
inadequate for describing real behavior. Hence, at 
present observations represent the most reliable 
source of rheological information. The following 
represents some of the more common empirical 
models which have been utilized to represent the 
various classes of observed non-Newtonian 
behavior. 
 
Power-law model 

The relationship between shear stress-shear 
rate for a power-law fluid is given by  
 

 
1


n

m  and 
1


n

m      

 

where n is power-law index, m  consistency index 

and   shear dependent viscosity of power-law 

fluid. The power-law model is the most widely 
used of any model, since it is relatively easy to 
incorporate into analytical solutions to flow 
problems, and it can be made to fit almost any data 
over a limited range of shear rate. In the model the 
viscosity is also given above. The model predicts 

that vs  is straight line on the double 

logarithmic plot. If the shear rate does not vary 
widely over a particular flow field, the power-law 
may provide an adequate description of shear 
behavior. However, it has two serious drawbacks. 
For constant values of n and m, it predicts 
unlimited increasing or decreasing apparent 
viscosity with shear rate; and it predicts either 
zero or infinite values in the limit of vanishing 
shear rate for n greater or less than 1, respectively. 
This, of course, is not observed in real fluids. 

The volumetric flow rate for the power-law 
fluid can be obtained by integrating the velocity 
expression the z-direction with respect to r on the 
cross-sectional area of the capillary as follows: 
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The volumetric flow rate equation for the 

flow of a power-law fluid through a tortuous 
capillary tube can be written in the form of Eq. 
(1). As can be seen from the above equation the 
flow rate of a power-law fluid must be 
proportional to the pressure gradient to the power 

of
1/1/ ( ( / ) )nn q dp dz  for a capillary tube. Eq. 

(1) has to be valid for any capillary tube with 
slowly-varying radius along the axial direction. In 
this connection Pearson and Tardy [10] stated that 
for any geometry the flow rate of power-law fluid 
must be proportional with the pressure drop to the 

power of
1/1/ ( )nn q p .  Therefore, it can be 

said that a capillary tube must exist that produces 
some flow rate versus pressure drop as in the 
original porous medium for a fluid with 
rheological properties n and m. 
 
Ellis model 

The Ellis model uses three parameters. At 
low shear rates this model approaches Newtonian 
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behavior with a zero shear viscosity, 
0 . At high 

shear rates power-law behavior is approached 
with n corresponding to the flow index. In 
comparison to the power-law the Ellis model is 
slightly more complicated algebraically, and 
requires the measurement of an additional 
parameter. It fits data over a wider range of shear 
rate than the power-law does, and does not suffer 
from the zero shear failure, the prediction of 
infinite viscosity at zero shear rates. The Ellis 
model has been widely used in attempts to 
describe complex flow of shear-thinning fluids. 
The shear thinning fluid is defined as of the 
viscosity decreases with increasing shear rate. 

The volumetric flow rate for a non-
Newtonian fluid described by Ellis model can be 
obtained by integrating the velocity expression in 
the z-direction on the cross-sectional area of a 
capillary tube as follows: 
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 (2) 

where 
0  is the low shear viscosity,   flow 

(power) index in the Ellis model and 
21 /  

rheological parameter in the model, respectively. 
Eq. (2) gives the volumetric flow rate of the Ellis 
fluid as a function of the pressure drop, flow 
index, viscosity of fluid and radius of the capillary 
tube. As can be seen from Eq. (2) an increase in 
the pressure gradient in the sufficient level which 
is equivalent to the sufficiently high shear rate 
will make the second term in the parenthesis much 
lower as comparing to the first term, unity. 
Therefore, the first term in the parenthesis can be 
neglected and thus the equation becomes equal to 
the volumetric flow rate of power-law fluid. On 
the other hand, the low pressure gradient which is 
equivalent to the low shear rate will make the 
second term in the parenthesis much lower as 
comparing to the first term, unity. Hence the 

second term in the parenthesis can be dropped and 
thus the equation reduces to the volumetric flow 
rate of a Newtonian fluid in a capillary tube. 
 
Bingham plastic model 

One class fluids, including toothpastes, oil-
well drilling mud, sewage sludge, oil paints, 
margarines, plastic melts, aqueous suspensions of 
clay, grain and paper pulps, chocolate syrups, 
aqueous slurries of coal, peat, sand and cement 
require a finite shear stress to produce any motion. 
Such fluids are known as Bingham plastics. 

The constitutive equation for Bingham 
plastic model is given by 
 

dr

dvz
rz   0  0 rz    (3) 

0
dr

dvz  for   00   rz  

 

Where 
0 is yield stress and  is effective 

viscosity for absolute values of the shear stress in 
excess of the yield stress. The arbitrary sign 

preceding 
0  in Eq. (3) is chosen to be the same 

as the actual sign of
rz . Thus if 0rz  , the plus 

sign is chosen, and vice versa. A Bingham plastic 

does not flow below a certain yield stress 0. 
When this stress is exceeded, the structure 
disintegrates and the material behaves like a 
Newtonian fluid.  

The volumetric flow rate for Bingham fluid 
in a capillary tube consists of the volumetric flow 
rate obtained by integrating the r-dependent 
velocity expression with respect to r over the 

cross-sectional area between 0r  and R  plus the 

flow rate obtained by use of the constant velocity 
multiplied with the corresponding cross-sectional 
area. Therefore, the volumetric flow rate for a 
non-Newtonian fluid described by Bingham 
plastic model is obtained as follows: 
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The obtained volumetric flow rate equations 

for Newtonian and non-Newtonian fluid flows 
through a straight capillary tube can be expressed 

in terms of the fractal scaling parameters. In order 
to express volumetric flow rate equations in terms 
of the fractal scaling parameters, the brief 
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information regarding to the fractal scaling law is 
necessary to be given here. Hence the fractal 
scaling law is briefly explained in the following 
section. 

 

3. Fractal Theory for Porous Media 

 
A porous medium having various pore sizes 

can be considered as a bundle of tortuous capillary 
tubes with variable cross-sectional areas. Let the 

diameter of a capillary in the medium be 
its tortuous length along flow direction be ( )L  . 

The tortuous nature of capillary requires that

0( )L L  , with
0L  being straight length. For a 

straight capillary, 
0( )L L  . The relationship 

between the diameter and length of capillaries is 
given by [9] 
 

TT DD
LL




1

0         (5) 

 

where 
TD  is the tortuosity fractal dimension, 

with 1 2TD  , representing the extent of 

convolutedness of capillary pathways for fluid 
flow through a medium. The limiting case of

2TD  , corresponds to a highly tortuous line that 

fills a plane and Eq. (5) diverges as 0  , which 
is one of the properties of fractal line [8,9]. 

Since the pores in porous media are 
analogous to the islands or lakes on earth or spots 
on engineering surfaces, the cumulative size-
distribution of pores or islands should also follow 
the same fractal scaling law. Therefore, a number 

of islands or pores whose size is larger than   is 
given [6 and references therein] by 
 

fD

LN 












 max)(      (6) 

 
and derivative of Eq. (6) is 
 

 
 dDdN ff DD

f

1

max


     (7) 

 

where fD  is the pore-area fractal dimension 

having values between 1 and 2 in two dimensional 
space. The negative sign in Eq. (7) implies that the 

island or pore population decreases with the 

increase of island or pore size and 0dN  . The 
number of pores from Eq. (6) becomes infinity as 

0  , which is one of the properties of fractal 
objects. The total number of pores, islands or 

spots, from the smallest diameter 
min to the 

largest diameter
max , can be obtained from Eq. 

(6) as 
 

fD

t LN 



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




min

max)(



      (8) 

 
Dividing Eq.(7) by (8) yields 
 

     dfdD
N

dN
ff DD

f

t


 1

min   (9) 

where    1

min


 ff DD

fDf   is the 

probability density function which satisfies 
following condition  
 

  0f         (10) 

 
As in the probability theory, the probability 

density function ( )f  , should also satisfies the 

following relationship. 
 

    1 










dfdf
max
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    (11) 

However, substituting the probability density 
function into Eq. (11) and performing integration 
yields 
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  (12) 

 
Therefore, Eq. (11) satisfies if and only if  
 

0
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min 





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
fD




       (13) 

 

Eq. (13) implies that min max   must be 

satisfied for fractal analysis of a porous medium; 
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otherwise the porous medium is a non-fractal 
medium. Thus, Eq. (13) can be considered as a 
criterion whether a porous medium can be 
characterized by fractal theory and technique. In 

general 
2

min max/ 10   in porous media and Eq. 

(13) holds approximately. Therefore, the fractal 
theory and technique can be used to analyze 
properties of porous media in which the condition 

of 
2

min max/ 10   is satisfied. 

 

4. Fractal Permeability for non-Newtonian 

Fluid Flowing in Capillary Tube 

 
Consider a unit cell consisting of a bundle of 

tortuous capillary tubes with variable cross-

sectional areas. The volumetric flow rate, Q , 
through the unit cell is a sum of the flow rates 
through all the individual capillaries. The 
volumetric flow rate of a power-law fluid flowing 
through a single capillary tube is given by Eq. (1) 

that can be modified by taking dp p   , 

( )dz L  and 2R   for a single tortuous 
capillary tube as follows: 
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  (14) 

 

capillary tube, m is consistency index in power-
 

the length of the tortuous capillary tube. 
The volumetric flow rate of a Newtonian fluid 
flowing through a single tortuous capillary tube is 

recovered from Eq. (14) by taking 1n   and 
m   as follows: 
 

 
 







L

P
q

4

128


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      (15) 
 

The total volumetric flow rate, Q , for either 
a non-Newtonian fluid or a Newtonian fluid can 
be obtained by integrating the individua l 

volumetric flow rate, ( )q  , over the entire range 

of pore sizes from the minimum pore min
 to the 

maximum pore max
 in a unit cell. The total 

volumetric flow rate equation for a power-law 
fluid in a unit cell can be obtained from Eqs. (5), 
(7) and (14) as follows: 
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Integrating Eq.(16) yields the total 
volumetric flow rate of a power-law fluid in a unit 
cell as follows: 
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Since
1 2TD 

, 
1 2fD 

 and0 1n  , in 

any case exponent 
3 / 0T fD n D  

 and 
2

min max/ 10  
 is criterion for typical fractal  

geometry. Therefore, the inside of the second 
bracket is approximately equal to 1. 
Consequently, the total volumetric flow rate of a 
power-law fluid become
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Note that the total volumetric flow rate of a 
Newtonian fluid is recovered from Eq. (18) by 

taking 1n   and m  as follows: 

T
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  (19) 
The permeability expressions for a power-law 
fluid and a Newtonian in the porous medium are 
obtained using Darcy’s law as follows: 
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In this equation MK
 is the permeability for a 

power-law fluid that is a function of the pore-area 

fractal dimension, fD
, the tortuosity fractal 

dimension, TD
, the power-law index, n , and the 

structural parameters, 0,A L
and max

. The 
permeability expression for a Newtonian fluid 
flowing through porous medium is again 

recovered from Eq. (20) by taking 1n   and 

m  as follows: 
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Eq. (21) had been derived by Yu and Cheng 
[8, 9] for a Newtonian in a porous unit cell. Eq. 
(21) points out that the permeability for a 
Newtonian fluid is a function of the pore-area 

fractal dimension, fD
, the tortuosity fractal 

dimension, TD
 and the structural parameters, 

0,A L
and max

.If the tortuous capillary tube is 

considered to be a straight capillary tube ( TD
 =1), 

the Eqs. (18) and (20) reduce to the following 
equations, respectively. 
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The above equations for the Newtonian case 
become 
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Eqs.(18)-(25) indicate that the volumetric 
flow rate and permeability for power-law fluids 
and Newtonian fluids are very sensitive to the 

maximum pore size max
. Eqs. (22) and (23) point 

out that the effects of process variables on the 
volumetric flow rate and permeability for a 
power-law fluid. The larger pore diameter and 

pore-area fractal dimension fD
, the larger 

volumetric flow rate and permeability value. If it 
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is assumed that the consistency index, m , is 
constant while the power-law index changes, the 
larger power-law index having value between 0 
and 1, the larger volumetric flow rate and 
permeability value. From Eqs. (22)–(25) it can be 
seen that the volumetric flow rate and 
permeability for  power-law and Newtonian fluids 
will reach possible maximum values as the pore-
area fractal dimension approaches its possible 
maximum value of 2 since those quantities, as 
stated earlier, increase with increasing pore 
diameter. The pore-area fractal dimension 

2fD 
corresponds to a smooth surface or plane 

or compact cluster [9]. This means that if it is 
considered a smooth surface or compact cluster or 
a circle or a square to be the cross-sectional area 
of a pore, the pore-area fractal dimension of the 
cross-section is 2 and the pore volume fraction of 
the cross-section is 1. Under such a condition the 
volumetric flow rate and permeability for both 
fluid cases take their maximum values. Hence, the 
maximum volumetric flow rate and permeability 
for a power-law fluid flowing through the unit cell 
with a single capillary tube or pore are obtained 
from Eqs. (22) and (23) as the pore-area fractal 

dimension, fD
, takes its maximum value of 2. 
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For the case of Newtonian fluids, the above 
equations reduce to the following equations. 
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where De  can be called equivalent diameter 

of a unit cell and is taken to be equal to max
. 
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     (29) 
 
Eq. (28) indicates that the present model for 

power-law and Newtonian fluids is consistent 
with the physical situation since it is exactly the 
Hangen-Poiseuille equation for a Newtonian fluid 
flow through a tube. Therefore, besides Eqs. (28)-

(29), Eq. (15) with 
1TD 

 (and thus 0L L
) can 

be used for obtaining the volumetric flow rate and 
permeability for a Newtonian fluid flow through 
the unit cell with a straight capillary tube. 
However, the volumetric flow rate equation (Eq. 
14) developed for a power-law fluid flow through 

a tube can’t be used for obtaining volumetric flow 
rate of that fluid flow through the unit cell with a 

straight capillary tube since Eq. (14) with 
1TD 

 

(and thus 0L L
) isn’t entirely equal to Eq. (26). 

The volumetric flow rate, Q , through the unit cell 
is a sum of the flow rates through all the 
individual capillaries. The volumetric flow rate of 
an Ellis fluid flowing through a single capillary 
tube is given by Eq. (2) that can be modified by 

taking dp p   , ( )dz L  and 2R  for a 
single tortuous capillary tube as follows: 
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where  is the hydraulic diameter of a single 

capillary tube, 0  is the low shear viscosity of 

Ellis Fluid,  1/ 2
 is the rheological parameter, P   

is the pressure drop and ( )L   is the length of the 
tortuous capillary tube. 

The total volumetric flow rate, Q , for either 
a non-Newtonian fluid or a Newtonian fluid can 
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be obtained by integrating the individua l 

volumetric flow rate, ( )q  , over the entire range 

of pore sizes from the minimum pore min
 to the 

maximum pore max
 in a unit cell. The total 

volumetric flow rate equation for an Ellis fluid in 
a unit cell can be obtained from Eqs. (5), (7) and 
(30) as follows: 

 

     


























 








max

min

max

min
34

4
128

21

02/1

2

max

00




















 d

L

P
D

L

P
dNqQ

fT

T

fTf

T

DD

D

DDD

fD

       (31) 
 

Integrating Eq.(31) yields the total 
volumetric flow rate of an Ellis fluid in a unit cell 
as follows:
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Since 
1 2TD 

 and 
1 2fD 

, in any 

case exponent
3 0T fD D  

 and

3 0T fD D  
 and 

2

min max/ 10  
is 

criterion for typical fractal geometry. Therefore, 

the ratio of min max/ 
 is negligible in the above 

equation. In other words, the insides of the 
parentheses are approximately equal to 1. 
Consequently, the total volumetric flow rate of an 
Ellis fluid becomes 
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The permeability expressions for an Ellis 
fluid in the porous medium are obtained using 
Darcy’s law as follows: 
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K  is the permeability for an Ellis fluid that 
is a function of the pore-area fractal dimension, 

fD
, the tortuosity fractal dimension, TD

, the 

flow index,  , rheological parameter, 1/ 2
, and 

the structural parameters, 0,A L
and max

. If the 
tortuous capillary tube is considered to be a 

straight capillary tube ( TD
=1), the Eqs. (33) and 

(34) reduce to the following equations, 
respectively. 

 



Fractal Analysis of Shear-thinning Fluid Flow through Porous Media 

 

10 

 

 
   























 











1

02/1

max

00

4

max

433

44
1

4128











L

P

D

D

D

D

L

P
Q

f

f

f

f

             (35)

 
   























 









1

02/1

max

4

max

433

44
1

4128











L

P

D

D

D

D

A
K

f

f

f

f

                (36) 
 

Eqs.(33)-(36) indicate that the volumetric 
flow rate and permeability for an Ellis fluid are 

very sensitive to the maximum pore size max
 as 

in the power-law and Newtonian fluids. Eqs. (35) 
and (36) show that the effects of process variables 
on the volumetric flow rate and permeability for 
an Ellis fluid. The larger pore diameter and pore-

area fractal dimension fD
, the larger volumetric 

flow rate and permeability value. Furthermore, 
the larger flow index, the larger volumetric flow 
rate and permeability value. Eqs. (35)–(36) 
indicate that the volumetric flow rate and 
permeability for an Ellis fluid will reach possible 
maximum values as the pore-area fractal 
dimension approaches its possible maximum 
value of 2 since those quantities, as stated earlier, 
increase with increasing pore diameter. The pore-

area fractal dimension 
2fD 

 corresponds to a 
smooth surface or plane or compact cluster [9]. 
This means that if it is considered a smooth 
surface or compact cluster or a circle or a square 
to be the cross-sectional area of a pore, the pore-
area fractal dimension of the cross-section is 2 and 
the pore volume fraction of the cross-section is 1. 
Under such a condition the volumetric flow rate 
and permeability for Ellis model take their 
maximum values. Hence, the maximum 
volumetric flow rate and permeability for an Ellis 
fluid flowing through the unit cell with a single 
capillary tube or pore are obtained from Eqs. (35) 

and (36) as the pore-area fractal dimension, fD
, 

takes its maximum value of 2. 
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Eq. (37) is exactly the same as Eq. (30) with 

1TD 
 (and thus L = L0) for the limiting values 

of  = 0, 1 and 2. Therefore, the present model is 
consistent with the physical situation. Hence, 

besides Eqs. (37)-(38), Eq. (30) with 
1TD 

 (and 
consequently L = L0) can be used for obtaining 
the volumetric flow rate and permeability for an 
Ellis fluid flow through the unit cell with a straight 

capillary tube as   takes the values of 0, 1 and 2. 
Eq. (30) can’t be used for obtaining volumetric 
flow rate of an Ellis fluid flow through the unit 

 takes a 
value other than the values of 0, 1 and 2.  
As stated previously, the volumetric flow rate, Q, 
through the unit cell is a sum of the flow rates 
through all the individual capillaries. The 
volumetric flow rate of a Bingham fluid flowing 
through a single capillary tube is given by Eq. (4) 

that can be modified by taking dp p   , 

( )dz L  and 2R  for a single tortuous 
capillary tube as follows: 
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where   is the hydraulic diameter of a single 

capillary tube,  is the effective viscosity for 
absolute values of the shear stress in excess of the 

yield stress, 0  is the yield stress, P is the 

pressure drop and ( )L   is the length of the 
tortuous capillary tube. The total volumetric flow 

rate, Q , for either a non-Newtonian fluid or a 

Newtonian fluid can be obtained by integrating 

the individual volumetric flow rate, ( )q  , over 
the entire range of pore sizes from the minimum 

pore min
 to the maximum pore max

 in a unit 
cell. The total volumetric flow rate equation for a 
Bingham fluid in a unit cell can be obtained from 
Eqs. (5), (7) and (39) as follows: 
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Integrating Eq. (40) gives the total volumetric 
flow rate of a Bingham fluid versus pressure drop 
in a unit cell as follows: 
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Since 
1 2TD 

 and 
1 2fD 

, in any 

case exponent 
3 0T fD D  

 and
3 0fD 

 

and
3 3 0T fD D  

. By considering the 

criterion,
2

min max/ 10  
, for a typical fractal 

geometry the terms min max/ 
 with the exponents 

3 0T fD D  
and 

3 0fD 
is negligible in 

the above equation. However, as min max/ 
is 

equal to 10-2, the term min max/ 
with the 

exponents 
3 3 0T fD D  

goes to an 
unacceptable large value that can be considered as 
an unrealistic physical situation. Under the light 
of above arguments, the total volumetric flow rate 
of a Bingham fluid becomes 
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The permeability expressions for a Bingham 
fluid in the porous medium are obtained using 
Darcy’s law as follows
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K is the permeability for a Bingham that is a 

function of the pore-area fractal dimension, fD
, 

the tortousity fractal dimension, TD
,  the yield 

stress, 0 , and the structural parameters, 0,A L
, 

min
and max

. 

If the tortuous capillary tube is considered 

being a straight capillary tube ( TD
 =1), the Eqs. 

(42) and (43) reduce to the following equations, 
respectively. 
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Eqs.(44)-(45) indicate that the volumetric 
flow rate and permeability for a Bingham fluid are 

very sensitive to the maximum pore size max
as 

in the other fluid models such as the Ellis, the 
power-law and the Newtonian. Eqs. (44) and (45) 
show that the effects of process variables on the 
volumetric flow rate and permeability for a 
Bingham fluid. The larger pore diameter and pore 

fractal dimension fD
, the larger volumetric flow 

rate and permeability value. Eqs. (44) –(45) 
indicate that the volumetric flow rate and 
permeability for a Bingham fluid will reach 
possible maximum values as the pore area fractal 
dimension approaches its possible maximum 
value of 2 since those quantities, as stated earlier, 
increase with increasing pore diameter. The pore 

area fractal dimension fD
= 2 corresponds to a 

smooth surface or plane or compact cluster [9]. 
This means that if it is considered a smooth 
surface or compact cluster or a circle or a square 
to be the cross-sectional area of a pore, the pore 
fractal dimension of the cross-section is 2 and the 
pore volume fraction of the cross-section is 1. 
Under such a condition the volumetric flow rate 
and permeability for the Bingham model take 
their maximum values. Hence, the maximum 
volumetric flow rate and permeability for a 
Bingham fluid flowing through the unit cell with 
a single capillary tube or pore are obtained from 
Eqs. (44) and (45) as the pore-area fractal 

dimension, fD
, takes its maximum value of 2. 
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Eq. (46) gives totally different result from Eq. 

(39) with TD
 = 1 (and consequently L = L0) 

although identical equations for other fluid 
models give approximately similar results.  
As mentioned previously, the flow rate equation 
obtained for a Newtonian fluid flow through the 
unit cell with a straight capillary tube is the same 
as that obtained for a Newtonian fluid flow 
through a tube. For other fluid models namely the 
power-law and the Ellis models the flow rate 
equations obtained for flow through the unit cell 
with a straight capillary tube are approximately 
similar to those obtained for flow through a tube. 
Unfortunately the similar agreement between the 
two flow rate equations for flow of a Bingham 
fluid through the unit cell with a straight capillary 
tube (Eq. 46) and through a tube (Eq. 39) is not 
observed, which is clearly seen in the comparison 

of Eq. (46) and Eq. (39) with TD
= 1 (and thus 

0L L
). As can be seen from Eq. (46) the term of 

2

min max( / )  

takes a value of 104 as the ratio of 

min max/ 
takes a value of 10-2 that is used as a 

criterion whether a porous medium can be 
characterized by fractal theory and technique. 
Therefore, it can be said that the equations of the 
volumetric flow rate (Eq. 46) and permeability 
(Eq. 47) for a Bingham fluid flow through the unit 
cell with a straight capillary tube will not give the 

correct results since the term of min max/ 
could 

not be dropped from those equations completely. 
In other words, the present approach based on the 
fractal characteristics of pores in the media is not 
valid for obtaining the volumetric flow rate of the 
Bingham fluid and thus permeability. 

 

5. Volumetric Flow Rates with Hydraulic 

Conductivity in a Single Tortuous Capillary 

Tube 

 
Eq. (19) expressed in terms of the fractal 

scaling parameters can be used for obtaining 
volumetric flow rate of a Newtonian fluid flow in 
a single tortuous capillary tube. As expressed 
earlier the tortuosity influences the volumetric 
flow rates of non-Newtonian and Newtonian 
fluids as evidenced in Eqs. (18), (19), (33) and 
(42). On the other hands, the volumetric flow rate 
of a Newtonian fluid in a converging-diverging 
duct (see Fig. 1) is given by Balhoff and 
Thompson [6]. 
 

P
g

q 
         (48) 

 

where P stands for the pressure drop along the 
converging-diverging duct, µ the viscosity of the 
Newtonian fluid and g hydraulic conductivity.  
The hydraulic conductivity for the converging-
diverging duct is given by  
 

0

4

8l

R
g

d


        (49) 
 
where Rd is the duct geometric constant and given 
by  
 

 680191341470
8 23

....
gl

R RRRd 







 

  (50) 
 

which was numerically determined by 
Balhoff and Thompson [6] where l is the pore-to-

pore distance and R  is the aspect ratio and taken 
to be 0.3. Rd is also equals to the radius of 
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capillary, R for a straight capillary tube. The 
converging-diverging duct is schematically 
shown in Fig. 1. As can be seen from the figure 
the aspect ratio is 0.3, the pore-to-pore distance is 
1 cm, the outside diameter is 0.5 cm and hydraulic 

conductivity is 6.830-5 cm3 [6]. 
One can obtain the hydraulic conductivity in 

terms of the fractal scaling parameters by 
comparing Eq. (19) with Eq. (48) as follows: 
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Figure 1. Schematic of axis-symmetric converging-

diverging duct 

 
As can be seen from Eq. (51) the hydraulic 

conductivity is independent of the fluid properties 

but dependent on the structural parameters (R,
0L

,
TD and fD  of a capillary tube or duct. The 

volumetric flow rate of a power-law fluid flow 
through the unit cell with a straight capillary tube, 
in terms of the fractal scaling parameters, is given 
by Eq. (18) and can be expressed in terms of the 
hydraulic conductivity as follows: 
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and g is given by Eq. (51).  

Eq. (48) is recovered from the above equation 
by setting n = 1 and m =  with the g given by Eq. 
(51). The volumetric flow rate of an Ellis fluid 
flow through the unit cell with a straight capillary 
tube, in terms of the fractal scaling parameters, is 
given by (33) and can be expressed in terms of the 
hydraulic conductivity as follows: 
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where g is given by Eq. (51) and E is equal to 
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The volumetric flow rate of a Bingham fluid 
flow through the unit cell with a straight capillary 
tube, in terms of the fractal scaling parameters, is 
given by (42) and can be expressed in terms of the 
hydraulic conductivity as follows: 
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The above equation can be rearranged as follows: 
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As stated previously, the term of ( min/ max)

-

2 in Eq. (54) takes a value of 104 as the ratio of 

min max/  takes the value of 10-2. Therefore, it 

can be said that the equation of the volumetric 
flow rate (Eq. 54) for a Bingham fluid flow 
through the unit cell with a straight capillary tube 
will not give the correct results since the term of 

min max/  could not be dropped from the 

equation completely. 

Here 0 is yield stress and g (hydraulic 
conductivity) is given by Eq. (51).  Yield stress 
fluids require a minimum stress to initiate flow. In 
order to correctly model flow of these fluids, the 
equation for flow must accurately predict the 
applied pressure drop that yields the flow. 

After obtaining the volumetric flow rates for 
the considered fluid models in terms of the fractal 
scaling parameters, we can also obtain an 
equation for apparent viscosity of power-law 
fluids in terms of the fractal scaling parameters 
easily. In order to obtain the apparent viscosity of 
the power-law fluid in the unit cell with a straight 
capillary tube, the strain tensor has to be 

determined. Therefore, one has to examine the 
flow of the power-law fluid flow through the unit 
cell with a straight capillary tube. The only non-
vanishing velocity gradient in the tubular flow is 

/zdv dr dvz /dr. The rate of strain tensor reduces 

to following expression [11]. 
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In tubular flow for all r, drdvz / < 0; 

therefore the absolute value of the strain rate has 

to be equal to drdvz / . Thus, from Eqs. (55) 

and (18) the strain rate in terms of the fractal 
scaling parameters for the power-law fluid can be 
written as follows: 
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and the apparent viscosity for a power-law fluid is 
given by 
 

1 n

app m         (57) 

 

where m  is the consistency index and n  the 
power-law index. Combining Eqs. (56) and (57) 
yields the apparent viscosity in terms of the fractal 
scaling parameters. 
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Eq. (58) represents the fractal expression for 
apparent viscosity of power-law fluids. This 
expression shows the influences of parameters on 
the viscosity. As can be seen from Eq. (57) the 
apparent viscosity of power-law fluids depends on 
the velocity gradient and power-law index and 
decreases with increasing the velocity gradient 
since the values of power-law index vary between 
0 and less than 1 for pseudo plastic fluids. 
Furthermore, it is well-known that the velocity 
gradient depends very much on the pressure 
gradient and size of geometry. Therefore, every 
parameter that increases the velocity gradient will 
cause the viscosity of fluid to decrease. Thus, it 
can be said that the apparent viscosity of power-
law fluids decreases with increasing the pressure 
gradient and radius of pore as seen from Eq. (58). 
On the other hand, an increase in the value of the 
tortuosity fractal dimension, DT and the length of 
pore, L0 will decrease the flow velocity in the pore 
and thus affects the viscosity of power-law fluid 
in affirmative way. In other words, a decrease in 
viscosity of a power-law fluid by increasing shear 
rate will be hindered by increasing the tortuosity 
fractal dimension and the length of pore.  

 

6. Results and Discussion  

 
Tortuosity factor can be calculated from the 

empirical equations that relate tortuosity to 
porosity in porous media. The tortuosity fractal 

dimension 
TD  can be calculated from a 

relationship between the tortuosity and structural 
parameters such as R and L0. There are the number 
of relationships between tortuosity and porosity as 
indicated by Chhabra et al. [7]. The tortuosity 
factor, T, defined as L/L0. Chhabra et al. [7] 
reported that the considerable confusion exists in 
the literature regarding the value and the meaning 
of tortuosity factor T. Some discussion and 

equations ( 2T , /T 1  and /T 1 ) 
regarding tortuosity factor are given in their 
paper. The following equation was given by 
Comiti and Renaud [12].  
 

 /1ln1 BT         (59) 

where   is the porosity and the value of 
constant B depends on the shape of packing and 
of flow particle configuration (for example, B = 

0.41 for tightly packed spheres, B = 3.2 for square 
based parallelpipedal particles of height-to-size 
ratio equal to 0.1 tightly packed in cylindrical 
column). Furthermore, Dharamadhikari and Kale 
[13] claimed that the tortuosity factor is function 
of the flow rate for polymer solutions. 

The relationship between the tortuosity 
fractal dimension and tortuosity in porous media 
is given by Yu [14]. 
 

)2/ln(
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1
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T
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In two-dimensional space the porosity for 

Fig. 1 can be obtained as follows: 
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where Vt is the total volume of the cylindrical 

cell and Vp is the volume of spherical particle in 
the two-dimensional space. The tortuosity can be 
calculated from Eq. (59) with the use of the 
obtained porosity and taking B = 0.41, and then 
the tortuosity fractal dimension can be obtained 
from Eq. (60). However, in order to obtain the 
tortousity fractal dimension one needs the radius 
and straight length of the tortuous capillary.  
Balhoff and Thompson [6] performed the FEM 
simulations on the power-law fluid in a 
converging-diverging duct. They obtained 
different dimensions for the structural parameters 
(length and radius of capillary) at each value of 
power-law index n. For instance, the structural 
parameters R and L were respectively obtained to 
be 0.106 cm and 0.731 cm for a value of n = 0.30 
while those parameters were found to be 0.097 cm 
and 0.501 cm for a value of n = 0.80, respectively. 
Note that in their study the structural parameters 
vary with power-law index to match the FEM data 
which shows the weakness of their network 
model. 

In order to compare the present model to the 
converging-diverging duct approach, the average 
values of radii and lengths used in that study are 
taken to be the radius and straight distance of 
tortuous capillary tube in the present 
investigation. Therefore, R, L0 are taken to be 
0.102 cm and 0.620 and thus the tortousity fractal 
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dimension 
TD  is found to be 1.0752 from Eqs. 

(59) and (60). 
A determined value of the tortuosity fractal 

dimension from relationships among porosity, 
tortuosity and the tortuosity fractal dimension can 

be used in Eq. (52) with n = 1 and fD  = 2, Eq. 

(52) with fD = 2 and Eq. (53) with fD = 2 to 

obtain the volumetric flow rates versus pressure 
drops for a Newtonian fluid, a power-law fluid 
and an Ellis fluid, respectively. The converging-
diverging duct can be transformed into a single 
fractal capillary with the structural parameters, R 

= 0.102 cm, L0 = 0.620 cm and 
TD = 1.0752 that 

do not vary with n for the power-law model and 
 for the Ellis model. The determined value for 

the tortuosity fractal dimension (
TD = 1.0752) is 

used in the flow rate equations to determine an 
agreement or a disagreement between the fractal 
capillary model and the converging-diverging 
duct approach. Furthermore, values of the 
tortuosity fractal dimension are varied around the 
determined value to examine how the volumetric 
flow rates for the considered fluid models change. 

In the converging-diverging duct approach 
the equation which gives the volumetric flow rate 
of power-law fluid is given as follows [6]. 
 

n/
n

n
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where g is hydraulic conductivity and equal 

to 6.8310-5 cm3 and m is consistency index and 
Rd is duct geometric constant given by Eq. (50). 
In the converging-diverging duct approach the 
volumetric flow rate of a power-law fluid as a 
function of pressure drop is calculated using Eq. 

(61) with g = 6.8310-5, m = 1 and Eq. (50). 
On the other hand, the fractal expressions are 

developed based on the fractal nature of tortuous 
capillaries in a porous media. In other words, it is 
assumed that the converging-diverging duct can 
be transformed into a single fractal capillary.  

Fig. 2 shows the volumetric flow rate of a 
Newtonian fluid versus pressure drop for various 

values of the tortuosity fractal dimension, TD  

Fig.2 is depicted using Eq. (52) with n = 1, m = 1 

and fD =2 and Eq. (61) with n = 1 for the fractal 

capillary model and the converging-diverging 
duct approach, respectively. As can be seen in Fig. 
2 the fractal capillary model and converging-
diverging duct approach are in good agreement as 
the tortuosity fractal dimension has a value 
around the determined value of 1.0752. The 
deviation between the two models for flow rate of 
a Newtonian fluid increases with increasing the 
tortuosity fractal dimension. Moreover, the 
deviation slightly increases with increasing 
pressure drop. In whole computations the 
hydraulic conductivity is taken to be equal to Eq. 
(51) in the fractal capillary model equations and 

6.8310-5 in the converging-diverging duct 
approach. In other words, the constant value of g 
= 6.8310-5 is not used in none of the fractal 
capillary model equations but the converging-
diverging duct approach. In order to compare the 
converging-diverging duct approach with the 
fractal capillary model, the volumetric flow rates 
of power-law fluids obtained from both models 
(Eq. (61) for the converging-diverging duct 
approach, and Eqs. (14) and (52) for the fractal 
capillary model) are drawn in Fig. 3, Figs. 4a and 
4b as a function of pressure drop.  
 

 
 

Figure 2. Variation of the volumetric flow rate of 

Newtonian fluids as a function of pressure drop 

 
The volumetric flow rate for a power-law 

fluid with n = 0.8 as a function of pressure drop is 
illustrated in Fig. 3. The figure is depicted using 

Eq. (52) with fD =2 and Eq. (71) for the fractal 

capillary model and the converging-diverging 
duct approach, respectively. As can be seen in the 
figure the agreement between the fractal capillary 
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model and the converging-diverging duct 
becomes better when values of the tortuosity 
fractal dimension approaches 1.0. In other words, 
the deviation between the two models becomes 
worst as values of the tortuosity fractal dimension 
go away from 1.0. Furthermore, the deviation 
between the two models is dependent on the 
pressure drop and increases with increasing 
pressure drop. Fig. 4a is sketched using Eq. (14) 

with the equivalent parameters of ( )L   (Eq. 5) 

for obtaining the volumetric flow rate of a power-
law fluid (n = 0.3) flow through a single tortuous 
capillary tube as a function of pressure drop. Fig. 

4b is depicted using Eq. (52) with fD  =2 for the 

volumetric flow rate of a power-law fluid (n = 0.3) 
through the unit cell with a straight capillary tube 
as a function of pressure drop. In both figures 
volumetric flow rates of power-law fluids versus 
pressure drop for the converging-diverging duct 
approach are computed from Eq. (61) with 
appropriate values of L and R. From the 
comparison of Figs. 4a and 4b it is clearly seen 
that the agreement between Eq. (14) and Eq. (61) 
is much better than that between Eq. (52) and Eq. 
(61). 
 

 
 

Figure 3. Variation of the volumetric flow rate of a 

power-law fluid (n = 0.8) as a function of pressure 

drop 

Consequently, the model equations 
developed for volumetric flow rates of non-
Newtonian fluid flows in the unit cell with straight 
capillary tube can’t be correctly used for 
obtaining volumetric flow rates of those fluid 
flows through a single tortuous capillary.  

The difference between Eq. (14) with 

equivalent parameters of ( )L  and Eq. (52) with 

substituting Eq. (51) comes from the term of fD

/(3+
TD /n – fD ). Therefore, the farther a value of 

power-law index from the unity, the larger 
disagreement between Eq. (14) and Eq. (52) at 

each constant value of fD  ( fD is set to be 2 in 

the present study). 
As mentioned previously those equations for 

Newtonian fluid case can be used for one another 
for obtaining flow rate as a function of pressure 
drop. 

As can be seen in the figures (Figs. 4a and 4b) 
the deviation between the two models increases 
with increasing the tortuosity fractal dimension 

TD . From the comparison of Fig. 3 and Figs. 4a 

and 4b it can be concluded that the deviation, in 
the volumetric flow rate of power-law fluids 
obtained from the fractal expression (Eq. 52) and 
converging-diverging duct (Eq. 61), for the lower 
power-law index (n = 0.3) is larger than that for 
the higher power-law index (n = 0.8). Therefore, 
it can be said that the deviation between the two 
models increases with decreasing power-law 
index, which can be evidenced by considering 
Figs. 2, 3 and 4. Fig. 4b indicates that at low 
pressure drops the flow rate of power-law fluid 
with n = 0.3 is very low relative to that of power-
law fluid with n = 0.8 at corresponding pressure 
drop. 

Ellis fluids are also examined in terms of the 
volumetric flow rates as a function of pressure 
drop to check an agreement or a disagreement 
between the two models. The volumetric flow rate 
for an Ellis fluid in the converging-diverging duct 
approach is calculated from the following 
equation. 
 



























 




1

3

210

4

3

4
1




d/ R

pg
p

g
q  (62) 

 

In this equation g, 21 / , 0  and 

to be 6.8310-5 cm3, 0.719 Pa, 4.35 Pa.s and 2.47, 
respectively. These data were experimentally 
determined by Park (see paper by Balhoff and 
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Thompson, [6]) for 0.5 % polyacrylamid 
(separan) solution. 
In the fractal capillary model the volumetric flow 
rate of Ellis fluids is calculated from Eq. (53) with 

fD = 2 and Eq. (51). For various values of flow 

(power) index, 
volumetric flow rate of Ellis fluids as a function 
of pressure drop are computed and shown 
graphically in Figs. 5, 6 and 7 in attempt to see an 
agreement or a disagreement between the two 
models. 
 

 
 
Figure 4a. Variation of the volumetric flow rate of a 

power-law fluid (n = 0.3) flow through a tortuous 

capillary tube as a function of pressure drop 

 
 
Figure 4b. Variation of the volumetric flow rate of a 

power-law fluid (n = 0.3) flow through the unit cell 

with a straight capillary tube as a function of pressure 

drop 

 
Fig. 5 is depicted for the volumetric flow rate 

of an Ellis fluid with   = 2.0 versus pressure 
drop. The figure is drawn using Eqs. (53) and (62) 

for the fractal capillary model and the converging-
diverging duct approach, respectively. As can be 
seen in the figure the good agreement between the 

two models is observed for values of 
TD around 

the determined value of 1.0 752. The deviation 
between the fractal capillary model and the 
converging-diverging duct approach for an Ellis 

fluid with   = 2.0 increases with a value of 
TD

going away from unity. As can be seen in the 
figure the volumetric flow rate of Ellis fluids 
calculated from the fractal expression is higher 
than that calculated from the converging-
diverging duct approach for all considered values 

of 
TD .  Note that flow rate equation developed 

for the unit cell with a straight capillary tube (Eq. 
53) reduces to the flow rate equation for a single 
tortuous capillary tube (Eq. 40 with equivalent 
parameters of ( )L   as flow index takes the value 

of 2. 
The volumetric flow rates of Ellis fluids 

obtained from the converging-diverging duct 
approach and the fractal capillary model with 
various values of the tortuosity fractal dimension, 
as a function of pressure drop, are depicted in Fig. 

6 for  in Fig. 7 for  = 3.0.  
The identical trend for volumetric flow rates 
versus pressure drops is observed in the three 
figures (Figs. 5, 6 and 7). Only difference between 
these figures is magnitude of the volumetric flow 
rates of Ellis fluids at the corresponding value of 
the pressure drop. In other words, the volumetric 
flow rate of Ellis fluids slightly decreases with 
increasing flow (power) index, , in the Ellis 

model at a constant value of 
TD .  

As a result, the agreement between the model 
predictions for volumetric flow rate of a 
Newtonian fluid flow through a single tortuous 
capillary tube by the proposed model and those in 
converging-diverging duct by the FEM is found 
to be good. Although not comparing to 
experimental studies, the present fractal capillary 
model developed for different fluid behaviors is 
compared with the theoretical studies that have 
already been compared to the experimental 
studies.  
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Figure 5. Variation of the volumetric flow rate of an 

Ellis fluid (  = 2.0) as a function of pressure drop 

 

 
 
Figure 6. Variation of the volumetric flow rate of an 

Ellis fluid (  = 2.47) as a function of pressure drop 

 

 
 

Figure 7. Variation of the volumetric flow rate of an 

Ellis fluid (  = 3.0) as a function of pressure drop 

 
 

7. Conclusions 

 
To derive flowrate expression for each fluid 

as a function of pressure gradient is desirable to 
easily predict amount of fluid passing through 
porous media. The fractal capillary expressions 
for calculating volumetric flow rates and 
permeabilities for Newtonian, power-law and 
Ellis fluids are developed based on the fractal 
nature of tortuous capillary. In addition, hydraulic 
conductivity has also been expressed in terms of 
fractal scaling parameters. The fractal capillary 
model is used to model the shear-thinning fluids, 
including power-law and Ellis fluids. For each 
fluid the flow rates obtained from both the 
proposed model and the converging-diverging 
duct approach supported by FEM are compared to 
one another to check the accuracy of the 
developed model. Good agreement between the 
proposed model and the converging-diverging 
duct approach is observed at the considered 
values of the tortuosity fractal dimension for 
Newtonian fluids. It is also observed that the 
volumetric flow rate and permeability for 
Newtonian, power-law and Ellis fluids are very 
sensitive to the maximum pore size. The flow 
rates and permeabilities for power-law and Ellis 
fluids depend on values of the pore-area fractal 
dimension, the tortuosity fractal dimension and 
flow indices. The flow rates of power-law fluids 
increase with increasing power-law index having 
values between 0 and less than 1.0 but decreases 
with increasing the tortuosity fractal dimension. 
On the other hand, the flow rate of Ellis fluid 
decreases with increasing both flow (power) 
index in the Ellis model and the tortuosity fractal 
dimension. It can also be concluded that the 
volumetric flow rate and permeability increase 
with increasing both pore diameter and pore-area 
fractal dimension. The good agreement between 
the developed model and the converging-
diverging duct approach for flow rates of Ellis 
fluids is obtained at the values of DT around the 
determined value for all flow indices considered 
here. It can be concluded that the fractal capillary 
model can be used to model shear-thinning fluids, 
including power-law and Ellis fluids with 
different rheological properties. 
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