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Abstract. In this study we first write the characterizations of involute of a curve by means of the unit
Darboux vector of the involute curve. Then we make use of the Frenet formulas obtained by O. Çakır and
S. Şenyurt to explain the characterizations of involute of a curve by means of Frenet apparatus of the main
curve. Finally we examined the helix as an example.

1. Introduction and Preliminaries

To state a correlation between the invariants of a curve and characterizations of the curve in Euclidean space
and non-Euclidean spaces and then to interpret it from the language of geometry has been the focus of
interest for many researchers. Some curves are well-known by their explorers such as involute and evolute
curves,[2]. Afterwards, many studies have been conducted in Euclidean and non-Euclidean spaces closely
related to involute curves, [3, 4]. Later it has been revealed that curves can be classified, [5, 6, 8]. In this
paper, we first take a regular curve, that is, a main curve, then write the characterizations of the involute
curve by means of Frenet apparatus of the main curve. This work is one of the applications of [1] by which
looking from such a point of view that we make the complex calculations more elementary. Eventually we
put the example which support our assumption.
Now we may look at the main concepts related to the curve theory. Frenet vector fields can be expressed
by means of covariant derivative of these vectors and this relation is known as Frenet formulas, see [9]

T′ = ϑκN, N′ = −ϑκT + ϑτB , B′ = −ϑτN . (1)

Frenet vectors T ,N ,B form a Frenet frame and every Frenet frame moves along an instantaneous rotation
axis which is called a Darboux vector and given by, see [9]

W = τT + κB. (2)
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When we denote the angle between W and B by φ, the Darboux vector can be expressed as a unit Darboux
vector C given by, see [10]

C = sinφT + cosφB , sinφ =
τ

√

κ2 + τ2
, cosφ =

κ
√

κ2 + τ2
· (3)

Definition 1.1. Let α and β be two differentiable curves. If the tangent vector of α is perpendicular to the tangent
vector of β, then we call β as the involute of α. According to this definition, following parametrization can be given

β(s) = α(s) + λ(s)T(s) , λ(s) = c − s , c ∈ R. (4)

When β is the involute of α, we have d(α(s), β(s)) =| c − s |, ∀s ∈ I and c = const. The relationship between the
Frenet apparatus of the curves α and β is given by

Tβ = N , Nβ =
−κT + τB
√

κ2 + τ2
, Bβ =

τT + κB
√

κ2 + τ2
, κβ =

√

κ2 + τ2

λκ
, τβ =

κτ′ − κ′τ

λκ(κ2 + τ2)
· (5)

By this definition, Darboux vector of the curve β is given by, see [9]

Wβ = τβTβ + κβBβ. (6)

There is still another way to express Darboux vector named as unit Darboux vector in [10]

Cβ = sinφβTβ + cosφβBβ , sinφβ =
τβ√
κ2
β + τ2

β

, cosφβ =
κβ√
κ2
β + τ2

β

· (7)

with the angle φβ between the vectors Wβ and Bβ. It is also worth noting the relation here is that, see [11]

sinφβ =
φ′√

(φ′)2 + κ2 + τ2
, cosφβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

,

φ′β = (
φ′√

φ′2 + κ2 + τ2
)′

√
φ′2 + κ2 + τ2

√

κ2 + τ2
· (8)

This leads us the following relation, see [11]

Cβ =
φ′√

(φ′)2 + κ2 + τ2
N +

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

C . (9)

Figure 1: Unit Darboux vectors of the curves α and β.
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Definition 1.2. Letα be the unit speed curve, then the mean curvature vector field H along the curve α is defined
as, see [7]

H = Dα′α
′ = κN (10)

where D is the Levi-Civita connection. According to this definition the mapping

∆ : χ⊥(α(I))→ χ(α(I)) , ∆H = −D2
TH (11)

is called a Laplace operator. Let us denote the normal bundle of a curve α = α(s) by χ⊥(α(s)). Then the
normal connection D⊥ is given as

D⊥T : χ⊥(α(I))→ χ⊥(α(I)) , D⊥T X = DTX −
〈
DTX,T

〉
T (12)

and the normal Laplace operator ∆⊥ is given by the following mapping

∆⊥T X = −D⊥T D⊥T X, ∀X ∈ χ⊥(α(I)). (13)

Theorem 1.3. Let α be the unit speed curve and H, W be the mean curvature and Darboux vector along the curve
α, respectively. Then we have the following propositions, see [8]

a) ∆C = 0 then α is a biharmonic curve.

b) ∆C = µC, λ, µ ∈ R , then α is a 1-type harmonic curve.

c) ∆⊥C⊥ = 0 then α is a weak biharmonic curve.

d) ∆⊥C⊥ = µC⊥, λ, µ ∈ R , then α is a 1-type harmonic curve.

Theorem 1.4. Let α be a differentiable curve with unit Darboux vector C, then the differential equation character-
izing α according to unit Darboux vector is given as, see [8]

D3
TC + λ1D2

TC + λ2DTC + λ3C = 0 (14)

with the coefficients λ1 , λ2 , λ3

λ1 = −(
φ′′

φ′
+

(φ′ϑ ‖W ‖)′

ϑ ‖W ‖ φ′
), λ2 = (ϑ ‖W ‖)2 + (φ′)2

− (
φ′′

φ′
)′ +

(φ′ϑ ‖W ‖)′

ϑ ‖W ‖ (φ′)2φ
′′ ,

λ3 = ((φ′)2)′ −
(φ′ϑ ‖W ‖)′

ϑ ‖W ‖
φ′.

Theorem 1.5. Let α be a differentiable curve with unit normal Darboux vector C⊥, then the differential equation
characterizing α according to unit normal Darboux vector is given as, see [8]

λ2D⊥T D⊥T C⊥ + λ1D⊥T C⊥ + λ0C⊥ = 0 (15)

with the coefficients λ0 , λ1 , λ2

λ0 = φ′sinφ(φ′sinφϑτ − (ϑτcosφ)′) + ϑτcosφ(ϑ2τ2cosφ + (φ′sinφ)′) ,

λ1 = cosφ(φ′sinφϑτ − (ϑτcosφ)′) ,

λ2 = ϑτcos2φ .
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Theorem 1.6. [1] Let β be the involute of a unit speed curve α. Then the Frenet formulas for the curve β
with respect to Levi-Civita connection D and normal Levi-Civita connection D⊥ are given, respectively, as

DNT = κN, DNN = −κT + τB, DNB = −τN , (16)

D⊥NT = 0, D⊥NB = 0 . (17)

2. Calculation of the differential equations and harmonicity of the involute curve according to unit
Darboux vector with a new method

When we say α, unless we stated otherwise, we mean a unit speed curve in Euclidean 3-space with the
Frenet apparatus of T,N,B, κ, τ and when we mention β, it stands for the involute of the curve α in the
same space with the Frenet apparatus of Tβ,Nβ,Bβ, κβ, τβ and ϑ =‖ d

dsβ(s) ‖. Throughout the paper we
use C to denote the unit Darboux vector of α and Cβ to express the unit Darboux vector of β respectively.

Theorem 2.1. Let β be the involute of the curveα. Then the differential equation with respect to connection charac-
terizing the curve β by means of the unit Darboux vector Cβ is given as

D3
TβCβ + µβ1D2

TβCβ + µβ2DTβCβ + µβ3Cβ = 0 (18)

with the coefficients µβ1 , µβ2 , µβ3

µβ1 = −(
(φβ)′′

(φβ)′
+

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ (φβ)′
), µβ3 = (((φβ)′)2)′ −

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖
(φβ)′,

µβ2 = (ϑ ‖Wβ ‖)2 + ((φβ)′)2
− (

(φβ)′′

(φβ)′
)′ +

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ ((φβ)′)2 (φβ)′′ .

Proof. From equ.(3) we have Cβ = sinφβTβ + cosφβBβ · Taking the derivative with respect to Tβ gives us

DTβCβ = φ′β(cosφβTβ − sinφβBβ) · (19)

From the equalities (3) and (19) we write the equivalents of Tβ and Bβ as,

Tβ = sinφβCβ +
cosφβ
(φβ)′

DTβCβ ,

Bβ = cosφβCβ −
sinφβ
(φβ)′

DTβCβ ·

Second derivative of Cβ with respect to Tβ gives us

D2
TβCβ =

(φβ)′′

(φβ)′
DTβCβ − ((φβ)′)2Cβ + (φβ)′ϑ ‖Wβ ‖ Nβ ·

From this equality we derive Nβ as,

Nβ =
1

ϑ((φβ)′)2 ‖Wβ ‖
((φβ)′D2

TβCβ − (φβ)′′DTβCβ + ((φβ)′)3Cβ) ·
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After third derivative of Cβ we find

D3
TβCβ = (

(φβ)′′

(φβ)′
+

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ (φβ)′
)D2

TβCβ + ((
(φβ)′′

(φβ)′
)′ − (ϑ ‖Wβ ‖)2

− ((φβ)′)2
−

((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖ ((φβ)′)2 (φβ)′′)DTβCβ

+(
((φβ)′ϑ ‖Wβ ‖)′

ϑ ‖Wβ ‖
(φβ)′ − (((φβ)′)2)′)Cβ ·

It remains only to rearrange the above equality as a linear combinations of D3
Tβ

Cβ, D2
Tβ

Cβ, DTβCβ and Cβ · Then we
obtain the required equation which completes the proof.

Theorem 2.2. Let α be a differentiable curve with principal normal N, unit Darboux vector C and β be the involute
of α. Then the differential equation characterizing the curve β with respect to connection is given as

c1D3
NC +

(
3c′1 + µ1c1

)
D2

NC +
(
3c′′1 + 2µ1c′1 + µ2c1

)
DNC

+
(
c′′′1 + µ1c′′1 + µ2c′1 + µ3c1

)
C + c2D3

NN +
(
3c′2 + µ1c2

)
D2

NN

+
(
3c′′2 + 2µ1c′2 + µ2c2

)
DNN +

(
c′′′2 + µ1c′′2 + µ2c′2 + µ3c2

)
N = 0 (20)

with the coefficients c1, c2, µ1, µ2, µ3

c1 =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

, c2 =
φ′√

(φ′)2 + κ2 + τ2
,

µ1 = −

(arcsin φ′
√

(φ′)2+κ2+τ2
)′′

(arcsin φ′
√

(φ′)2+κ2+τ2
)′
−

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
√

(φ′)2 + κ2 + τ2
)′

√
(φ′)2 + κ2 + τ2

(
arcsin φ′

√
(φ′)2+κ2+τ2

)′ ,

µ2 = (φ′)2 + κ2 + τ2 + ((arcsin
φ′√

(φ′)2 + κ2 + τ2
)′)2
− (

(arcsin φ′
√

(φ′)2+κ2+τ2
)′′

(arcsin φ′
√

(φ′)2+κ2+τ2
)′

)′

+

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
√

(φ′)2 + κ2 + τ2
)′

√
(φ′)2 + κ2 + τ2

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
)2 · (arcsin

φ′√
(φ′)2 + κ2 + τ2

)′′ ,

µ3 =
(
((arcsin

φ′√
(φ′)2 + κ2 + τ2

)′)2
)′

−

(
(arcsin φ′

√
(φ′)2+κ2+τ2

)′
√

(φ′)2 + κ2 + τ2
)′

√
(φ′)2 + κ2 + τ2

(arcsin
φ′√

(φ′)2 + κ2 + τ2
)′.
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Proof. We can compute the equivalents of coefficients µβ1, µβ2, µβ3 and the angle φβ in the equation (18) by tak-
ing equations (5) , (8) and (9) into consideration as µ1, µ2, µ3 and the angle φ. It follows from the equ.(9) we
have

c1 =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

, c2 =
φ′√

(φ′)2 + κ2 + τ2
·

Making use of the equalities (5) , (8) and (9) again, we can write the equivalents of coefficients µβ1, µβ2, µβ3 and the
Darboux vector Wβ as

Wβ =
sinφ

√

κ2 + τ2

λκ
T +

κτ′ − κ′τ

λκ(κ2 + τ2)
N +

cosφ
√

κ2 + τ2

λκ
B.

By referring the equalities (8) and (14) we can write that

Cβ =
1√

(φ′)2 + κ2 + τ2
(sinφ

√

κ2 + τ2 T + φ′N + cosφ
√

κ2 + τ2 B).

Applying the equ.(16) we may write the counterparts of DTβCβ, D2
Tβ

Cβ, D3
Tβ

Cβ as in the following form

DTβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

DNC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′C +
φ′√

(φ′)2 + κ2 + τ2
DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′N ,

D2
TβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D2
NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′DNC

+(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C +
φ′√

(φ′)2 + κ2 + τ2
D2

NN

+2(
φ′√

(φ′)2 + κ2 + τ2
)′DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′′N , (21)

D3
TβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D3
NC + 3(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′D2
NC

+3(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′DNC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′′C

+
φ′√

(φ′)2 + κ2 + τ2
D3

NN + 3(
φ′√

(φ′)2 + κ2 + τ2
)′D2

NN

+3(
φ′√

(φ′)2 + κ2 + τ2
)′′DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′′′N.
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Finally setting the equivalents of coefficients and derivatives with respect to N into the first equation we get desired
result which completes the proof.

Theorem 2.3. Let β be the involute of the curve α. Then the differential equation with respect to normal connection
characterizing the curve β by means of the unit Darboux vector C⊥β is given as

λβ2D⊥TβD
⊥

TβC
⊥

β + λβ1D⊥TβC
⊥

β + λβ0C⊥β = 0 (22)

with the coefficients λβ0 , λβ1 , λβ2

λβ2 = ϑτβcos2φβ, λβ1 = cosφβ
(
φ′βsinφβϑτβ − (ϑτβcosφβ)′

)
,

λβ0 = φ′βsinφβ
(
φ′βsinφβϑτβ − (ϑτβcosφβ)′

)
+ ϑτβcosφβ

(
ϑ2(τβ)2cosφβ + (φ′βsinφβ)′

)
.

Proof. From equ. (13) we write the normal component of Cβ as

C⊥β = cosφβBβ · (23)

Taking the first and second derivatives of this equality with respect to normal connection gives us,

D⊥TβC
⊥

β = −ϑτβcosφβNβ − φ
′

βsinφβBβ, (24)

D⊥TβD
⊥

TβC
⊥

β =
(
φ′βsinφβϑτβ − (ϑτβcosφβ)′

)
Nβ −

(
ϑ2(τβ)2cosφβ + (φ′βsinφβ)′

)
Bβ.

(25)

If we extract the vectors Nβ and Bβ from equ.(23) , (24) we have

Bβ =
1

cosφβ
C⊥β ,

Nβ =
−1

ϑτβcosφβ
D⊥TβC

⊥

β −

φ′β sinφβ

ϑτβcos2φβ
C⊥β ·

Putting the equivalents of Bβ and Nβ into the equ.(25) we obtain the desired equation which completes the proof.

Theorem 2.4. Let α be a differentiable curve with principal normal N, unit Darboux vector C and β be the involute
of α. Then the differential equation characterizing the curve β with respect to normal connection is given as(

ρλ2

)
D⊥ND⊥NC +

(
2ρ′λ2 + ρλ1

)
D⊥NC +

(
ρ′′λ2 + ρ′λ1 + ρλ0

)
C = 0 (26)
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with the coefficients ρ, λ0, λ1, λ2

ρ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

, λ2 =
κτ′ − κ′τ

(φ′)2 + κ2 + τ2 ,

λ1 =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

(
(arcsin

φ′√
(φ′)2 + κ2 + τ2

)′
φ′√

(φ′)2 + κ2 + τ2
·

κτ′ − κ′τ

κ2 + τ2 − (
κτ′ − κ′τ√

((φ′)2 + κ2 + τ2)(κ2 + τ2)
)′
)
,

λ0 = (arcsin
φ′√

(φ′)2 + κ2 + τ2
)′

φ′√
(φ′)2 + κ2 + τ2

·

(
(arcsin

φ′√
(φ′)2 + κ2 + τ2

)′
φ′√

(φ′)2 + κ2 + τ2

κτ′ − κ′τ

κ2 + τ2

−(
κτ′ − κ′τ√

((φ′)2 + κ2 + τ2)(κ2 + τ2)
)′
)

+
κτ′ − κ′τ√

((φ′)2 + κ2 + τ2)(κ2 + τ2)

(
(
κτ′ − κ′τ

(κ2 + τ2)
)2

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

+
(
(arcsin

φ′√
(φ′)2 + κ2 + τ2

)′
φ′√

(φ′)2 + κ2 + τ2

)′)
.

Proof. From equ.(3) we have cosφ = κ/
√

κ2 + τ2 and sinφ = τ/
√

κ2 + τ2 it follows from the equalities
(8) and (14)

we figure out that sinφβ = φ′/
√

(φ′)2 + κ2 + τ2 , cosφβ =
√

κ2 + τ2/
√

(φ′)2 + κ2 + τ2 . Then we get,

C⊥β =
τ√

(φ′)2 + κ2 + τ2
T +

κ√
(φ′)2 + κ2 + τ2

B.

On the other hand we can evaluate the equivalents of coefficients of the equation (22) by using the equalities (5) , (8)
and (17) as λ0, λ1, λ2. By the same way we can make use of the equalities (5) , (8) and (17)again, in order to write
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the equivalents of derivatives of D⊥TβC
⊥

β and D⊥TβD
⊥

Tβ
C⊥β with respect to N. It follows that

D⊥TβC
⊥

β =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D⊥NC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′C ,

D⊥TβD
⊥

TβC
⊥

β =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D⊥ND⊥NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′D⊥NC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C . (27)

Setting the equivalents of coefficients of the equation with the aid of equ.(5) and then the derivatives with respect to N
into the equation above we get desired result which completes the proof.

Theorem 2.5. Let β be the involute of a differentiable curve α with the unit Darboux vector Cβ. According to
connection, harmonicity (biharmonic or 1-type harmonic) of the curve β may not be expressed by means of the Frenet
apparatus of the main curve α.

Proof. From equ.(21), it is obvious that we have the following

D2
TβCβ =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D2
NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′DNC

+(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C +
φ′√

(φ′)2 + κ2 + τ2
D2

NN

+2(
φ′√

(φ′)2 + κ2 + τ2
)′DNN + (

φ′√
(φ′)2 + κ2 + τ2

)′′N ·

Considering the case ∆Cβ = 0 or ∆Cβ = λCβ, from Theorem 1.3 of a and b we get DNN = 0 and DNC = 0.
Hence we cannot decide whether the curve β is biharmonic or 1-type harmonic.

Theorem 2.6. Let β be the involute of a differentiable curve α with the normal Darboux vector C⊥β . According to
normal connection, harmonicity (weak biharmonic or 1-type harmonic) of the curve β may not be expressed by means
of the Frenet apparatus of the main curve α.

Proof. From equ.(27), it is clear that we have the following

D⊥TβD
⊥

TβC
⊥

β =

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

D⊥ND⊥NC + 2(

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′D⊥NC + (

√

κ2 + τ2√
(φ′)2 + κ2 + τ2

)′′C ·

Considering the case ∆C⊥β = 0 or ∆C⊥β = λC⊥β , from Theorem 1.3 of c and d we get DNC = 0.
Hence we cannot decide whether the curve β is weak biharmonic or 1-type harmonic.

Example 2.7. Let a curve α(s) = 1
√

2
(coss, sins, s) be given. Then we have an involute of α, that is, curve β,

β(s) = 1
√

2
(coss − (c − s)sins, sins + (c − s)coss, c) , c ∈ R. It follows that Cβ = sinφβTβ + cosφβBβ with

sinφβ = 0 , cosφβ = 1. By the equ.(9) also we get Bβ = C. Hence we obtain, DNC = 0 and D⊥NC = 0 .
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