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Conformal Generic Riemannian Maps from Almost Hermitian
Manifolds

Şener Yanan

Adıyaman University, Faculty of Arts and Science, Department of Mathematics, Adıyaman, TURKEY

Abstract. In the present paper, the notion of conformal generic Riemannian maps from almost Hermitian
manifolds onto Riemannian manifolds is defined. Examples for this type conformal maps are given. The
concept of pluriharmonic map is used to get conditions defining totally geodesic foliations for certain
distributions and being horizontally homothetic map on the base manifold.

1. Introduction

The notion of submersion was introduced by O’Neill [10] and Gray [6]. Then, this notion was
widely studied [4] and new kind of Riemannian submersions like invariant submersion, anti-invariant
submersion, slant submersion, generic submersion were introduced [1, 2, 11–13]. Riemannian maps be-
tween Riemannian manifolds are generalization of isometric immersions and Riemannian submersions
[4–6, 10]. Let F : (M1, 11) −→ (M2, 12) be a smooth map between Riemannian manifolds such that
0 < rankF < min{dim M1,dim M2}. Then the tangent bundle TM1 of M1 has the following decomposi-
tion:

TM1 = kerF∗ ⊕ (kerF∗)⊥.

We always have (ran1eF∗)⊥ because of rankF < min{dim M1,dim M2}. Therefore tangent bundle TM2 of M2
has the following decomposition:

TM2 = (ran1eF∗) ⊕ (ran1eF∗)⊥.

A smooth map F : (Mm
1 , 11) −→ (Mm

2 , 12) is called Riemannian map at p1 ∈ M1 if the horizontal restriction
Fh
∗p1

: (kerF∗p1 )⊥ −→ (ran1eF∗) is a linear isometry. Hence a Riemannian map satisfies the equation

11(X,Y) = 12(F∗(X),F∗(Y)) (1)

for X,Y ∈ Γ((kerF∗)⊥). So that isometric immersions and Riemannian submersions are particular Riemannian
maps, respectively, with kerF∗ = {0} and (ran1eF∗)⊥ = {0} [5].

We say that F : (Mm, 1M) −→ (Nn, 1N) is a conformal Riemannian map at p ∈M if 0 < rankF∗p ≤ min{m,n}
and F∗p maps the horizontal space (ker(F∗p)⊥) conformally onto ran1e(F∗p), i.e., there exist a number λ2(p) , 0
such that

1N(F∗p(X),F∗p(Y)) = λ2(p)1M(X,Y) (2)
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for X,Y ∈ Γ((ker(F∗p)⊥). Also F is called conformal Riemannian if F is conformal Riemannian at each p ∈ M
[14, 15]. Here, λ is the dilation of F at a point p ∈M and it is a continuous function as λ : M→ [0,∞).

An even-dimensional Riemannian manifold (M, 1M, J) is called an almost Hermitian manifold if there
exists a tensor field J of type (1, 1) on M such that J2 = −I where I denotes the identity transformation of
TM and

1M(X,Y) = 1M(JX, JY),∀X,Y ∈ Γ(TM). (3)

Let (M, 1M, J) be an almost Hermitian manifold and its Levi-Civita connection is ∇ with respect to 1M. If J
is parallel with respect to ∇, i.e.

(∇X J)Y = 0, (4)

we say M is a Kaehlerian manifold [3, 21].
Riemannian maps would provide relationship between Riemannian maps, harmonic maps and La-

grangian field theory on the mathematical side and Maxwell’s equation, Schrodinger’s equation on the
physical side [5]. Some application areas of conformal Riemannian maps are computer vision [7], geomet-
ric modelling [18] and medical imaging [19].

In this paper, conformal generic Riemannian maps from almost Hermitian manifolds to Riemannian
manifolds were introduced, geometric properties of the base manifold and the total manifold by the
existence of such maps were investigated and examples were given. Also, certain geodesicity conditions
for conformal generic Riemannian maps were obtained. Moreover, several conditions for conformal generic
Riemannian maps to be horizontally homothetic maps by using the adapted version of the notion of pluri-
harmonic maps were obtained.

2. Preliminaries

In this section, some definitions and useful results for conformal generic Riemannian maps are given.
Let (M, 1M ) and (N, 1N ) be Riemannian manifolds and F : M −→ N is a smooth map between them. The
second fundamental form of F is given by

(∇F∗)(X,Y) =
N

∇
F
XF∗(Y) − F∗(

M
∇XY) (5)

for X,Y ∈ Γ(TM). The second fundamental form ∇F∗ is symmetric [8].
Let F be a Riemannian map from a Riemannian manifold (Mm, 1M) to a Riemannian manifold (Nn, 1N).

Then we define O’Neill’s tensor fields T andA for Riemannian submersions as

AXY = h
M
∇hXvY + v

M
∇hXhY, (6)

TXY = h
M
∇vXvY + v

M
∇vXhY (7)

for vector fields X,Y ∈ Γ(TM), where
M
∇ is the Levi-Civita connection of 1M [10]. For any X ∈ Γ(TM), TX

andAX are skew-symmetric operators on (Γ(TM), 1) reversing the horizontal and the vertical distributions.
It is also easy to see that T is vertical, TX = TvX, and A is horizontal, AX = AhX. The tensor field T is
symmetric on the vertical distribution [10, 20]. On the other hand, from (6) and (7) we have

M
∇UV = TUV + ∇̂UV, (8)
M
∇UX = h

M
∇UX + TUX, (9)

M
∇XV = AXV + v

M
∇XV, (10)

M
∇XY = h

M
∇XY +AXY (11)

for X,Y ∈ Γ((ker F∗)⊥) and U,V ∈ Γ(kerF∗), where ∇̂UV = v
M
∇UV [11, 12].
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A vector field on M is called a projectable vector field if it is related to a vector field on N. Thus, we
say a vector field is basic on M if it is both a horizontal and a projectable vector field. Hereafter, when we
mention a horizontal vector field, we always consider a basic vector field [3].

On the other hand, let F be a conformal Riemannian map between Riemannian manifolds (Mm, 1M ) and
(Nn, 1N ). Then, we have

(∇F∗)(X,Y) |ran1eF∗ = X(lnλ)F∗(Y) + Y(lnλ)F∗(X)
− 1M(X,Y)F∗(1rad(lnλ)) (12)

where X,Y ∈ Γ((kerF∗)⊥). Hence from (12), we obtain
N
∇

F
XF∗(Y) as

N

∇
F
XF∗(Y) = F∗(h

M
∇XY) + X(lnλ)F∗(Y) + Y(lnλ)F∗(X)

− 1M(X,Y)F∗(1rad(lnλ)) + (∇F∗)⊥(X,Y) (13)

where (∇F∗)⊥(X,Y) is the component of (∇F∗)(X,Y) on (ran1eF∗)⊥ for X,Y ∈ Γ((kerF∗)⊥) [16, 17].
Now, a map F from a complex manifold (M, 1M, J) to a Riemannian manifold (N, 1N) is a pluriharmonic

map if F satisfies the following equation

(∇F∗)(X,Y) + (∇F∗)(JX, JY) = 0 (14)

for X,Y ∈ Γ(TM) [9].

3. Conformal Generic Riemannian Maps

Now, we define the notion of conformal generic Riemannian map and give its tangent space’s decom-
position.

Let F be a conformal Riemannian map from an almost Hermitian manifold (M, 1M, J) to a Riemannian
manifold (N, 1N). Then, the complex subspace of the vertical subspaceVp at p ∈M is

Dp = (kerF∗p ∩ J(kerF∗p)).

Definition 3.1. Let F be a conformal Riemannian map from an almost Hermitian manifold (M, 1M, J) to a Riemannian
manifold (N, 1N). If the dimension of Dp is constant along M and it defines a differentiable distribution on M then
we say that F is a conformal generic Riemannian map.

Let F be a conformal generic Riemannian map. Then, we say F is purely real (respectively, complex) if
Dp = {0} (respectively, Dp = kerF∗p). Orthogonal complementary distribution D⊥ of a conformal generic
Riemannian map F is called purely real distribution and it satisfies

kerF∗ = D⊕D⊥ (15)

and
D∩D

⊥ = {0}. (16)

Let F be a conformal Riemannian map from an almost Hermitian manifold (M, 1M, J) to a Riemannian
manifold (N, 1N). For U ∈ Γ(kerF∗), we write

JU = φU + ωU (17)

where φU ∈ Γ(kerF∗) and ωU ∈ Γ((kerF∗)⊥). We contemplate the complementary orthogonal distribution µ
to ωD⊥ in (kerF∗)⊥. Therefore we have

φD⊥ ⊆ D⊥, (kerF∗)⊥ = ωD⊥ ⊕ µ. (18)
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In addition, for X ∈ Γ((kerF∗)⊥), we write
JX = BX + CX (19)

where BX ∈ Γ(D⊥) and CX ∈ Γ(µ). Clearly, we get

B((kerF∗)⊥) = D⊥. (20)

From (15) for U ∈ Γ(kerF∗), we can write

JU = Φ1U + Φ2U + ωU (21)

where Φ1 and Φ2 are the projections from kerF∗ toD andD⊥, respectively.
We say that a conformal generic Riemannian map is proper if D⊥ is neither complex nor purely real.

Now, we give examples to conformal generic Riemannian maps.

Example 3.2. Every conformal semi-invariant Riemannian map [17] F from an almost Hermitian manifold to a
Riemannian manifold is a conformal generic Riemannian map withD⊥ is a totally real distribution.

Example 3.3. Let F : (R8, 1R8 , J) −→ (R5, 1R8 ) be a map defined by

(x1, x2, x3, x4, x5, x6, x7, x8) −→ (
x1 − x2 + x6
√

3
,

x1 + x2
√

2
, 0, x4, x3)

for any point x ∈ R8. We obtain the horizontal distribution and the vertical distributions

H = (kerF∗)⊥ = {H1 =
1
√

3
(
∂
∂x1
−

∂
∂x2

+
∂
∂x6

),H2 =
1
√

2
(
∂
∂x1

+
∂
∂x2

),H3 =
∂
∂x4

,H4 =
∂
∂x3
}

and
V = (kerF∗) = {V1 =

∂
∂x5

,V2 =
∂
∂x7

,V3 =
∂
∂x8

,V4 =
∂
∂x1
−

∂
∂x2
−

2
√

3

∂
∂x6
},

respectively. Thus, using (2) we have

1R5 (F∗(Hi),F∗(Hi)) = λ21R8 (Hi,Hi), i = 1, 2, 3, 4

and
1R5 (F∗(Hi),F∗(H j)) = λ21R8 (Hi,H j) = 0, i , j.

It follows that F is a conformal Riemannian map at any point x ∈ R8 with 0 < rankF∗ = 4 ≤ min{dim(R8),dim(R5)}
and λ = 1. On the other hand, by using the standard complex structure J = (−x2, x1,−x4, x3,−x6, x5,−x8, x7) onR8,
one can see that

JV1 =
3

2 +
√

3
H1 −

3

3 + 2
√

3
V4,

JV4 = aH1 +
√

2H2 +
2
√

3
V1 −

a
√

3
V4, a ∈ R,

JV2 = V3, JH3 = −H4.

Hence, F is a conformal generic Riemannian map withD = span{V2,V3},D⊥ = span{V1,V4} and µ = span{H3,H4}.

Now, we examine some geometric properties on the total manifold and the base manifold of a proper
conformal generic Riemannian map.

Lemma 3.4. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then the distributionD is integrable if and only if the following condition is satisfied

(∇F∗)(U, JV) = (∇F∗)(JU,V) (22)

for U,V ∈ Γ(D).
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Proof. Since M is a Kaehlerian manifold, from (4), (8), (19) and (21) we have

TU JV + v
M
∇U JV = BTUV + CTUV + Φ1v

M
∇UV + Φ2v

M
∇UV + ωv

M
∇UV (23)

and changing the role of U and V in (23) we have

TV JU + v
M
∇V JU = BTVU + CTVU + Φ1v

M
∇VU + Φ2v

M
∇VU + ωv

M
∇VU. (24)

Since T is symmetric on kerF∗, taking horizontal parts of (23) and (24) we get

TU JV − TV JU = ω{v
M
∇UV − v

M
∇VU}. (25)

From equation (5) we obtain

−(∇F∗)(U, JV) + (∇F∗)(JU,V) = F∗(ωv[U,V]). (26)

The proof is clear from (26).

Lemma 3.5. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then the distributionD⊥ is integrable if and only if the following condition is satisfied

v
M
∇V1Φ2V2 − v

M
∇V2Φ2V1 + TV2ωV1 − TV1ωV2 ∈ Γ(D⊥) (27)

for V1,V2 ∈ Γ(D⊥).

Proof. The real distribution D⊥ is integrable if and only if 1M([V1,V2],U) = 0 and 1M([V1,V2],X) = 0 for
V1,V2 ∈ Γ(D⊥), U ∈ Γ(D) and X ∈ Γ(kerF∗)⊥.Since kerF∗ is always integrable we have 1M([V1,V2],X) = 0.
Hence, we only examine 1M([V1,V2],U) = 0. For V1,V2 ∈ Γ(D⊥) we have

M
∇V1 V2 = −BTV1Φ2V2 − CTV1Φ2V2 + Φ1v

M
∇V1Φ2V2 + Φ2v

M
∇V1Φ2V2

+ ωv
M
∇V1Φ2V2 −Φ1TV1ωV2 −Φ2TV1ωV2 − ωTV1ωV2

− Bh
M
∇V1ωV2 − Ch

M
∇V1ωV2. (28)

Interchanging the role of V1 and V2 in (28) we have

M
∇V2 V1 = −BTV2Φ2V1 − CTV2Φ2V1 + Φ1v

M
∇V2Φ2V1 + Φ2v

M
∇V2Φ2V1

+ ωv
M
∇V2Φ2V1 −Φ1TV2ωV1 −Φ2TV2ωV1 − ωTV2ωV1

− Bh
M
∇V2ωV1 − Ch

M
∇V2ωV1. (29)

Now, using (28) and (29) we get

1M([V1,V2],U) = 1M(Φ1{v
M
∇V1Φ2V2 − v

M
∇V2Φ2V1 + TV2ωV1 − TV1ωV2},U). (30)

The proof is complete from (30).

Lemma 3.6. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then the horizontal distribution (kerF∗)⊥ is integrable if and only if the following
condition is satisfied

1
λ2 1N((∇F∗)(Y,BX) − (∇F∗)(X,BY) + F∗(h

M
∇XCY − h

M
∇YCX),F∗(ωU))

= 1M(v
M
∇YBX − v

M
∇XBY +AYCX −AXCY, φU) (31)

for X,Y ∈ Γ((kerF∗)⊥).
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Proof. The horizontal distribution (kerF∗)⊥ is integrable if and only if 1M([X,Y],U) = 0 for X,Y ∈ Γ((kerF∗)⊥)
and U ∈ Γ(kerF∗). From (4) we have

J∇XY = AXBY + v
M
∇XBY +AXCY + h

M
∇XCY. (32)

After changing the roles of X and Y, we get

J[X,Y] = AXBY −AYBX + v
M
∇XBY − v

M
∇YBX

+ AXCY −AYCX + h
M
∇XCY − h

M
∇YCX. (33)

Now, from (17) we get for U ∈ Γ(kerF∗)

0 = −1M([X,Y],U) = −1M(AXBY −AYBX + h
M
∇XCY − h

M
∇YCX, ωU)

− 1M(v
M
∇XBY − v

M
∇YBX +AXCY −AYCX, φU). (34)

Hence, from (2) and (5) we obtain

1
λ2 1N((∇F∗)(Y,BX) − (∇F∗)(X,BY) + F∗(h

M
∇XCY − h

M
∇YCX),F∗(ωU))

= 1M(v
M
∇YBX − v

M
∇XBY +AYCX −AXCY, φU). (35)

The proof is complete from (35).

Now, we remark some useful notions.

Definition 3.7. Let F : M −→ N be a conformal Riemannian map. Then, if

H(1rad(lnλ)) = 0, (36)

we say F is a horizontally homothetic map [3].

Definition 3.8. Let F be a map from a complex manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then F is
called a kerF∗-pluriharmonic map if F satisfies the following equation

(∇F∗)(U1,U2) + (∇F∗)(JU1, JU2) = 0 (37)

for U1,U2 ∈ Γ(kerF∗) [16, 17].

Theorem 3.9. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then any two conditions below imply the third condition:

i- C{TU1φU2 + h
M
∇U1ωU2} = TφU1φU2 +AωU1φU2 +AωU2φU1,

ii- F is a kerF∗-pluriharmonic map,

iii- F is a horizontally homothetic map and (∇F∗)⊥(ωU1, ωU2) = 0

for any U1,U2 ∈ Γ(kerF∗).
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Proof. We only show the proof of (iii). The proof of (i) and (ii) are clear. From (5), (13), (14) and (37), we get

0 = F∗(TφU1φU2 +AωU1φU2 +AωU2φU1) + F∗(CTU1φU2 + Ch
M
∇U1ωU2)

+ (∇F∗)⊥(ωU1, ωU2) + ωU1(lnλ)F∗(ωU2)
+ ωU2(lnλ)F∗(ωU1) − 1M(ωU1, ωU2)F∗(1rad(lnλ)) (38)

for any U1,U2 ∈ Γ(kerF∗). Suppose that (i) and (ii) are satisfied in (38). Then, we have C{TU1φU2 +h
M
∇U1ωU2} =

TφU1φU2 +AωU1φU2 +AωU2φU1 and F is a kerF∗-pluriharmonic map for any U1,U2 ∈ Γ(kerF∗), respectively.
Thus, we have

0 = (∇F∗)⊥(ωU1, ωU2) + ωU1(lnλ)F∗(ωU2)
+ ωU2(lnλ)F∗(ωU1) − 1M(ωU1, ωU2)F∗(1rad(lnλ)). (39)

It is clear from (39) that (∇F∗)⊥(ωU1, ωU2) = 0. Now, we obtain from (2), (18) and (39)

0 = λ2ωU2(lnλ)1M(ωU1, ωU1) (40)

for ωU1 ∈ Γ(ω(D⊥)). So, we get ωU2(lnλ) = 0. It means λ is a constant on ω(D⊥). Similarly, we obtain from
(39)

0 = −λ2CX(lnλ)1M(ωU1, ωU2) (41)

with ωU1 = ωU2 for CX ∈ Γ(µ). So, we get CX(lnλ) = 0. It means λ is a constant on µ. Thus, F is a
horizontally homothetic map from (40) and (41). The proof is complete.

Definition 3.10. Let F be a map from a complex manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then F is
called a (kerF∗)⊥-pluriharmonic map if F satisfies the following equation

(∇F∗)(Z1,Z2) + (∇F∗)(JZ1, JZ2) = 0 (42)

for Z1,Z2 ∈ Γ((kerF∗)⊥) [16, 17].

Theorem 3.11. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then any three conditions below imply the fourth condition:

i-
N
∇

F
Z1 F∗(Z2) = F∗(TBZ1 BZ2 +ACZ2 BZ1 +ACZ1 BZ2),

ii- F is a (kerF∗)⊥-pluriharmonic map,

iii- F is a horizontally homothetic map and (∇F∗)⊥(CZ1,CZ2) = 0,

iv- The distribution (kerF∗)⊥ defines a totally geodesic foliation in M

for any Z1,Z2 ∈ Γ((kerF∗)⊥).

Proof. We only show the proof of (iii) and (iv). The proof of (i) and (ii) are clear. From (5), (13), (14) and
(42), we get

F∗(
M
∇Z1 Z2) =

N

∇
F

Z1 F∗(Z2) + (∇F∗)⊥(CZ1,CZ2)
− F∗(TBZ1 BZ2 +ACZ2 BZ1 +ACZ1 BZ2)
+ CZ1(lnλ)F∗(CZ2) + CZ2(lnλ)F∗(CZ1)
− 1M(CZ1,CZ2)F∗(1rad(lnλ)) (43)
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for any Z1,Z2 ∈ Γ((kerF∗)⊥). Suppose that (i), (ii) and (iii) are satisfied in (43). Then, we have

N

∇
F

Z1 F∗(Z2) = F∗(TBZ1 BZ2 +ACZ2 BZ1 +ACZ1 BZ2),
(∇F∗)(Z1,Z2) + (∇F∗)(JZ1, JZ2) = 0,
CZ1(lnλ)F∗(CZ2) + CZ2(lnλ)F∗(CZ1) − 1M(CZ1,CZ2)F∗(1rad(lnλ)) = 0,
(∇F∗)⊥(CZ1,CZ2) = 0,

respectively. Thus, we have F∗(
M
∇Z1 Z2) = 0 for Z1,Z2 ∈ Γ((kerF∗)⊥). Therefore, the distribution (kerF∗)⊥

defines a totally geodesic foliation in M. Suppose that (i), (ii) and (iv) are satisfied in (43). Then, it is clear
from (43) that (∇F∗)⊥(CZ1,CZ2) = 0 and we obtain

0 = CZ1(lnλ)F∗(CZ2) + CZ2(lnλ)F∗(CZ1) − 1M(CZ1,CZ2)F∗(1rad(lnλ)) (44)

for any Z1,Z2 ∈ Γ((kerF∗)⊥). From (2) and (44), we get

0 = λ2CZ2(lnλ)1M(CZ1,CZ1) (45)

for CZ1 ∈ Γ(µ). So, we get CZ2(lnλ) = 0. It means λ is a constant on µ. Similarly, we obtain from (18) and
(44)

0 = −λ2ωU1(lnλ)1M(CZ1,CZ2) (46)

with CZ1 = CZ2 for ωU1 ∈ Γ(ω(D⊥)). So, we get ωU1(lnλ) = 0. It means λ is a constant on ω(D⊥). Thus, F
is a horizontally homothetic map from (45) and (46). The proof is complete.

Definition 3.12. Let F be a map from a complex manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then F is
called aD⊥-pluriharmonic map if F satisfies the following equation

(∇F∗)(V1,V2) + (∇F∗)(JV1, JV2) = 0 (47)

for V1,V2 ∈ Γ(D⊥) [16, 17].

Theorem 3.13. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then any three conditions below imply the fourth condition:

i- TφV1φV2 +AωV2φV1 +AωV1φV2 = 0,

ii- F is aD⊥-pluriharmonic map,

iii- F is a horizontally homothetic map and (∇F∗)⊥(ωV1, ωV2) = 0,

iv- The distributionD⊥ defines a totally geodesic foliation in M

for any V1,V2 ∈ Γ(D⊥).

Proof. We only show the proof of (iii) and (iv). The proof of (i) and (ii) are clear. From (5), (13), (14) and
(47), we get

F∗(
M
∇V1 V2) = −F∗(TφV1φV2 +AωV2φV1 +AωV1φV2)

+ ωV1(lnλ)F∗(ωV2) + ωV2(lnλ)F∗(ωV1)
− 1M(ωV1, ωV2)F∗(1rad(lnλ)) + (∇F∗)⊥(ωV1, ωV2) (48)

for any V1,V2 ∈ Γ(D⊥). Suppose that (i), (ii) and (iii) are satisfied in (48). Then, we have

TφV1φV2 +AωV2φV1 +AωV1φV2 = 0,
(∇F∗)(V1,V2) + (∇F∗)(JV1, JV2) = 0,
ωV1(lnλ)F∗(ωV2) + ωV2(lnλ)F∗(ωV1) − 1M(ωV1, ωV2)F∗(1rad(lnλ)) = 0,
(∇F∗)⊥(ωV1, ωV2) = 0,
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respectively. Thus, we have F∗(
M
∇V1 V2) = 0 for V1,V2 ∈ Γ(D⊥). Therefore, the distribution D⊥ defines a

totally geodesic foliation in M. Suppose that (i), (ii) and (iv) are satisfied in (48). Then, it is clear from (48)
that (∇F∗)⊥(ωV1, ωV2) = 0 and we obtain

0 = ωV1(lnλ)F∗(ωV2) + ωV2(lnλ)F∗(ωV1) − 1M(ωV1, ωV2)F∗(1rad(lnλ)) (49)

for any V1,V2 ∈ Γ(D⊥). From (2) and (49), we get

0 = λ2ωV2(lnλ)1M(ωV1, ωV1) (50)

for ωV1 ∈ Γ(ω(D⊥)). So, we get ωV2(lnλ) = 0. It means λ is a constant on ω(D⊥). Similarly, we obtain from
(18) and (49)

0 = −λ2CX(lnλ)1M(ωV1, ωV2) (51)

with ωV1 = ωV2 for CX ∈ Γ(µ). So, we get CX(lnλ) = 0. It means λ is a constant on µ. Thus, F is a
horizontally homothetic map from (50) and (51). The proof is complete.

Definition 3.14. Let F be a map from a complex manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then F is
called aD-pluriharmonic map if F satisfies the following equation

(∇F∗)(V1,V2) + (∇F∗)(JV1, JV2) = 0 (52)

for V1,V2 ∈ Γ(D) [16, 17].

Theorem 3.15. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then any two conditions below imply the third condition:

i- CTφV1φ
2V2 + ωv

M
∇φV1φ

2V2 = 0,

ii- F is aD-pluriharmonic map,

iii- The distributionD defines a totally geodesic foliation in M

for any V1,V2 ∈ Γ(D).

Proof. We only show the proof of (iii). The proof of (i) and (ii) are clear. From (5), (14), (17), (18), and (52),
we get

F∗(
M
∇V1 V2) = F∗(CTφV1φ

2V2 + ωv
M
∇φV1φ

2V2) (53)

for any V1,V2 ∈ Γ(D). Suppose that (i) and (ii) are satisfied in (53). Then, we have

CTφV1φ
2V2 + ωv

M
∇φV1φ

2V2 = 0,
(∇F∗)(V1,V2) + (∇F∗)(JV1, JV2) = 0,

respectively. Thus, we have F∗(
M
∇V1 V2) = 0 for V1,V2 ∈ Γ(D). Therefore, the distributionD defines a totally

geodesic foliation in M.

Definition 3.16. Let F be a map from a complex manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then F is
called a {(kerF∗)⊥ − kerF∗}-pluriharmonic map if F satisfies the following equation

(∇F∗)(X,V) + (∇F∗)(JX, JV) = 0 (54)

for X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗) [17].
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Theorem 3.17. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then any two conditions below imply the third condition:

i- C{AXφV + h
M
∇XωV} + ω{AXωV + v

M
∇XφV} = −{TBXφV +AωVBX +ACXφV},

ii- F is a {(kerF∗)⊥ − kerF∗}-pluriharmonic map,

iii- F is a horizontally homothetic map and (∇F∗)⊥(CX, ωV) = 0

for any X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).

Proof. We only show the proof of (iii). The proof of (i) and (ii) are clear. Since second fundamental form of
a map (∇F∗) is symmetric from (5), (12), (13), (14), (18) and (54), we get

0 = F∗(CAXφV + ωv
M
∇XφV + ωAXωV + Ch

M
∇XωV)

− F∗(TBXφV +AωVBX +ACXφV) + (∇F∗)⊥(CX, ωV)
+ CX(lnλ)F∗(ωV) + ωV(lnλ)F∗(CX) (55)

for any X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗). Suppose that (i) and (ii) are satisfied in (55). Then, we have

C{AXφV + h
M
∇XωV} + ω{AXωV + v

M
∇XφV} = −{TBXφV +AωVBX +ACXφV},

(∇F∗)(X,V) + (∇F∗)(JX, JV) = 0,

respectively. Then, it is clear from (55) that (∇F∗)⊥(CX, ωV) = 0. Thus, we have

0 = CX(lnλ)F∗(ωV) + ωV(lnλ)F∗(CX) (56)

for any X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗). From (2) and (56), we get

0 = λ2ωV(lnλ)1M(CX,CX) (57)

for CX ∈ Γ(µ). So, we get ωV(lnλ) = 0. It means λ is a constant on ω(D⊥). Similarly, we obtain from (18)
and (56)

0 = λ2CX(lnλ)1M(ωV, ωV) (58)

for ωV ∈ Γ(ω(D⊥)). It means λ is a constant on µ. Thus, F is a horizontally homothetic map from (57) and
(58). The proof is complete.

Now, we investigate totally geodesicness of distributions in M.

Theorem 3.18. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then, kerF∗ defines a totally geodesic foliation in M if and only if

i- 1N((∇F∗)(U,V),F∗(ωφZ)) − 1N((∇F∗)(U, φV),F∗(ωZ))

= λ2
{1M(∇̂UV, φ2Z) − 1M(h

M
∇UωV, ωZ)},

ii- 1N((∇F∗)(U,V),F∗(ωBX)) + 1N((∇F∗)(U, φV),F∗(CX))

= λ2
{1M(∇̂UV, φBX) + 1M(h

M
∇UωV,CX)}

are satisfied for any U,V ∈ Γ(kerF∗), X ∈ Γ(µ) and Z ∈ Γ(D⊥).
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Proof. Firstly, we show (i). Since M is a Kaehlerian manifold from (17), we have

1M(
M
∇UV,Z) = 1M(

M
∇UφV + ωV, φZ + ωZ)

for any U,V ∈ Γ(kerF∗) and Z ∈ Γ(D⊥). Then, from (2), (8) and (9) we have

= 1M(
M
∇U JV, φZ) + 1M(TUφV, ωZ) + 1M(h

M
∇UωZ, ωZ).

Since (∇F∗)(U, φV) = −F∗(TUφV), we obtain

= 1M(
M
∇U JV, φZ) + 1M(h

M
∇UωV, ωZ) −

1
λ2 1N((∇F∗)(U, φV),F∗(ωZ)) (59)

for any U,V ∈ Γ(kerF∗). On the other hand, we have from (8)

1M(
M
∇U JV, φZ) = −1M(

M
∇UV, JφZ)

= −1M(TUV, ωφZ) − 1M(∇̂UV, φ2Z)

=
1
λ2 1N((∇F∗)(U,V),F∗(ωφZ)) − 1M(∇̂UV, φ2Z). (60)

Now, using (60) in (59) we get

0 =
1
λ2 {1N((∇F∗)(U,V),F∗(ωφZ)) − 1N((∇F∗)(U, φV),F∗(ωZ))}

+ 1M(h
M
∇UωV, ωZ) − 1M(∇̂UV, φ2Z). (61)

Therefore, we obtain (i). Now, we show (ii). Thus, from (8), (9), (17) and (19) we get

1M(
M
∇UV,X) = 1M(

M
∇UV, JBX) + 1M(

M
∇UφV + ωV,CX)

= 1M(TUV, ωBX) + 1M(∇̂UV, φBX)

+ 1M(TUφV,CX) + 1M(h
M
∇UωV,CX)

= −
1
λ2 1N((∇F∗)(U,V),F∗(ωBX)) + 1M(∇̂UV, φBX)

−
1
λ2 1N((∇F∗)(U, φV),F∗(CX)) + 1M(h

M
∇UωV,CX) (62)

for any U,V ∈ Γ(kerF∗) and X ∈ Γ(µ). Hence, we obtain (ii) from (62). The proof is complete.

Theorem 3.19. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then, (kerF∗)⊥ defines a totally geodesic foliation in M if and only if

1N((∇F∗)(X,BY),F∗(ωU)) = λ2
{1M(h

M
∇XCY, ωU) + 1M(v

M
∇XBY +AXCY, φU)}

is satisfied for any X,Y ∈ Γ((kerF∗)⊥) and U ∈ Γ(kerF∗).

Proof. From (17) and (19), we have

1M(
M
∇XY,U) = 1M(

M
∇XBY + CY, φU + ωU)

for any X,Y ∈ Γ((kerF∗)⊥) and U ∈ Γ(kerF∗). Since (∇F∗)(X,BY) = −F∗(AXBY) we have

1M(
M
∇XY,U) = −

1
λ2 1N((∇F∗)(X,BY),F∗(ωU)) + 1M(h

M
∇XCY, ωU)

+ 1M(v
M
∇XBY +AXCY, φU). (63)

We obtain the proof from (63).
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Theorem 3.20. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then, the distributionD defines a totally geodesic foliation in M if and only if

i- 1N((∇F∗)(U1, φU2),F∗(ωV)) = λ21M(v
M
∇U1φU2, φV),

ii- 1N((∇F∗)(U1, φU2),F∗(CX)) = λ21M(v
M
∇U1φU2,BX)

are satisfied for any U1,U2 ∈ Γ(D), X ∈ Γ((kerF∗)⊥) and V ∈ Γ(D⊥).

Proof. From (16) and (17) we know ωU2 = 0. Then, we get

1M(
M
∇U1 U2,V) = 1M(

M
∇U1φU2, φV + ωV)

= 1M(TU1φU2, ωV) + 1M(v
M
∇U1φU2, φV)

for any U1,U2 ∈ Γ(D) and V ∈ Γ(D⊥). Since (∇F∗)(U1, φU2) = −F∗(TU1φU2), we have

1M(
M
∇U1 U2,V) = −

1
λ2 1N((∇F∗)(U1, φU2),F∗(ωV)) + 1M(v

M
∇U1φU2, φV). (64)

From (64) we have (i). Similarly, we get

1M(
M
∇U1 U2,X) = 1M(

M
∇U1φU2,BX + CX)

= 1M(TU1φU2,CX) + 1M(v
M
∇U1φU2,BX)

= −
1
λ2 1N((∇F∗)(U1, φU2),F∗(CX)) + 1M(v

M
∇U1φU2,BX) (65)

for any U1,U2 ∈ Γ(D) and X ∈ Γ((kerF∗)⊥). From (65) we have (ii). The proof is complete.

In a similar way, we get the following theorem.

Theorem 3.21. Let F be a proper conformal generic Riemannian map from a Kaehlerian manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then, the distributionD⊥ defines a totally geodesic foliation in M if and only if

i- 1N((∇F∗)(V1, φU),F∗(ωV2)) = λ21M(v
M
∇V1φU, φV2),

ii- 1N((∇F∗)(V1,BX),F∗(ωV2)) = λ2
{1M(h

M
∇V1 CX, ωV2) + 1M(v

M
∇V1 BX + TV1 CX, φV2)}

are satisfied for any V1,V2 ∈ Γ(D⊥), X ∈ Γ((kerF∗)⊥) and U ∈ Γ(D).
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[17] Şahin B, Yanan Ş. Conformal semi-invariant Riemannian maps from almost Hermitian manifolds. Filomat. 33, 2019, 1125–1134.
[18] Wang Y, Gu X, Yau ST. Volumetric harmonic map. Communications in Information and Systems. 3, 2003, 191–201.
[19] Wang Y, Gu X, Chan TF, Thompson PM, Yau ST. Brain surface conformal parametrization with the Ricci flow. in: IEEE International

Symposium on Biomedical Imaging-From nano to macro, Washington D.C., 2007, 1312–1315.
[20] Watson B. Almost Hermitian submersions. Journal of Differential Geometry. 11, 1976, 147–165.
[21] Yano K, Kon M. Structures on Manifolds. World Scientific, 1984.


