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On the challenge of identifying space dependent coefficient in
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Abstract. In this study, we get over the challenge of recovering unknown space dependent coefficient in
space-time fractional diffusion equations by means of fractional scaling transformations method. Fractional
differential equation is given in the sense of the conformable fractional derivative having substantial
properties. By these properties and fractional scaling transformations method the fractional problem is
reduced into integer order problem which allows us to tackle the problem better. Then we establish the
solution and unknown coefficient of the reduced problem. Later, by employing inverse transformation,
the solution and unknown coefficient of the fractional problem are obtained. Finally, some examples are
presented to illustrate the implementation and effectiveness of the method.

1. Introduction

Last couple of decades fractional differential equations play a significant role in modelling of various
processes. As a result, they attract growing attention of many scientists in diverse branches of sciences
such as engineering, mathematics, chemistry and physics [1–8]. Consequently, numerous analytical and
numerical methods have been utilized to construct solutions of mathematical problems including fractional
differential equations [9–15].
Therefore, identification of unknown coefficients in fractional differential equations with or without ad-
ditional measured data becomes one of the trend challenges in inverse problems [16–18]. Hence, many
researchers in various research areas have been developing new methods to tackle with this kind of inverse
problems including fractional derivatives [16–20].
In this research, our focus is on establishing space dependent diffusivity coefficient and the solution of the
mathematical problem including space-time fractional diffusion equation by means of fractional scaling
transformation methods. The main advantage of this method is that it turns fractional order differential
equations into integer order differential equations which makes the problem easier to tackle with. We
remark that this method works out for the fractional differential equations in the sense of conformable
fractional derivative. The main goal in this article is to reveal the unknown coefficient of the following
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governing space-time fractional diffusion equation:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)) + f (x, t), 0 < x < x1, 0 < t < t1, 0 < α, β ⩽ 1, (1)

where u(x, t) and k(x) > 0 represent the temperature and thermal diffusivity, respectively. Associated to (1)
the prescribed initial condition is

u(x, 0) = φ(x), 0 ⩽ x ⩽ x1, (2)

and the prescribed Dirichlet boundary conditions are

Dβxu(0, t) = 0, 0 < t ⩽ t1, (3)

u(x1, t) = 1(t), 0 < t ⩽ t1, (4)

with additional condition

u(x, t1) = E(x), 0 < x ⩽ x1. (5)

Having the condition k(x) > 0 makes the problem (1)-(5) well-posed.

2. Preliminaries

Definition 1. [21] Given a function f : [0,∞) → R. Then the conformable fractional derivative of f of
order α is defined by

Tαt ( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

, (6)

for all t > 0, αϵ(0, 1).
Theorem 2. [21] Let αϵ(0, 1] and f be α-differentiable at a point t > 0. Then Tαt f (t) = t1−α f ′(t).
Theorem 3. [21] Let αϵ(0, 1] and f , 1 be α-differentiable at a point t > 0. Then,
i)Tα(a f + b1) = aTα( f ) + bTα(1) for all real constant a, b,
ii)Tα(tp) = ptp−α for all pϵR,
iii)Tα( f1) = f Tα(1) + 1Tα( f ),
iv)Tα( f

1
) = 1T

α( f )− f Tα(1)
12 ,

v)Tα(λ) = 0, for all constant functions f (t) = λ.
Definition 4. [21] Let αϵ(n,n + 1],nϵN and f be an α-differentiable at t where t > 0, then the conformable
fractional derivative of f of order α is defined as

Tαt ( f )(t) = lim
ε→0

f (n)(t + εtn+1−α) − f (n)(t)
ε

, (7)

where f is n-differentiable at t > 0.
Definition 5. [21] The conformable α-fractional integral of a function f is defined by

Iαt ( f )(t) =

t∫
0

f (x)
x1−α dx, αϵ(0, 1). (8)

Theorem 6. [21, 22] Let a ⩾ 0 and α ∈ (0, 1). Also, let f : (a, b) → R be a continuous function such that Iα
exist, then for all t > a, we have

Tαt (Iαt ( f )(t)) = f (t), t ≥ 0, (9)
Iαt (Tαt ( f )(t)) = f (t) − f (a). (10)
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3. Analysis of the new fractional derivative

By means of the following fractional scaling transformations

X =
xβ

β
,T =

tα

α
,u(x, t) = V(X,T), (11)

the problem (1)-(5) is converted to into the following integer order problem

VT = (k(X)VX)X + f (X,T), 0 < X <
xβ1
β
, 0 < T <

tα1
α
, (12)

with initial conditions

V(X, 0) = φ(X), 0 < X ⩽
xβ1
β
, (13)

and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽
tα1
α
, (14)

V(
xβ1
β
,T) = 1(T), 0 < T ⩽

tα1
α
, (15)

and additional condition

V(X,
tα1
α

) = E(X), 0 < X ⩽
xβ1
β
. (16)

After establishing the solution and unknown coefficient of problem (12)-(16), by employing inverse trans-
formation we obtain the solution u(x, t) and an unknown diffusivity coefficient k(x).

4. Illustrative Examples

In this section, we illustrate three examples of inverse problems about determination of unknown space
dependent coefficient.
Example 1. Consider the inverse coefficient problem involving space-time fractional differential equations
[23, 24]:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)), 0 < x < β
1
β , 0 < t < α

1
α , (17)

u(x, 0) =
x3β

β3 , 0 ⩽ x ⩽ β
1
β , (18)

Dβxu(0, t) = 0, 0 < t ⩽ α
1
α , (19)

u(β
1
β , t) = exp(t), 0 < t ⩽ α

1
α , (20)

u(x, α
1
α ) =

x3β

β3 exp(1), 0 ⩽ x ⩽ β
1
β . (21)
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By taking fractional scaling transformation methods into account the problem (17)-(21) turns into following
integer order problem:

VT = (k(X)VX)X, 0 < X < 1, 0 < T < 1, (22)

with initial conditions

V(X, 0) = X3, 0 < X ⩽ 1, (23)

and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽ 1, (24)

V(1,T) = exp(T), 0 < T ⩽ 1, (25)

and additional condition

V(X, 1) = X3exp(1), 0 < X ⩽ 1. (26)

This inverse problem have the solution V(X,T) = X3exp(T) and unknown diffusivity coefficient becomes
k(X) = 1

12 X2 . As seen from Figs.1-4, by means of inverse transformation the solution of problem (17)-(21)
and unknown diffusivity coefficient are obtained in the following form respectively.

u(x, t) =
x3β

β3 exp(
tα

α
) (27)

and

k(x) =
1
12

x2β

β2 . (28)

Moreover, the values of exact and approximate solutions of problem (17)-(21) at t = 0.8 for different values
of orders of α and β are presented in Table 1.

Table 1: The table of exact and approximate solutions of Ex. 1 at t = 0.8 .

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

x Exact β = 1 β = 1 β = 1 β = 0.9 β = 0.9 β = 0.9

0.2 0.01780 0.01780 0.01780 0.02276 0.03958 0.04414 0.05060

0.4 0.14243 0.14243 0.15883 0.18209 0.25720 0.28680 0.32881

0.6 0.48072 0.48072 0.53605 0.61457 0.76863 0.85710 0.98264

0.8 1.13948 1.13948 1.27063 1.45675 1.67129 1.86366 2.13664

1 2.22554 2.22554 2.48171 2.84522 3.05287 3.40426 3.90290
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Figure 1: The graphics of exact and approximate solution for k(x) in Ex. 1 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 2: The graphics of exact solution for u(x, t) in Ex. 1 .
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Figure 3: The graphics of approximate solution for u(x, t) with α = 1 and β = 1 in Ex. 1 .
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Figure 4: The graphics of approximate solution for u(x, t) with α = 0.9 and β = 0.9 in Ex. 1 .
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Example 2. Consider the inverse coefficient problem involving space-time fractional differential equa-
tions [23, 24]:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)), 0 < x < β
1
β , 0 < t < α

1
α , (29)

u(x, 0) =
x2β

β2 exp
(xβ
β

)
, 0 ⩽ x ⩽ β

1
β , (30)

Dβxu(0, t) = 0, 0 < t ⩽ α
1
α , (31)

u(β
1
β , t) = exp(1 +

tα

α
), 0 < t ⩽ α

1
α , (32)

u(x, α
1
α ) =

x2β

β2 exp
(xβ
β
+ 1
)
, 0 ⩽ x ⩽ β

1
β . (33)

By taking fractional scaling transformation methods into account the problem (29)-(33) turns into following
integer order problem:

VT = (k(X)VX)X, 0 < X < 1, 0 < T < 1, (34)

with initial conditions

V(X, 0) = X2exp(X), 0 < X ⩽ 1, (35)

and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽ 1, (36)

V(1,T) = exp(1 + T), 0 < T ⩽ 1, (37)

and additional condition

V(X, 1) = X2exp(X + 1), 0 < X ⩽ 1. (38)

This inverse problem have the solution V(X,T) = X2exp(X+T) and unknown diffusivity coefficient becomes
k(X) = X2

−2X+2
X2+2X . As seen from Figs.5-8, by means of inverse transformation the solution of problem (34)-(38)

and unknown diffusivity coefficient are obtained in the following form respectively.

u(x, t) =
x2β

β2 exp
(xβ
β
+

tα

α

)
(39)

and

k(x) =
x2β
− 2βxβ + 2β2

x2β + 2βxβ
(40)

Moreover, the values of exact and approximate solutions of problem (28)-(32) at t = 0.8 for different values
of orders of α and β are presented in Table 2.
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Table 2: The table of exact and approximate solutions of Ex. 2 at t = 0.8.

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

x Exact β = 1 β = 1 β = 1 β = 0.9 β = 0.9 β = 0.9

0.2 0.10873 0.10873 0.12125 0.13901 0.19686 0.21952 0.25168

0.4 0.53122 0.53122 0.59236 0.67913 0.85941 0.95833 1.09870

0.6 1.45987 1.45987 1.62791 1.86636 2.20967 2.46401 2.82492

0.8 3.16994 3.16994 3.53481 4.05257 4.56313 5.08836 5.83369

1 6.04965 6.04965 6.74598 7.73410 8.34642 9.30711 10.67038

Figure 5: The graphics of exact and approximate solution for k(x) in Ex. 2 .
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Figure 6: The graphics of exact solution for u(x, t) in Ex. 2 .
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Figure 7: The graphics of approximate solution for u(x, t) with α = 1 and β = 1 in Ex. 2.
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Figure 8: The graphics of approximate solution for u(x, t) with α = 0.9 and β = 0.9 in Ex. 2 .
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Example 3. Consider the inverse coefficient problem involving space-time fractional differential equa-
tions [23, 24]:

Dαt u(x, t) = Dβx(k(x)Dβxu(x, t)) + (x2
− 4x)exp(t),

0 < x < β
1
β , 0 < t < α

1
α , (41)

u(x, 0) =
x2β

β2 , 0 ⩽ x ⩽ β
1
β , (42)

Dβxu(0, t) = 0, 0 < t ⩽ α
1
α , (43)

u(β
1
β , t) = exp(t), 0 < t ⩽ α

1
α , (44)

u(x, α
1
α ) =

x2β

β2 exp(1), 0 < x ⩽ β
1
β . (45)

By taking fractional scaling transformation methods into account the problem (41)-(45) turns into following
integer order problem:

VT = (k(X)VX)X, 0 < X < 1, 0 < T < 1, (46)

with initial conditions

V(X, 0) = X2, 0 < X ⩽ 1, (47)
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and the prescribed Dirichlet boundary conditions are

VX(0,T) = 0, 0 < T ⩽ 1, (48)

V(1,T) = exp(T), 0 < T ⩽ 1, (49)

V(X, 1) = X2exp(1), 0 < X ⩽ 1, (50)

This inverse problem have the solution V(X,T) = X2exp(T) and unknown diffusivity coefficient becomes
k(X) = X . As seen from Figs.9-12, by means of inverse transformation the solution of problem (34)-(38) and
unknown diffusivity coefficient are obtained in the following form respectively

u(x, t) =
x2β

β2 exp(
tα

α
) (51)

and

k(x) =
xβ

β
. (52)

Moreover, the values of exact and approximate solutions of problem (41)-(45) at t = 0.8 for different values
of orders of α and β are presented in Table 3.

Table 3: The table of exact and approximate solutions of Ex. 3 at t = 0.8.

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

x Exact β = 1 β = 1 β = 1 β = 0.9 β = 0.9 β = 0.9

0.2 0.08902 0.08902 0.09927 0.11381 0.15164 0.16909 0.19386

0.4 0.35609 0.35609 0.39707 0.45523 0.52803 0.58881 0.67505

0.6 0.80119 0.80119 0.89341 1.02428 1.09553 1.22162 1.40056

0.8 1.42435 1.42435 1.58829 1.82094 1.83871 2.05035 2.35067

1 2.22554 2.22554 2.48171 2.84522 2.74758 2.05035 3.51261
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Figure 9: The graphics of exact and approximate solution for k(x) in Ex. 3 .
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Figure 10: The graphics of exact solution for u(x, t) in Ex. 3 .
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Figure 11: The graphics of approximate solution for u(x, t) with α = 1 and β = 1 in Ex. 3 .
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Figure 12: The graphics of approximate solution for u(x, t) with β = 0.9 in Ex. 3 .
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5. Conclusion

In this study, we tackle with the challenge of constructing the solution and unknown space dependent
coefficient of space-time fractional diffusion equations by utilizing fractional scaling transformation method.
This method enable us to reduce the problem into integer order inverse problem which gives us the
opportunity to cope with easier problem. Then, taking the inverse transformation into account, the solution
and the unknown coefficient are recovered. The outcomes illustrate that this method works better for the
fractional problems in the sense of conformable fractional derivative. Future work will be concerned with
the construction of the unknown parameter in space-time fractional differential equations with various
boundary conditions.
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