Turk. J. Math. Comput. Sci. 15(2)(2023) 227–236 © MatDer DOI : 10.47000/tjmcs.1195540



# **On a Topological Operator via Local Closure Function**

Ayşe Nur Tunç<sup>1,\*</sup>, Sena Özen Yıldırım<sup>1</sup>

<sup>1</sup>Department of Mathematics, Faculty of Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey.

Received: 27-10-2022 • Accepted: 15-06-2023

ABSTRACT. In this research, we define and study the new topological operator called  $\Gamma$ -boundary operator  $Bd^{\Gamma}$  by merging local closure function in ideal topological spaces. We research essential properties of this operator and we specialize  $\Gamma$ -boundary of some special sets, such as  $\theta$ -open,  $\Im_{\Gamma}$ -perfect and  $\Im_{\Gamma}$ -dense. Moreover, we examine the properties of this operator in the topology which is formed by using local closure function. Furthermore, we compare  $\Gamma$ -boundary operator with the boundary operator and the \*-boundary operator. We also show that under what conditions  $\Gamma$ -boundary operator, boundary operator and \*-boundary operator are coincide.

2020 AMS Classification: 54A05, 54A99

**Keywords:** Operator  $Bd^{\Gamma}$ , local closure function, ideal topological space,  $\mathfrak{I}_{\theta}$ -open set.

## 1. INTRODUCTION

Operators like closure, interior and boundary operators [2] play a significant role in general topology. In 1966, Kuratowski defined the concept of the ideal [5] and introduced the concept of the local function [5] via ideal. Moreover, many topological operators was obtained by using local function, such as  $cl^*$  Kuratowski closure operator [15],  $\Psi$ operator [8], the operator ()\* [12], the operator ()\* [12] and \*-boundary operator [12]. One of these operators which was studied by Selim et al. is \*-boundary operator  $Bd^*$  [12]. Then, they characterized Hayashi-Samuel spaces and hence obtained new topology by using \*-boundary operator in [12]. Furthermore, in [1] authors defined the concept of the local closure function and introduced the operator  $\Psi_{\Gamma}$  via local closure function. Then, they obtained the topologies  $\sigma_0$  [1] and  $\sigma$  [1] by using the operator  $\Psi_{\Gamma}$ . In 2016, Pavlović obtained under what conditions local closure function and local function are coincide in [11]. In 2019, Goyal and Noorie defined the concepts of the θ-closure of a set with respect to an ideal [4] and  $\mathfrak{I}_{\theta}$ -closed set [4] via local closure function. Moreover, they produced a new topology  $\tau_{\mathfrak{I}_{\theta}}$  [4] which is finer than  $\tau_{\theta}$  [16]. In addition to these studies, many authors considered the local closure function in detail (see [9, 10, 13, 14]). In this paper, we present new topological operator  $Bd^{\Gamma}$  by transforming the \*-boundary operator via local closure function and we compare this operator with the boundary operator and the \*-boundary operator. We also obtain some important properties of this operator and study the properties of  $\Gamma$ -boundary of some special sets.

<sup>\*</sup>Corresponding Author

Email addresses: aysenurtunc@comu.edu.tr (A.N. Tunç), senaozen@comu.edu.tr (S. Özen Yıldırım)

#### 2. Preliminaries

Throughout this article,  $(Z, \tau)$  represents a topological space. In  $(Z, \tau)$ , the closure and the interior of a subset *K* of *Z* are denoted by cl(K) and int(K), respectively. P(Z) represents the family of all subsets of *Z*. An ideal  $\Im$  [5] on *Z* is a nonempty collection of subsets of *Z* satisfying the following conditions:

(*i*) if  $K \in \mathfrak{I}$  and  $L \subseteq K$ ,  $L \in \mathfrak{I}$  (heredity),

(*ii*) if  $K \in \mathfrak{I}$  and  $L \in \mathfrak{I}$ ,  $K \cup L \in \mathfrak{I}$  (finite additivity).

An ideal topological space  $(Z, \tau, \mathfrak{I})$  is a topological space  $(Z, \tau)$  with an ideal  $\mathfrak{I}$  on Z. If  $\tau \cap \mathfrak{I} = \{\emptyset\}$ , then an ideal topological space  $(Z, \tau, \mathfrak{I})$  is called Hayashi-Samuel space [3]. For a subset K of Z,  $K^*(\mathfrak{I}, \tau) = \{x \in Z \mid U \cap K \notin \mathfrak{I}\}$  for each  $U \in \tau(x)$  is called the local function [5] of K with respect to  $\tau$  and  $\mathfrak{I}$ , where  $\tau(x) = \{U \in \tau \mid x \in U\}$ . We use  $K^*$  instead of  $K^*(\mathfrak{I}, \tau)$ . A Kuratowski closure operator  $cl^*(.)$ , for a topology  $\tau^*(\mathfrak{I}, \tau)$ , called the \*-topology, is defined by  $cl^*(K) = K \cup K^*(\mathfrak{I}, \tau)$  [15] and  $\tau^*(\mathfrak{I}, \tau)$  is finer than  $\tau$ .  $\Gamma(K)(\mathfrak{I}, \tau) = \{x \in Z \mid K \cap cl(U) \notin \mathfrak{I}$  for every  $U \in \tau(x)\}$  is called the local closure function [1] of K with respect to  $\mathfrak{I}$  and  $\tau$ . It is shortly denoted by  $\Gamma(K)$  instead of  $\Gamma(K)(\mathfrak{I}, \tau)$ . An operator  $\Psi_{\Gamma} : P(Z) \mapsto \tau$  is defined as  $\Psi_{\Gamma}(K) = Z \setminus \Gamma(Z \setminus K)$  in [1]. A subset K is called  $\mathfrak{I}_{\Gamma}$ -perfect [13],  $R_{\Gamma}$ -perfect [13],  $\mathfrak{I}_{\Gamma}$ -dense [13]) if  $K = \Gamma(K)$  (resp.  $K \subseteq \Gamma(K), K \setminus \Gamma(K) \in \mathfrak{I}, \Gamma(K) \setminus K \in \mathfrak{I}, \Gamma(K) \in \mathfrak{I}, \mathbb{I}$  as follows:  $\sigma = \{K \subseteq Z : K \subseteq \Psi_{\Gamma}(K)\}$  and  $\sigma_0 = \{K \subseteq Z : K \subseteq int(cl(\Psi_{\Gamma}(K)))\}$  and  $\tau_{\theta} \subseteq \sigma \subseteq \sigma_0$ . A subset K is called  $\sigma$ -open [1] (resp.  $\sigma_0$ -open [1]) set, if  $K \in \sigma$  (resp.  $K \in \sigma_0$ ).

For  $(Z, \tau)$  and a subset *K* of *Z*,  $cl_{\theta}(K) = \{x \in Z : cl(U) \cap K \neq \emptyset$  for each  $U \in \tau(x)\}$  is called the  $\theta$ -closure of *K* [16]. The  $\theta$ -interior of *K* [16], denoted  $int_{\theta}(K)$ , consists of those points *x* of *K* such that  $U \subseteq cl(U) \subseteq K$  for some open set *U* containing *x*. A subset *K* is called  $\theta$ -closed [16] if  $K = cl_{\theta}(K)$ . The complement of a  $\theta$ -closed set is called  $\theta$ -open. The family of all  $\theta$ -open sets in  $(Z, \tau)$  is denoted by  $\tau_{\theta}$ . Moreover,  $\tau_{\theta}$  is a topology on *Z* and it is coarser than  $\tau$ . A subset *K* is called preopen [7] if  $K \subseteq int(cl(K))$ . The complement of a preopen set is called a preclosed [7] set. A subset *K* is called generalized closed (briefly, g-closed) [6] if  $cl(K) \subseteq U$ , whenever  $K \subseteq U$  and *U* is open.

In this paper,  $(Z, \tau, \mathfrak{I})$  represents an ideal topological space.

**Lemma 2.1** ([1]). (i)  $In(Z, \tau)$ ,  $cl(O) = cl_{\theta}(O)$  for each open subset O of Z. (ii)  $In(Z, \tau, \mathfrak{I})$ ,  $K^* \subseteq \Gamma(K)$  for  $K \subseteq Z$ .

**Theorem 2.2** ( [1]). The following features are valid for  $M, N \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ . (i)  $\Gamma(\emptyset) = \emptyset$ . (ii) If  $M \in \mathfrak{I}$ , then  $\Gamma(M) = \emptyset$ . (iii)  $\Gamma(M) \cup \Gamma(N) = \Gamma(M \cup N)$ . (iv)  $\Psi_{\Gamma}(M \cap N) = \Psi_{\Gamma}(M) \cap \Psi_{\Gamma}(N)$ . (v)  $\Gamma(M) = cl(\Gamma(M)) \subseteq cl_{\theta}(M)$ .

**Theorem 2.3** ([14]). In  $(Z, \tau, \mathfrak{I})$ ,  $\Gamma(M \cap N) \subseteq \Gamma(M) \cap \Gamma(N)$  for  $M, N \subseteq Z$ .

**Definition 2.4** ( [4]). In  $(Z, \tau, \mathfrak{I})$  for a subset G of Z,  $\theta$ -closure of G with respect to an ideal  $\mathfrak{I}$  is defined as  $cl_{\mathfrak{I}_{\theta}}(G) = G \cup \Gamma(G)(\mathfrak{I}, \tau)$  and if  $G = cl_{\mathfrak{I}_{\theta}}(G)$ , then G is called to be  $\mathfrak{I}_{\theta}$ -closed.

**Remark 2.5** ([4]). In  $(Z, \tau, \mathfrak{I})$  for a subset G of Z,  $Int_{\mathfrak{I}_{\theta}}(G)$  is defined as  $Int_{\mathfrak{I}_{\theta}}(G) = Z \setminus cl_{\mathfrak{I}_{\theta}}(Z \setminus G)$  and if  $G = Int_{\mathfrak{I}_{\theta}}(G)$ , then G is called to be  $\mathfrak{I}_{\theta}$ -open. The collection of  $\mathfrak{I}_{\theta}$ -open sets forms a topology on Z and it is denoted by  $\tau_{\mathfrak{I}_{\theta}}$ .

**Remark 2.6.** In  $(Z, \tau, \mathfrak{I})$  for  $M \subseteq Z$ , M is  $\mathfrak{I}_{\theta}$ -closed  $\Leftrightarrow M = cl_{\mathfrak{I}_{\theta}}(M) = \Gamma(M) \cup M \Leftrightarrow \Gamma(M) \subseteq M \Leftrightarrow M$  is  $\theta^{\mathfrak{I}}$ -closed. Thus, the concept of  $\mathfrak{I}_{\theta}$ -closed set in [4] and the concept of  $\theta^{\mathfrak{I}}$ -closed set in [10] are identical.

**Proposition 2.7.** In  $(Z, \tau, \mathfrak{I})$  for  $M \subseteq Z$ ; (i) *M* is  $\mathfrak{I}_{\theta}$ -open  $\Leftrightarrow Z \setminus M$  is  $\mathfrak{I}_{\theta}$ -closed.

(i) M is  $\mathfrak{I}_{\theta}$ -open  $\Leftrightarrow D \subseteq \Psi_{\Gamma}(M)$ .

(iii) *M* is  $\sigma$ -open  $\Leftrightarrow$  *M* is  $\mathfrak{I}_{\theta}$ -open.

*Proof.* (*i*) M is  $\mathfrak{I}_{\theta}$ -open  $\Leftrightarrow M = Int_{\mathfrak{I}_{\theta}}(M) = Z \setminus cl_{\mathfrak{I}_{\theta}}(Z \setminus M) \Leftrightarrow cl_{\mathfrak{I}_{\theta}}(Z \setminus M) = Z \setminus M \Leftrightarrow Z \setminus M$  is  $\mathfrak{I}_{\theta}$ -closed. (*ii*) M is  $\mathfrak{I}_{\theta}$ -open  $\Leftrightarrow Z \setminus M$  is  $\mathfrak{I}_{\theta}$ -closed (or  $\theta^{\mathfrak{I}}$ -closed)  $\Leftrightarrow \Gamma(Z \setminus M) \subseteq Z \setminus M \Leftrightarrow M \subseteq Z \setminus \Gamma(Z \setminus M) = \Psi_{\Gamma}(M)$ . (*iii*) The proof is clear.

**Corollary 2.8.** In  $(Z, \tau, \mathfrak{I})$ ,  $\sigma = \tau_{\mathfrak{I}_{\theta}}$  from the Proposition 2.7 (iii).

**Remark 2.9.** In  $(Z, \tau, \mathfrak{I})$  for  $K \subseteq Z$ ,  $cl_{\mathfrak{I}_{\theta}}(K)$  may not be  $\mathfrak{I}_{\theta}$ -closed. Therefore,  $cl_{\mathfrak{I}_{\theta}}$  is not a Kuratowski closure operator.

**Example 2.10.** Let  $Z = \{p, q, r, s\}, \mathfrak{I} = \{\emptyset, \{p\}\}$  and  $\tau = \{\emptyset, \{s\}, \{p, r\}, \{p, r, s\}, Z\}$ . In  $(Z, \tau, \mathfrak{I}), cl_{\mathfrak{I}_{\theta}}(cl_{\mathfrak{I}_{\theta}}(C)) \neq cl_{\mathfrak{I}_{\theta}}(C)$ , for the set  $C = \{r\}$ .

**Theorem 2.11** ([1]). In  $(Z, \tau, \mathfrak{I}), Z = \Gamma(Z)$  iff  $cl(\tau) \cap \mathfrak{I} = \{\emptyset\}$  where  $cl(\tau) = \{cl(G) : G \in \tau\}$ .

**Theorem 2.12** ([14]).  $\Psi_{\Gamma}(K) \subseteq \Gamma(K)$  for each  $K \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$  where  $cl(\tau) \cap \mathfrak{I} = \{\emptyset\}$ .

**Theorem 2.13.** In  $(Z, \tau, \mathfrak{I})$ , there is a subset M of Z such that  $\Psi_{\Gamma}(M) = \Gamma(M)$  iff  $cl(\tau) \cap \mathfrak{I} = \{\emptyset\}$ .

*Proof.* ( $\Rightarrow$ ) : Let  $M \subseteq Z$  such that  $\Psi_{\Gamma}(M) = \Gamma(M)$ . Then  $Z \setminus \Gamma(Z \setminus M) = \Gamma(M)$  and so  $Z = \Gamma(Z \setminus M) \cup \Gamma(M)$ . Thus, by the Theorem 2.2 (*iii*),  $\Gamma(Z) = Z$ . Consequently, from the Theorem 2.11,  $cl(\tau) \cap \mathfrak{I} = \{\emptyset\}$ .

 $(\Leftarrow)$ : Let  $cl(\tau) \cap \mathfrak{I} = \{\emptyset\}$ . From the Theorem 2.11,  $\Gamma(Z) = Z$  and so  $\Psi_{\Gamma}(Z) = Z \setminus \Gamma(\emptyset)$ . In that case, by the Theorem 2.2 (*i*),  $\Psi_{\Gamma}(Z) = Z$  and thus  $\Psi_{\Gamma}(Z) = \Gamma(Z)$ .

**Theorem 2.14.** In  $(Z, \tau, \mathfrak{I})$ , if there is a subset M of Z with  $\Psi_{\Gamma}(M) \neq \Gamma(M)$ , then one of the following statements hold: (a) There exist  $x \in Z$  and  $U \in \tau(x)$  such that  $U \in \mathfrak{I} \cap \tau(x)$ . (b) There exists  $x \in Z$  such that  $cl(U) \notin \mathfrak{I}$  for every  $U \in \tau(x)$ .

*Proof.* Let *M* be a subset of *Z* with  $\Psi_{\Gamma}(M) \neq \Gamma(M)$ . Afterward, there exists an element *x* of *Z* in either  $\Psi_{\Gamma}(M) \setminus \Gamma(M)$  or  $\Gamma(M) \setminus \Psi_{\Gamma}(M)$ .

(a) If  $x \in \Psi_{\Gamma}(M) \setminus \Gamma(M)$ ,  $x \notin \Gamma(Z \setminus M)$  and  $x \notin \Gamma(M)$ . Therefore, there exist  $G, H \in \tau(x)$  with  $cl(G) \cap (Z \setminus M) \in \mathfrak{I}$ and  $cl(H) \cap M \in \mathfrak{I}$ . Let  $U = G \cap H$ . Hence, there exists  $U \in \tau(x)$  such that  $cl(U) \cap (Z \setminus M) \in \mathfrak{I}$  and  $cl(U) \cap M \in \mathfrak{I}$ . Then,  $[cl(U) \cap (Z \setminus M)] \cup [cl(U) \cap M] = cl(U) \in \mathfrak{I}$ . Consequently,  $U \in \mathfrak{I}$  by the heredity.

(b) If  $x \in \Gamma(M) \setminus \Psi_{\Gamma}(M)$ ,  $x \in \Gamma(Z \setminus M)$  and  $x \in \Gamma(M)$ . By the Theorem 2.2 (*iii*),  $x \in \Gamma(Z \setminus M) \cup \Gamma(M) = \Gamma(Z)$ . It implies that  $cl(U) \cap Z = cl(U) \notin \mathfrak{I}$  for every  $U \in \tau(x)$ .

3. The New Operator  $Bd^{\Gamma}$ 

**Definition 3.1.** The operator  $Bd^{\Gamma} : P(Z) \to \tau^k, Bd^{\Gamma}(K) = \Gamma(K) \cap \Gamma(Z \setminus K)$  is called  $\Gamma$ -boundary operator on  $(Z, \tau, \mathfrak{I})$ , where  $\tau^k = \{K \subseteq Z : Z \setminus K \in \tau\}$ . For  $K \subseteq Z$  and  $x \in Z$ , a point  $x \in Bd^{\Gamma}(K)$  is called a  $\Gamma$ -boundary point of K and  $Bd^{\Gamma}(K)$  is called a  $\Gamma$ -boundary of K in  $(Z, \tau, \mathfrak{I})$ .

**Example 3.2.** Let  $\mathbb{R}$  be the set of all real numbers,  $\mathbb{Q}$  be the set of all rational numbers and  $\tau_u$  be the usual topology on  $\mathbb{R}$ . In the ideal topological space  $(\mathbb{R}, \tau_u, \{\emptyset\}), \Gamma(\mathbb{Q}) = \mathbb{R}$  and  $\Gamma(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$  and so  $Bd^{\Gamma}(\mathbb{Q}) = \mathbb{R}$ .

**Remark 3.3.** In  $(Z, \tau, \mathfrak{I})$ , for a subset *K* of *Z*,  $\Gamma$ -boundary of *K* depends on both topology  $\tau$  and ideal  $\mathfrak{I}$ . For example, in an ideal topological space  $(\mathbb{R}, \tau, \{\emptyset\})$ , where  $\tau$  is discrete topology,  $Bd^{\Gamma}(\mathbb{Q}) = \emptyset$ . But we know  $Bd^{\Gamma}(\mathbb{Q}) = \mathbb{R}$  in  $(\mathbb{R}, \tau_u, \{\emptyset\})$  by the above example.

**Example 3.4.** Let  $Z = \{p, q, r, s\}, \mathfrak{I}_1 = \{\emptyset, \{r\}\}, \mathfrak{I}_2 = \{\emptyset, \{p\}\} \text{ and } \tau = \{\emptyset, \{s\}, \{p, r\}, \{p, r, s\}, Z\}$ . In  $(Z, \tau, \mathfrak{I}_1)$ , if  $G = \{p, q, s\}$ , then  $Bd^{\Gamma}(G) = \emptyset$ , but  $Bd^{\Gamma}(G) = \{p, q, r\}$  in  $(Z, \tau, \mathfrak{I}_2)$ .

**Proposition 3.5.** In  $(Z, \tau, \mathfrak{I})$  for  $K \subseteq Z$ ; (i) If  $\mathfrak{I} = \{\emptyset\}$ , then  $Bd^{\Gamma}(K) = cl_{\theta}(K) \cap cl_{\theta}(Z \setminus K)$ . (ii) If  $\mathfrak{I} = P(Z)$ , then  $Bd^{\Gamma}(K) = \emptyset$ .

Proof. The proof is clear.

**Theorem 3.6.** In  $(Z, \tau, \mathfrak{I})$ ,  $Bd^{\Gamma}(K) = \Gamma(K) \setminus \Psi_{\Gamma}(K)$  for  $K \subseteq Z$ .

*Proof.*  $Bd^{\Gamma}(K) = \Gamma(K) \cap [Z \setminus (Z \setminus K))] = \Gamma(K) \cap (Z \setminus \Psi_{\Gamma}(K)) = \Gamma(K) \setminus \Psi_{\Gamma}(K).$ 

**Theorem 3.7.** In  $(Z, \tau, \mathfrak{I})$  for  $K \subseteq Z$ , if x is a  $\Gamma$ -boundary point of K, then  $cl(U) \notin \mathfrak{I}$  for all  $U \in \tau(x)$ . But the reverse of this requirement is not true in general.

*Proof.* Let  $x \in Bd^{\Gamma}(K)$ . Then,  $x \in \Gamma(Z \setminus K)$  and  $x \in \Gamma(K)$ . By the Theorem 2.2 (*iii*),  $x \in \Gamma(Z \setminus K) \cup \Gamma(K) = \Gamma(Z)$ . It implies that  $cl(U) \cap Z = cl(U) \notin \mathfrak{I}$  for every  $U \in \tau(x)$ .

**Example 3.8.** Let  $Z = \{p, q, r, s\}, \mathfrak{I} = \{\emptyset, \{p\}\}$  and  $\tau = \{\emptyset, \{p\}, \{s\}, \{p, q\}, \{p, s\}, \{p, q, s\}, Z\}$ . In  $(Z, \tau, \mathfrak{I})$ , if  $K = \{q\}$ , then  $Bd^{\Gamma}(K) = \{p, q, r\}$ . Although  $cl(U) \notin \mathfrak{I}$  for all  $U \in \tau(s), s \notin Bd^{\Gamma}(K)$ .

**Theorem 3.9.** In  $(Z, \tau, \mathfrak{I})$  for  $K \subseteq Z$  and  $x \in Z$ , x is a  $\Gamma$ -boundary point of K iff for every  $U \in \tau(x)$ ,  $cl(U) \cap K \notin \mathfrak{I}$  and  $cl(U) \cap (Z \setminus K) \notin \mathfrak{I}$ .

*Proof.*  $x \in Bd^{\Gamma}(K) \Leftrightarrow x \in \Gamma(K)$  and  $x \in \Gamma(Z \setminus K) \Leftrightarrow cl(U) \cap K \notin \mathfrak{I}$  and  $cl(U) \cap (Z \setminus K) \notin \mathfrak{I}$  for every  $U \in \tau(x)$ .  $\Box$ 

**Theorem 3.10.** In  $(Z, \tau, \mathfrak{I})$  for  $K \subseteq Z$ ,  $Bd^{\Gamma}(K) = \emptyset$  iff  $\Gamma(K) \subseteq \Psi_{\Gamma}(K)$ .

*Proof.*  $Bd^{\Gamma}(K) = \emptyset \Leftrightarrow \Gamma(K) \subseteq Z \setminus \Gamma(Z \setminus K) = \Psi_{\Gamma}(K).$ 

**Theorem 3.11.** Let  $cl(\tau) \cap \mathfrak{I} = \{\emptyset\}$  in  $(Z, \tau, \mathfrak{I})$ . Then  $Bd^{\Gamma}(K) = \emptyset$  iff  $\Gamma(K) = \Psi_{\Gamma}(K)$  for  $K \subseteq Z$ .

*Proof.* Let  $cl(\tau) \cap \mathfrak{I} = \{\emptyset\}$ . Then we know that by the Theorem 2.12,  $\Psi_{\Gamma}(K) \subseteq \Gamma(K)$  for each  $K \subseteq Z$ . Therefore, the proof is obvious from the Theorem 3.10.

**Corollary 3.12.** In  $(Z, \tau, \mathfrak{I})$  for  $K \subseteq Z$ , if  $Bd^{\Gamma}(K) = K$ , then  $cl(U) \notin \mathfrak{I}$  for each  $x \in K$  and for each  $U \in \tau(x)$ .

*Proof.* It is clear by the Theorem 3.7.

Remark 3.13. The reverse of the Corollary 3.12 may not be true in general.

**Example 3.14.** For  $(Z, \tau, \mathfrak{I})$  in the Example 2.10, if  $D = \{s\}$ , then  $cl(U) \notin \mathfrak{I}$  for each  $U \in \tau(s)$ , but  $Bd^{\Gamma}(D) = \{q, s\} \neq D$ .

**Corollary 3.15.** In  $(Z, \tau, \mathfrak{I})$ , if there is a nonempty subset K of Z such that  $Bd^{\Gamma}(K) = K, Z \notin \mathfrak{I}$ , that is,  $\mathfrak{I} \neq P(Z)$ .

*Proof.* It is trivial by the Corollary 3.12.

**Theorem 3.16.** If  $Bd^{\Gamma}(K) = Z$ , then both K and  $Z \setminus K$  are  $\mathfrak{I}_{\Gamma}$ -dense for  $K \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* Let  $K \subseteq Z$  such that  $Bd^{\Gamma}(K) = Z$ . It implies that  $\Gamma(K) = Z$  and  $\Gamma(Z \setminus K) = Z$ . As a consequence, both K and  $Z \setminus K$  are  $\mathfrak{I}_{\Gamma}$ -dense.

**Theorem 3.17.** In  $(Z, \tau, \mathfrak{I})$ , the followings hold for  $K, L \subseteq Z$ :

(a)  $Bd^{\Gamma}(\emptyset) = \emptyset$ . (b)  $Bd^{\Gamma}(Z) = \emptyset$ . (c) If  $K \in \mathfrak{I}$ , then  $Bd^{\Gamma}(K) = \emptyset$ . (d)  $Bd^{\Gamma}(K \cup L) \subseteq Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)$ . (e)  $(K \cap Bd^{\Gamma}(L)) \cup Bd^{\Gamma}(K \cup L) \cup (L \cap Bd^{\Gamma}(K)) \subseteq Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)$ . (f) If  $Bd^{\Gamma}(K) = \emptyset$ , then  $K \cap \Gamma(K) \subseteq Int_{\mathfrak{I}_{\theta}}(K)$ . (g)  $Bd^{\Gamma}(K) = \Gamma(Z \setminus K) \setminus \Psi_{\Gamma}(Z \setminus K) = Bd^{\Gamma}(Z \setminus K)$ . (h)  $Z \setminus Bd^{\Gamma}(K) = \Psi_{\Gamma}(K) \cup \Psi_{\Gamma}(Z \setminus K)$ . (i)  $Z = Bd^{\Gamma}(K) \cup \Psi_{\Gamma}(K) \cup \Psi_{\Gamma}(Z \setminus K) = Bd^{\Gamma}(Z \setminus K) \cup \Psi_{\Gamma}(K) \cup \Psi_{\Gamma}(Z \setminus K)$ .

*Proof.* (a) By the Theorem 2.2 (i),  $Bd^{\Gamma}(\emptyset) = \emptyset$ .

**(b)** By the Theorem 2.2 (*i*),  $Bd^{\Gamma}(Z) = \emptyset$ .

(c) If  $K \in \mathfrak{I}$ , then by the Theorem 2.2 (*ii*),  $Bd^{\Gamma}(K) = \emptyset \cap \Gamma(Z \setminus K) = \emptyset$ .

(d) By the Theorem 2.2 (*iii*),  $Bd^{\Gamma}(K \cup L) = (\Gamma(K) \cup \Gamma(L)) \cap \Gamma((Z \setminus K) \cap (Z \setminus L))$ . Then, from the Theorem 2.3,  $Bd^{\Gamma}(K \cup L) \subseteq (\Gamma(K) \cup \Gamma(L)) \cap (\Gamma(Z \setminus K) \cap \Gamma(Z \setminus L)) = (\Gamma(K) \cap \Gamma(Z \setminus K) \cap \Gamma(Z \setminus L)) \cup (\Gamma(L) \cap \Gamma(Z \setminus K) \cap \Gamma(Z \setminus L)) \subseteq (\Gamma(K) \cap \Gamma(Z \setminus K)) \cup (\Gamma(L) \cap \Gamma(Z \setminus L)) = Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L).$ 

(e) We know that  $(K \cap Bd^{\Gamma}(L)) \cup Bd^{\Gamma}(K \cup L) \cup (L \cap Bd^{\Gamma}(K)) \subseteq Bd^{\Gamma}(L) \cup Bd^{\Gamma}(K \cup L) \cup Bd^{\Gamma}(K)$ . From the Theorem 3.17 (d),  $Bd^{\Gamma}(L) \cup Bd^{\Gamma}(K \cup L) \cup Bd^{\Gamma}(K) \subseteq Bd^{\Gamma}(L) \cup Bd^{\Gamma}(K) \subseteq Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)$ . Thus,  $(K \cap Bd^{\Gamma}(L)) \cup Bd^{\Gamma}(K \cup L) \cup (L \cap Bd^{\Gamma}(K)) \subseteq Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)$ .

(f) Let  $Bd^{\Gamma}(K) = \emptyset$ . Then,  $\Gamma(K) \subseteq \Psi_{\Gamma}(K)$  by the Theorem 3.10. Assume that an element x of Z is not in  $Int_{\mathfrak{I}_{\theta}}(K)$ . Then  $x \in cl_{\mathfrak{I}_{\theta}}(Z \setminus K) = (Z \setminus K) \cup \Gamma(Z \setminus K)$ . If  $x \in Z \setminus K$ , then  $x \notin K$  and so  $x \notin K \cap \Gamma(K)$ . If  $x \in \Gamma(Z \setminus K)$ , then  $x \notin \Psi_{\Gamma}(K)$ . Since  $\Gamma(K) \subseteq \Psi_{\Gamma}(K)$ ,  $x \notin \Gamma(K)$  and so  $x \notin K \cap \Gamma(K)$ . Therefore, we can say that: when  $x \notin Int_{\mathfrak{I}_{\theta}}(K)$ ,  $x \notin K \cap \Gamma(K)$  and so  $K \cap \Gamma(K) \subseteq Int_{\mathfrak{I}_{\theta}}(K)$ .

(g) By the Theorem 3.6,  $Bd^{\Gamma}(Z \setminus K) = \Gamma(Z \setminus K) \setminus \Psi_{\Gamma}(Z \setminus K) = \Gamma(Z \setminus K) \setminus (Z \setminus \Gamma(Z \setminus (Z \setminus K))) = Bd^{\Gamma}(K)$ .

**(h)**  $Z \setminus Bd^{\Gamma}(K) = (Z \setminus \Gamma(K)) \cup (Z \setminus \Gamma(Z \setminus K)) = \Psi_{\Gamma}(Z \setminus K) \cup \Psi_{\Gamma}(K).$ 

(i)  $Z = (Z \setminus Bd^{\Gamma}(K)) \cup Bd^{\Gamma}(K)$ . By the Theorem 3.17 (h),  $Z = \Psi_{\Gamma}(Z \setminus K) \cup \Psi_{\Gamma}(K) \cup Bd^{\Gamma}(K)$  and so  $Z = \Psi_{\Gamma}(Z \setminus K) \cup \Psi_{\Gamma}(K) \cup Bd^{\Gamma}(Z \setminus K)$  from the Theorem 3.17 (g).

**Remark 3.18.** For subsets K, L of Z in  $(Z, \tau, \mathfrak{I})$ , although  $Bd^{\Gamma}(K) = \emptyset$ , K may not be in  $\mathfrak{I}$ . Furthermore,  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)$  may not be equivalent to  $Bd^{\Gamma}(K \cup L)$ . Similarly,  $Bd^{\Gamma}(K) \cap Bd^{\Gamma}(L)$  may not be equivalent to  $Bd^{\Gamma}(K \cap L)$ .

**Example 3.19.** For  $(Z, \tau, \mathfrak{I})$  in the Example 2.10, if  $H = \{q, r, s\}$ , then  $Bd^{\Gamma}(H) = \emptyset$ , but  $H \notin \mathfrak{I}$ . If  $D = \{s\}$  and  $L = \{q\}$ , then  $Bd^{\Gamma}(D \cup L) = \{p, q, r\}$ ,  $Bd^{\Gamma}(D) = \{q, s\}$  and  $Bd^{\Gamma}(L) = Z$ , but  $Bd^{\Gamma}(D) \cup Bd^{\Gamma}(L) \neq Bd^{\Gamma}(D \cup L)$ . If  $M = \{q, s\}$  and  $N = \{r, s\}$ , then  $Bd^{\Gamma}(M \cap N) = \{q, s\}$ ,  $Bd^{\Gamma}(M) = \{p, q, r\}$  and  $Bd^{\Gamma}(N) = Z$ , but  $Bd^{\Gamma}(M) \cap Bd^{\Gamma}(N) \neq Bd^{\Gamma}(M \cap N)$ .

**Theorem 3.20.**  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) = Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(L \setminus K)$  for  $K, L \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* ( $\Rightarrow$ ) : (*a*) By the Theorem 3.17 (**g**),  $Bd^{\Gamma}(K \cap L) = Bd^{\Gamma}(Z \setminus (K \cap L)) = Bd^{\Gamma}((Z \setminus K) \cup (Z \setminus L))$ . Then by the Theorem 3.17 (**d**) and (**g**),  $Bd^{\Gamma}(K \cap L) = Bd^{\Gamma}((Z \setminus K) \cup (Z \setminus L)) \subseteq Bd^{\Gamma}(Z \setminus K) \cup Bd^{\Gamma}(Z \setminus L) = Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)$ .

 $(b) Bd^{\Gamma}(K \setminus L) = Bd^{\Gamma}(K \cap (Z \setminus L)) = \Gamma(K \cap (Z \setminus L)) \cap \Gamma(Z \setminus [K \cap (Z \setminus L)]) = \Gamma(K \cap (Z \setminus L)) \cap \Gamma((Z \setminus K) \cup L).$  By the Theorem 2.3 and the Theorem 2.2 (*iii*),  $\Gamma(K \cap (Z \setminus L)) \cap \Gamma((Z \setminus K) \cup L) \subseteq (\Gamma(K) \cap \Gamma(Z \setminus L)) \cap (\Gamma(Z \setminus K) \cup \Gamma(L)).$ Then  $Bd^{\Gamma}(K \setminus L) \subseteq (\Gamma(K) \cap \Gamma(Z \setminus L)) \cap (\Gamma(Z \setminus K) \cup \Gamma(L)) = (\Gamma(K) \cap \Gamma(Z \setminus L) \cap \Gamma(Z \setminus K)) \cup (\Gamma(K) \cap \Gamma(Z \setminus L) \cap \Gamma(L)) \subseteq (\Gamma(K) \cap \Gamma(Z \setminus K)) \cup (\Gamma(Z \setminus L) \cap \Gamma(L)) = Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L).$ 

(c) In a similar way to (b),  $Bd^{\Gamma}(L \setminus K) \subseteq Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)$ .

Hence, from (*a*), (*b*) and (*c*),  $Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(L \setminus K) \subseteq Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L)...(1)$ 

 $(\Leftarrow) : Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) = Bd^{\Gamma}((K \setminus L) \cup (K \cap L)) \cup Bd^{\Gamma}((L \setminus K) \cup (K \cap L)).$  Then by the Theorem 3.17 (**d**),  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) \subseteq (Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cap L)) \cup (Bd^{\Gamma}(L \setminus K) \cup Bd^{\Gamma}(K \cap L)).$  So  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) \subseteq Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(L \setminus K) \cup Bd^{\Gamma}(K \cap L)...(2).$ 

Consequently, from (1) and (2),  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) = Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(L \setminus K)$ .

**Theorem 3.21.** The following statements hold for  $K, L \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ : (a)  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) = Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cup L)$ .

(b)  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(K \triangle L) = Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(L \setminus K).$ 

*Proof.* (a)  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) = Bd^{\Gamma}(K) \cup Bd^{\Gamma}(Z \setminus L)$  by the Theorem 3.17 (g). From the Theorem 3.20,  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(Z \setminus L) = Bd^{\Gamma}(K \setminus (Z \setminus L)) \cup Bd^{\Gamma}(K \cap (Z \setminus L)) \cup Bd^{\Gamma}((Z \setminus L) \setminus K)$ . Then  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) = Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cap L) \cup$ 

**(b)**  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(K \wedge L) = Bd^{\Gamma}(K \setminus (K \wedge L)) \cup Bd^{\Gamma}((K \wedge L) \setminus K) \cup Bd^{\Gamma}(K \cap (K \wedge L))$  by the Theorem 3.20. Then  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(K \wedge L) = Bd^{\Gamma}(K \setminus [(K \setminus L) \cup (L \setminus K)]) \cup Bd^{\Gamma}([(K \setminus L) \cup (L \setminus K)] \setminus K) \cup Bd^{\Gamma}(K \cap [(K \setminus L) \cup (L \setminus K)]) = Bd^{\Gamma}(K \cap [Z \setminus (K \setminus L)] \cap [Z \setminus (L \setminus K)]) \cup Bd^{\Gamma}([(K \setminus L) \cup (L \setminus K)] \cap (Z \setminus K)) \cup Bd^{\Gamma}([K \cap (K \setminus L)] \cup [K \cap (L \setminus K)]) = Bd^{\Gamma}(K \cap [(Z \setminus K) \cup L] \cap [(Z \setminus L) \cup K]) \cup Bd^{\Gamma}([(K \setminus L) \cap (Z \setminus K)] \cup [(L \setminus K) \cap (Z \setminus K)]) \cup Bd^{\Gamma}((K \cap L) \cap (Z \setminus K)) \cup Bd^{\Gamma}((K \cap L) \cap (Z \setminus K)) \cup Bd^{\Gamma}((L \setminus K) \cap (Z \setminus K)) \cup Bd^{\Gamma}(K \setminus L) = Bd^{\Gamma}(K \setminus L) = Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(L \setminus K).$ 

**Corollary 3.22.** In  $(Z, \tau, \mathfrak{I})$  for  $K, L \subseteq Z$ ,  $Bd^{\Gamma}(K) \cup Bd^{\Gamma}(L) = Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(K \setminus L) \cup Bd^{\Gamma}(K \cup L) = Bd^{\Gamma}(K) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(K \cap L) \cup Bd^{\Gamma}(L \setminus K).$ 

*Proof.* It is clear by the Theorem 3.20 and Theorem 3.21.

**Theorem 3.23.**  $Bd^{\Gamma}(K) = \Gamma(Z \setminus K)$  iff  $Z \setminus \Gamma(K) \subseteq \Psi_{\Gamma}(K)$  for  $K \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.*  $Bd^{\Gamma}(K) = \Gamma(Z \setminus K) \Leftrightarrow \Gamma(Z \setminus K) \subseteq \Gamma(K) \Leftrightarrow Z \setminus \Gamma(K) \subseteq Z \setminus \Gamma(Z \setminus K) = \Psi_{\Gamma}(K).$ 

**Theorem 3.24.** If K is an  $\mathfrak{I}_{\Gamma}$ -dense subset of Z, then  $Bd^{\Gamma}(K) = \Gamma(Z \setminus K)$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* Let K be an  $\mathfrak{I}_{\Gamma}$ -dense subset of Z. Then,  $\Gamma(K) = Z$ . Thus,  $Bd^{\Gamma}(K) = Z \cap \Gamma(Z \setminus K) = \Gamma(Z \setminus K)$ .

Remark 3.25. The reverse of the Theorem 3.24 may not be true in general.

**Example 3.26.** In the ideal topological space  $(\mathbb{R}, P(\mathbb{R}), \mathfrak{I}_f)$ , where  $\mathfrak{I}_f$  is the ideal of finite subsets of  $\mathbb{R}$ , although  $Bd^{\Gamma}(\mathbb{R}) = \emptyset = \Gamma(\mathbb{R} \setminus \mathbb{R}), \mathbb{R}$  is not  $\mathfrak{I}_{\Gamma}$ -dense.

**Theorem 3.27.** In  $(Z, \tau, \mathfrak{I})$ , if K is an  $\mathfrak{I}_{\theta}$ -closed subset of Z,  $Bd^{\Gamma}(K) \subseteq K \setminus \Psi_{\Gamma}(K)$ .

*Proof.* Let *K* be an  $\mathfrak{I}_{\theta}$ -closed subset of *Z*. Then,  $\Gamma(K) \subseteq K$ . Thus,  $Bd^{\Gamma}(K) \subseteq K \cap \Gamma(Z \setminus K) = K \cap [Z \setminus (Z \setminus \Gamma(Z \setminus K))] = K \cap (Z \setminus \Psi_{\Gamma}(K)) = K \setminus \Psi_{\Gamma}(K)$ .

Remark 3.28. The reverse of the Theorem 3.27 may not be true in general.

**Example 3.29.** Let  $Z = \{p, q, r, s\}, \mathfrak{I} = \{\emptyset, \{r\}\}$  and  $\tau = \{\emptyset, \{s\}, \{p, r\}, \{p, r, s\}, Z\}$ . In  $(Z, \tau, \mathfrak{I})$ , if  $G = \{p, q, s\}$ ,  $Bd^{\Gamma}(G) = \emptyset = G \setminus \Psi_{\Gamma}(G)$ . Although  $Bd^{\Gamma}(G) \subseteq G \setminus \Psi_{\Gamma}(G)$ , the set G is not  $\mathfrak{I}_{\theta}$ -closed.

**Corollary 3.30.** In  $(Z, \tau, \mathfrak{I})$ , if K is an  $\mathfrak{I}_{\theta}$ -closed subset of Z,  $Bd^{\Gamma}(K) \subseteq K$ .

*Proof.* It is clear by the Theorem 3.27.

Remark 3.31. The reverse of the Corollary 3.30 may not be true in general.

**Example 3.32.** In the Example 2.10, for  $(Z, \tau, \mathfrak{I})$ , if  $H = \{q, r, s\}$ , then  $Bd^{\Gamma}(H) = \emptyset$  and  $\Gamma(H) = Z$ . Although  $Bd^{\Gamma}(H) \subseteq H, H \text{ is not } \mathfrak{I}_{\theta}\text{-closed.}$ 

**Theorem 3.33.** If  $Bd^{\Gamma}(K) \subseteq K$  and  $\Psi_{\Gamma}(K) = \emptyset$ , then K is  $\mathfrak{I}_{\theta}$ -closed for  $K \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* Suppose that  $Bd^{\Gamma}(K) \subseteq K \subseteq Z$  and  $\Psi_{\Gamma}(K) = \emptyset$ . Then,  $\Gamma(K) \setminus \Psi_{\Gamma}(K) \subseteq K$  by the Theorem 3.6. Therefore,  $\Gamma(K) \setminus \emptyset = \Gamma(K) \subseteq K$ . Thus, K is  $\mathfrak{I}_{\theta}$ -closed. 

**Theorem 3.34.** If K is an  $\mathfrak{I}_{\theta}$ -open subset of Z, then  $Bd^{\Gamma}(K) \subseteq \Gamma(K) \setminus K$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* Let K be an  $\mathfrak{I}_{\mathfrak{g}}$ -open subset of Z. Later on, by the Proposition 2.7 (i),  $Z \setminus K$  is  $\mathfrak{I}_{\mathfrak{g}}$ -closed. Hence  $cl_{\mathfrak{I}_{\mathfrak{g}}}(Z \setminus K) =$  $Z \setminus K$ , that is,  $(Z \setminus K) \cup \Gamma(Z \setminus K) = Z \setminus K$ . It implies that  $\Gamma(Z \setminus K) \subseteq Z \setminus K$ . Thus, we can say that  $Bd^{\Gamma}(K) \subseteq \Gamma(K) \cap (Z \setminus K) =$  $\Gamma(K) \setminus K$ . П

**Remark 3.35.** The reverse of the Theorem 3.34 may not be true in general.

**Example 3.36.** For  $(Z, \tau, \mathfrak{I})$  in the Example 3.29, if  $K = \{r\}$ , then  $Bd^{\Gamma}(K) = \emptyset \subseteq \Gamma(K) \setminus K$  but K is not  $\mathfrak{I}_{\theta}$ -open.

**Theorem 3.37.** If K is  $\mathfrak{I}_{\Gamma}$ -dense and  $Bd^{\Gamma}(K) \subseteq \Gamma(K) \setminus K$ , then K is  $\mathfrak{I}_{\theta}$ -open for  $K \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* Suppose that K is  $\mathfrak{I}_{\Gamma}$ -dense subset of Z and  $Bd^{\Gamma}(K) \subseteq \Gamma(K) \setminus K$ . Then,  $Bd^{\Gamma}(K) \subseteq \Gamma(K) \cap (Z \setminus K)$  and so  $Z \setminus [\Gamma(K) \cap (Z \setminus K)] \subseteq Z \setminus (\Gamma(K) \cap \Gamma(Z \setminus K)).$  Thus  $(Z \setminus \Gamma(K)) \cup K \subseteq (Z \setminus \Gamma(K)) \cup (Z \setminus \Gamma(Z \setminus K)) = (Z \setminus \Gamma(K)) \cup \Psi_{\Gamma}(K).$ Then as K is  $\mathfrak{I}_{\Gamma}$ -dense,  $(Z \setminus Z) \cup K \subseteq (Z \setminus Z) \cup \Psi_{\Gamma}(K)$ . It implies that  $K \subseteq \Psi_{\Gamma}(K)$  and so K is  $\mathfrak{I}_{\theta}$ -open by the Proposition 2.7 (*ii*). 

**Corollary 3.38.** For each  $\theta$ -open subset U of Z in  $(Z, \tau, \mathfrak{I})$ ,  $Bd^{\Gamma}(U) \subseteq \Gamma(U) \setminus U$ .

*Proof.* Let U be a  $\theta$ -open subset of Z. As  $\tau_{\theta} \subseteq \sigma$ ,  $U \in \sigma$  and so U is  $\mathfrak{I}_{\theta}$ -open by the Proposition 2.7 (iii). Then,  $Bd^{\Gamma}(U) \subseteq \Gamma(U) \setminus U$  from the Theorem 3.34. П

**Corollary 3.39.** If K is both  $\mathfrak{I}_{\theta}$ -open and  $\mathfrak{I}_{\theta}$ -closed subset of Z,  $Bd^{\Gamma}(K) = \emptyset$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* Assume that K is both  $\mathfrak{I}_{\theta}$ -open and  $\mathfrak{I}_{\theta}$ -closed subset of Z. Subsequently,  $Bd^{\Gamma}(K) \subseteq \Gamma(K) \setminus K$  from the Theorem 3.34 and  $Bd^{\Gamma}(K) \subseteq K \setminus \Psi_{\Gamma}(K)$  by the Theorem 3.27. Therefore,  $Bd^{\Gamma}(K) \subseteq (\Gamma(K) \setminus K) \cap (K \setminus \Psi_{\Gamma}(K)) = \emptyset$  and so  $Bd^{\Gamma}(K) = \emptyset.$ 

**Remark 3.40.** In general, the reverse of the Corollary 3.39. may not be true. Look at the Example 3.29.

**Theorem 3.41.** If K is  $\mathfrak{I}_{\Gamma}$ -perfect subset of Z, then  $Bd^{\Gamma}(K) = K \setminus \Psi_{\Gamma}(K)$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* It is clear by the Theorem 3.6 and the definition of  $\mathfrak{I}_{\Gamma}$ -perfect set.

**Remark 3.42.** The reverse of the Theorem 3.41 may not be true in general.

**Example 3.43.** For  $(Z, \tau, \mathfrak{I})$  in the Example 2.10, if  $H = \{q, r, s\}$ , then  $Bd^{\Gamma}(H) = \emptyset$ ,  $H \setminus \Psi_{\Gamma}(H) = H \setminus Z = \emptyset$  and  $\Gamma(H) = Z$ . Although  $Bd^{\Gamma}(H) = H \setminus \Psi_{\Gamma}(H)$ , *H* is not  $\mathfrak{I}_{\Gamma}$ -perfect.

**Theorem 3.44.** In  $(Z, \tau, \mathfrak{I})$  for  $K \subseteq Z$ , if  $Z \setminus K$  is  $\mathfrak{I}_{\Gamma}$ -dense and  $Bd^{\Gamma}(K) = K \setminus \Psi_{\Gamma}(K)$ , then K is  $\mathfrak{I}_{\Gamma}$ -perfect.

*Proof.* Assume that  $Z \setminus K$  is  $\mathfrak{I}_{\Gamma}$ -dense and  $Bd^{\Gamma}(K) = K \setminus \Psi_{\Gamma}(K)$ . Then  $Z = \Gamma(Z \setminus K)$  and so  $K \setminus \Psi_{\Gamma}(K) = K \cap \Gamma(Z \setminus K) = K$  $K \cap Z = K$ . Moreover,  $Bd^{\Gamma}(K) = \Gamma(K) \cap Z = \Gamma(K)$ .  $K = \Gamma(K)$ , since  $Bd^{\Gamma}(K) = K \setminus \Psi_{\Gamma}(K)$ . Consequently, K is  $\mathfrak{I}_{\Gamma}$ -perfect. П

**Theorem 3.45.** For  $K \subseteq Z$ , if  $K \subseteq Bd^{\Gamma}(K)$ , then K is  $\Gamma$ -dense-in-itself in  $(Z, \tau, \mathfrak{I})$ .

Proof. The proof is clear.

**Remark 3.46.** The inverse of the Theorem 3.45 may not be true.

**Example 3.47.** For  $(Z, \tau, \mathfrak{I})$  in the Example 2.10, if  $E = \{q, r\}$ , then  $Bd^{\Gamma}(E) = \{q, s\}$  and  $\Gamma(E) = Z$ . Although E is  $\Gamma$ -dense-in-itself, E is not a subset of  $Bd^{\Gamma}(E)$ .

4. The Relations of the Operator  $Bd^{\Gamma}$  with the Operator Bd and  $Bd^*$ 

**Definition 4.1** ([2]). In  $(Z, \tau)$ , the boundary operator  $Bd : P(Z) \to \tau^k$  is defined as  $Bd(K) = cl(K) \cap cl(Z \setminus K)$  for  $K \subseteq Z$ .

**Definition 4.2** ([12]). In  $(Z, \tau, \mathfrak{I})$ , the operator  $Bd^* : P(Z) \to \tau^k$  is defined as  $Bd^*(K) = K^* \cap (Z \setminus K)^*$  for a subset *K* of *Z* and it is called \*-boundary operator on  $(Z, \tau, \mathfrak{I})$ . If  $x \in Bd^*(K)$ , then the point *x* is called \*-boundary point of *K*.

In [12], a new topology is obtained on Z by using \*-boundary operator and it is shown that  $k_1 : P(Z) \to P(Z)$ ,  $k_1(K) = K \cup Bd^*(K)$  is a closure operator for this topology.

**Theorem 4.3** ([2]). In  $(Z, \tau)$  for a subset K of Z; (i)  $x \in Bd(K)$  iff  $x \in cl(K) \setminus int(K)$  for  $x \in Z$ . (ii)  $Bd(K) = \emptyset$  iff K is both open and closed.

**Remark 4.4.** In  $(Z, \tau)$ ,  $Bd(Bd(K)) \subseteq Bd(K)$  for  $K \subseteq Z$ .

**Theorem 4.5** ([12]).  $(Z, \tau, \mathfrak{I})$  is Hayashi-Samuel if and only if  $Bd^*(K) = Bd(K)$  for each open subset K of Z.

**Remark 4.6.** In an ideal topological space, the operator  $Bd^{\Gamma}$  may not provide the important properties of the boundary operator Bd. For example, the statements of  $cl_{\mathfrak{I}_{\theta}}(K) \setminus Int_{\mathfrak{I}_{\theta}}(K) = Bd^{\Gamma}(K)$  and  $Bd^{\Gamma}(Bd^{\Gamma}(K)) \subseteq Bd^{\Gamma}(K)$  may not be true in  $(Z, \tau, \mathfrak{I})$  for a subset K of Z. Similarly, although  $Bd^{\Gamma}(K) = \emptyset$ , the set K may be neither  $\mathfrak{I}_{\theta}$ -open nor  $\mathfrak{I}_{\theta}$ -closed. Look at the Corollary 3.39 and the Example 3.29.

**Example 4.7.** For  $(Z, \tau, \mathfrak{I}_1)$  in the Example 3.4, if  $G = \{p, q, s\}$ , then  $Bd^{\Gamma}(G) = \emptyset$ , but  $cl_{\mathfrak{I}_{\theta}}(G) \setminus Int_{\mathfrak{I}_{\theta}}(G) = \{r\}$ . Moreover, for  $(Z, \tau, \mathfrak{I}_2)$  in the Example 3.4, if  $C = \{r\}$ , then  $Bd^{\Gamma}(C) = \{p, q, r\}$  and  $Bd^{\Gamma}(Bd^{\Gamma}(C)) = \{q, s\}$ , but  $Bd^{\Gamma}(Bd^{\Gamma}(C)) \notin Bd^{\Gamma}(C)$ .

**Remark 4.8.** In an ideal topological space, there is not inclusion between  $\Gamma$ -boundary of a set and boundary of a set. For  $(Z, \tau, \mathfrak{I})$  in the Example 2.10,  $Bd^{\Gamma}(L) = Z$  and  $Bd(L) = \{q\}$  for the set  $L = \{q\}$ . Similarly, for the set  $K = \{p\}$  in this ideal topological space,  $Bd^{\Gamma}(K) = \emptyset$  and  $Bd(K) = \{p, q, r\}$ . As a result,  $Bd^{\Gamma}(L) \not\subseteq Bd(L)$  and  $Bd(K) \not\subseteq Bd^{\Gamma}(K)$ .

**Theorem 4.9.** In  $(Z, \tau, \mathfrak{I})$ ,  $Bd^{\Gamma}(K) \subseteq Bd(K)$  for each  $\theta$ -open subset K of Z.

*Proof.* Let *K* be a  $\theta$ -open subset of *Z*. Then,  $Z \setminus K$  is  $\theta$ -closed and thus *K* is an open set. By the Theorem 2.2 (*v*),  $Bd^{\Gamma}(K) \subseteq cl_{\theta}(K) \cap cl_{\theta}(Z \setminus K)$ . From the Lemma 2.1 (*i*),  $Bd^{\Gamma}(K) \subseteq cl(K) \cap cl_{\theta}(Z \setminus K) = cl(K) \cap (Z \setminus K)$ . Since  $Z \setminus K$  is  $\theta$ -closed, it is closed. So  $Bd^{\Gamma}(K) \subseteq cl(K) \cap cl(Z \setminus K) = Bd(K)$ .

**Theorem 4.10.** In  $(Z, \tau, \mathfrak{I})$ ,  $Bd^*(K) \subseteq Bd^{\Gamma}(K)$  for each subset K of Z.

*Proof.* It is clear by the Lemma 2.1 (*ii*).

**Remark 4.11.** In  $(Z, \tau, \mathfrak{I})$ ,  $Bd^{\Gamma}(K)$  may not be a subset of  $Bd^{*}(K)$  for a subset K of Z. For instance, for the ideal topological space in the Example 2.10, for the set  $F = \{p, q\}, Bd^{*}(F) = \{q\}$  and  $Bd^{\Gamma}(F) = Z$ .

The collection of closed-discrete subsets  $\mathfrak{I}_{cd}$ , the collection of relatively compact subsets  $\mathfrak{I}_k$ , the collection of nowhere dense subsets  $\mathfrak{I}_n$  and the collection of meager subsets  $\mathfrak{I}_m$  are an ideal on *Z* for (*Z*,  $\tau$ ).

**Theorem 4.12** ([11]). In  $(Z, \tau, \mathfrak{I})$ , each of the following conditions implies, the local function and the local closure function are equivalent.

(1)  $\tau$  has a clopen base  $\beta$ . (2)  $\tau$  is  $T_3$ . (3)  $\mathfrak{I} = \mathfrak{I}_{cd}$ . (4)  $\mathfrak{I} = \mathfrak{I}_k$ . (5)  $\mathfrak{I}_n \subseteq \mathfrak{I}$ . (6)  $\mathfrak{I} = \mathfrak{I}_m$ . (1)  $\tau$  has a clopen base  $\beta$ . (2)  $\tau$  is  $T_3$ . (3)  $\mathfrak{I} = \mathfrak{I}_{cd}$ . (4)  $\mathfrak{I} = \mathfrak{I}_k$ . (5)  $\mathfrak{I}_n \subseteq \mathfrak{I}$ . (6)  $\mathfrak{I} = \mathfrak{I}_m$ . (7) Every open set is preclosed in  $(Z, \tau)$ .

(8) Every open set is closed in  $(Z, \tau)$ .

(9) Every open set is g-closed in  $(Z, \tau)$ . (10) Every preopen set is closed in  $(Z, \tau)$ .

**Corollary 4.14.** By the above theorem, each of the above conditions (1)-(10) implies  $Bd^*(K) = Bd^{\Gamma}(K)$  for each  $K \subseteq Z$ in  $(Z, \tau, \mathfrak{I})$ .

**Corollary 4.15.** Let  $(Z, \tau, \mathfrak{I})$  be a Hayashi-Samuel space. In the Theorem 4.13, each of the conditions (1)-(10) implies  $Bd^*(K) = Bd^{\Gamma}(K) = Bd(K)$  for each open subset K of Z.

*Proof.* It is obvious by the Corollary 4.14 and the Theorem 4.5.

### 5. New Operators

**Definition 5.1.** The operator  $()_R^{\Gamma} : P(Z) \to P(Z)$  is defined as follows  $K_R^{\Gamma} = \Gamma(K) \setminus K$  for  $K \subseteq Z$  in  $(Z, \tau, \mathfrak{I})$ .

**Theorem 5.2.** *The following conditions hold for*  $K, L \subseteq Z$  *in*  $(Z, \tau, \mathfrak{I})$ *.* 

(a)  $\emptyset_R^{\Gamma} = \emptyset$ . (b)  $K \cap K_R^{\Gamma} = \emptyset$ . (c)  $(K \cup L)_R^{\Gamma} = (K_R^{\Gamma} \setminus L) \cup (L_R^{\Gamma} \setminus K)$ . (d)  $K_R^{\Gamma} \cup L_R^{\Gamma} = (K_R^{\Gamma} \cap L) \cup (K \cup L)_R^{\Gamma} \cup (K \cap L_R^{\Gamma})$ .

*Proof.* (a)  $\bigotimes_{R}^{\Gamma} = \Gamma(\bigotimes) \setminus \bigotimes = \bigotimes$  by the Theorem 2.2 (i). (b)  $K \cap K_{R}^{\Gamma} = K \cap (\Gamma(K) \setminus K) = \bigotimes$ .

(c)  $(K \cup L)_R^{\Gamma} = (\Gamma(K) \cup \Gamma(L)) \cap [(Z \setminus K) \cap (Z \setminus L)]$  by the Theorem 2.2 (*iii*). Then  $(K \cup L)_R^{\Gamma} = [\Gamma(K) \cap (Z \setminus K) \cap (Z \setminus K)]$  $L)] \cup [\Gamma(L) \cap (Z \setminus K) \cap (Z \setminus L)] = [(\Gamma(K) \setminus K) \cap (Z \setminus L)] \cup [(\Gamma(L) \setminus L) \cap (Z \setminus K)] = (K_R^{\Gamma} \setminus L) \cup (L_R^{\Gamma} \setminus K).$ 

(d)  $(K \cap L_R^{\Gamma}) \cup (K \cup L)_R^{\Gamma} \cup (K_R^{\Gamma} \cap L) = [K \cap (\Gamma(L) \setminus L)] \cup [\Gamma(K \cup L) \setminus (K \cup L)] \cup [(\Gamma(K) \setminus K) \cap L]$ . By the Theorem 2.2  $(iii), (K \cap L_R^{\Gamma}) \cup (K \cup L)_R^{\Gamma} \cup (K_R^{\Gamma} \cap L) = [K \cap \Gamma(L) \cap (Z \setminus L)] \cup [(\Gamma(K) \cup \Gamma(L)) \cap (Z \setminus K) \cap (Z \setminus L)] \cup [\Gamma(K) \cap (Z \setminus K) \cap L] = [K \cap \Gamma(L) \cap (Z \setminus L)] \cup [\Gamma(K) \cap (Z \setminus K) \cap L]$  $[K \cap \Gamma(L) \cap (Z \setminus L)] \cup [\Gamma(K) \cap (Z \setminus K) \cap (Z \setminus L)] \cup [\Gamma(L) \cap (Z \setminus K) \cap (Z \setminus L)] \cup [\Gamma(K) \cap (Z \setminus K) \cap L] = ([\Gamma(L) \cap (Z \setminus L)] \cap [K \cup L)] \cap [K \cup L]$  $(Z \setminus K)]) \cup ([\Gamma(K) \cap (Z \setminus K)] \cap [(Z \setminus L) \cup L]) = [(\Gamma(L) \setminus L) \cap Z] \cup [(\Gamma(K) \setminus K) \cap Z] = (\Gamma(L) \setminus L) \cup (\Gamma(K) \setminus K) = K_R^{\Gamma} \cup L_R^{\Gamma}. \quad \Box$ 

**Theorem 5.3.** *The following conditions hold for*  $K \subseteq Z$  *in*  $(Z, \tau, \mathfrak{I})$ *.* (a) If K is  $\mathfrak{I}_{\theta}$ -open, then  $Bd^{\Gamma}(K) \subseteq K_{R}^{\Gamma}$ . (**b**) If  $Z \setminus K$  is  $\mathfrak{I}_{\Gamma}$ -perfect, then  $Bd^{\Gamma}(K) = K_{R}^{\Gamma}$ 

*Proof.* (a) Let K be  $\mathfrak{I}_{\theta}$ -open. Then  $Int_{\mathfrak{I}_{\theta}}(K) = Z \setminus cl_{\mathfrak{I}_{\theta}}(Z \setminus K) = K$ . It implies that  $cl_{\mathfrak{I}_{\theta}}(Z \setminus K) = Z \setminus K$  and so  $\Gamma(Z \setminus K) \subseteq Z \setminus K$ . Therefore,  $Bd^{\Gamma}(K) \subseteq \Gamma(K) \setminus K = K_{R}^{\Gamma}$ .

(**b**) Let  $Z \setminus K$  be  $\mathfrak{I}_{\Gamma}$ -perfect. Then  $\Gamma(Z \setminus K) = Z \setminus K$ . It implies that  $Bd^{\Gamma}(K) = \Gamma(K) \cap (Z \setminus K) = K_{R}^{\Gamma}$ . 

Remark 5.4. The inverse of the above requirements may not be true.

**Example 5.5.** For  $(Z, \tau, \mathfrak{I})$  in the Example 3.29, if  $K = \{r\}$ , then  $Bd^{\Gamma}(K) = \emptyset \subseteq K_{R}^{\Gamma}$  but K is not  $\mathfrak{I}_{\theta}$ -open. Similarly,  $Bd^{\Gamma}(K) = K_{R}^{\Gamma} = \emptyset$  but  $Z \setminus K$  is not  $\mathfrak{I}_{\Gamma}$ -perfect.

**Theorem 5.6.** A subset K of Z is  $\mathfrak{I}_{\theta}$ -closed iff  $K_R^{\Gamma} = \emptyset$  in  $(Z, \tau, \mathfrak{I})$ .

*Proof.*  $(\Rightarrow)$ : Assume that *K* is a  $\mathfrak{I}_{\theta}$ -closed subset of *Z*. In that case,  $\Gamma(K) \subseteq K$ . Thus,  $K_R^{\Gamma} = \Gamma(K) \setminus K = \emptyset$ .

 $(\Leftarrow)$ : Assume that  $K_R^{\Gamma} = \emptyset$ . Then,  $\Gamma(K) \setminus K = \Gamma(K) \cap (Z \setminus K) = \emptyset$ . Therefore,  $(Z \setminus \Gamma(K)) \cup K = Z$  and hence  $Z \setminus K \subseteq Z \setminus \Gamma(K)$ . It implies that  $\Gamma(K) \subseteq K$ . Consequently, K is  $\mathfrak{I}_{\theta}$ -closed. 

П

**Theorem 5.7.** If  $K_R^{\Gamma} = Z$  for a subset K of Z, then K is  $\mathfrak{I}_{\Gamma}$ -dense in  $(Z, \tau, \mathfrak{I})$ .

*Proof.* Suppose that  $K_R^{\Gamma} = Z$ . Then  $Z = \Gamma(K) \setminus K \subseteq \Gamma(K)$  and so  $Z = \Gamma(K)$ . As a result, K is  $\mathfrak{I}_{\Gamma}$ -dense.

**Remark 5.8.** The inverse of the Theorem 5.7 may not be true in general.

**Example 5.9.** For  $(Z, \tau, \mathfrak{I})$  in the Example 2.10, if  $L = \{q\}$ , then L is an  $\mathfrak{I}_{\Gamma}$ -dense set but  $L_{R}^{\Gamma} = \{p, r, s\} \neq Z$ .

**Definition 5.10.** The operator  $()^{\Gamma \Psi_{\Gamma}}$  on  $(Z, \tau, \mathfrak{I})$  is defined as:  $K^{\Gamma \Psi_{\Gamma}} = K \setminus \Psi_{\Gamma}(K)$  for a subset *K* of *Z*.

**Theorem 5.11.** *The following conditions hold for*  $K, L \subseteq Z$  *in*  $(Z, \tau, \mathfrak{I})$ *.* 

(a)  $Z^{\Gamma\Psi_{\Gamma}} = \emptyset$ . (b)  $K^{\Gamma\Psi_{\Gamma}} \subseteq K$ . (c)  $(K \cap L)^{\Gamma\Psi_{\Gamma}} = (K^{\Gamma\Psi_{\Gamma}} \cap L) \cup (K \cap L^{\Gamma\Psi_{\Gamma}})$ . (d)  $(K^{\Gamma\Psi_{\Gamma}})^{\Gamma\Psi_{\Gamma}} \subseteq K^{\Gamma\Psi_{\Gamma}}$ .

*Proof.* (a)  $Z^{\Gamma \Psi_{\Gamma}} = Z \setminus \Psi_{\Gamma}(Z) = Z \setminus (Z \setminus \Gamma(\emptyset)) = Z \setminus (Z \setminus \emptyset) = \emptyset$  by the Theorem 2.2 (*i*). (b)  $K^{\Gamma \Psi_{\Gamma}} = K \setminus \Psi_{\Gamma}(K) \subseteq K$ .

(c)  $(K \cap L)^{\Gamma \Psi_{\Gamma}} = (K \cap L) \setminus (\Psi_{\Gamma}(K) \cap \Psi_{\Gamma}(L))$  by the Theorem 2.2 *(iv)*. Therefore,  $(K \cap L)^{\Gamma \Psi_{\Gamma}} = (K \cap L) \cap [(Z \setminus \Psi_{\Gamma}(K)) \cup (Z \setminus \Psi_{\Gamma}(L))] = [K \cap L \cap (Z \setminus \Psi_{\Gamma}(L))] \cup [K \cap L \cap (Z \setminus \Psi_{\Gamma}(L))] = (K^{\Gamma \Psi_{\Gamma}} \cap L) \cup (K \cap L^{\Gamma \Psi_{\Gamma}}).$ 

(d)  $(K^{\Gamma\Psi_{\Gamma}})^{\Gamma\Psi_{\Gamma}} = (K \setminus \Psi_{\Gamma}(K))^{\Gamma\Psi_{\Gamma}} = (K \setminus \Psi_{\Gamma}(K)) \setminus \Psi_{\Gamma}(K \setminus \Psi_{\Gamma}(K)) = (K \setminus \Psi_{\Gamma}(K)) \setminus \Psi_{\Gamma}(K \cap \Gamma(Z \setminus K)).$  By the Theorem 2.2 (iv),  $(K^{\Gamma\Psi_{\Gamma}})^{\Gamma\Psi_{\Gamma}} = (K \setminus \Psi_{\Gamma}(K)) \setminus (\Psi_{\Gamma}(K) \cap \Psi_{\Gamma}(\Gamma(Z \setminus K))) = (K \cap \Gamma(Z \setminus K)) \cap [\Gamma(Z \setminus K) \cup (Z \setminus \Psi_{\Gamma}(\Gamma(Z \setminus K)))] = (K \cap \Gamma(Z \setminus K)) \cap [\Gamma(Z \setminus K) \cup \Gamma(Z \setminus K) \cup \Gamma(Z \setminus K))] = [K \cap \Gamma(Z \setminus K) \cap \Gamma(Z \setminus K)] \cup [K \cap \Gamma(Z \setminus K) \cap \Gamma(Z \setminus K))] \subseteq K \cap \Gamma(Z \setminus K) = K \setminus \Psi_{\Gamma}(K) = K^{\Gamma\Psi_{\Gamma}}.$ 

**Theorem 5.12.** *The following conditions hold for*  $K \subseteq Z$  *in*  $(Z, \tau, \mathfrak{I})$ *.* 

(a) K is R<sub>Γ</sub>-perfect if and only if K<sub>R</sub><sup>Γ</sup> ∈ ℑ.
(b) If K is ℑ<sub>Γ</sub>-perfect, then K<sub>R</sub><sup>Γ</sup> = Ø.
(c) If K is ℑ<sub>Γ</sub>-dense, then K<sub>R</sub><sup>Γ</sup> = Z \ K.
(d) Z \ K is R<sub>Γ</sub>-perfect if and only if K<sup>ΓΨ<sub>Γ</sub></sup> ∈ ℑ.
(e) If Z \ K is ℑ<sub>Γ</sub>-perfect, then K<sup>ΓΨ<sub>Γ</sub></sup> = Ø.
(f) If Z \ K is ℑ<sub>Γ</sub>-dense, then K<sup>ΓΨ<sub>Γ</sub></sup> = K.

*Proof.* (a), (b), (c) The proofs are obvious.

(d) As  $\Gamma(Z \setminus K) \setminus (Z \setminus K) = \Gamma(Z \setminus K) \cap K = K \setminus \Psi_{\Gamma}(K)$ , the proof is obvious.

(e) Let  $Z \setminus K$  be  $\mathfrak{I}_{\Gamma}$ -perfect. Then  $Z \setminus K = \Gamma(Z \setminus K)$  and so  $\Psi_{\Gamma}(K) = K$ . Therefore,  $K^{\Gamma \Psi_{\Gamma}} = \emptyset$ .

(f) Let  $Z \setminus K$  be  $\mathfrak{I}_{\Gamma}$ -dense. Then  $Z = \Gamma(Z \setminus K)$  and so  $K^{\Gamma \Psi_{\Gamma}} = K \setminus \Psi_{\Gamma}(K) = K \cap \Gamma(Z \setminus K) = K \cap Z = K$ .

Remark 5.13. In the above theorem, inverses of the requirements (b), (c), (e) and (f) may not be true in general.

**Example 5.14.** For  $(Z, \tau, \mathfrak{I})$  in the Example 2.10, if  $K = \{p\}$ , then  $K_R^{\Gamma} = \emptyset$  but K is not  $\mathfrak{I}_{\Gamma}$ -perfect.

**Example 5.15.** In the ideal topological space  $(\mathbb{R}, P(\mathbb{R}), \mathfrak{I}_f)$ , although  $\mathbb{R}_R^{\Gamma} = \emptyset = \mathbb{R} \setminus \mathbb{R}, \Gamma(\mathbb{R}) \neq \mathbb{R}$  and so  $\mathbb{R}$  is not  $\mathfrak{I}_{\Gamma}$ -dense. Moreover,  $\emptyset^{\Gamma \Psi_{\Gamma}} = \emptyset$  but  $\mathbb{R} \setminus \emptyset = \mathbb{R}$  is neither  $\mathfrak{I}_{\Gamma}$ -perfect nor  $\mathfrak{I}_{\Gamma}$ -dense.

## AUTHORS CONTRIBUTION STATEMENT

All authors jointly worked on the results and they have read and agreed to the published version of the manuscript.

#### CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this article.

#### References

[1] Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2)(2013), 139-149.

[2] Bourbaki, N., General Topology, Chapter 1-4, Springer, 1989.

[3] Dontchev, J., Idealization of Ganster-Reilly decomposition theorems, arXiv: math. Gn/9901017v1, 5 Jan 1999.

[4] Goyal, N., Noorie, N.S.,  $\theta$ -closure and  $T_{2\frac{1}{2}}$  spaces via ideals, Italian Journal of Pure and Applied Mathematics, 41(2019), 571–583.

[5] Kuratowski, K., Topology, Vol. I, Academic Press, New York, 1966.

- [6] Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [7] Mashhour, A.S., Abd El-Monsef, M.E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
- [8] Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca, 36(3)(1986), 297-312.
- [9] Njamcul, A., Pavlović, A., On closure compatibility of ideal topological spaces and idempotency of the local closure function, Periodica Mathematica Hungarica, 84(2)(2022), 221–234.
- [10] Noorie, N.S., Goyal, N., On  $S_{2\frac{1}{2}}$  mod I spaces and  $\theta^{I}$ -closed sets, International Journal of Mathematics Trends and Technology, **52**(4)(2017), 226–228.
- [11] Pavlović, A., Local function versus local closure function in ideal topological spaces, Filomat, **30**(14)(2016), 3725–3731.
- [12] Selim, Sk., Modak, S., Islam, Md. M., Characterizations of Hayashi-Samuel spaces via boundary points, Commun. Adv. Math. Sci., 2(3)(2019), 219–226.
- [13] Tunç, A.N., Özen Yıldırım, S., *New sets obtained by local closure functions*, Annals of Pure and Applied Mathematical Sciences, **1**(1)(2021), 50–59.
- [14] Tunç, A. N., Özen Yıldırım, S., A study on further properties of local closure functions, 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), (2020), 123–123.
- [15] Vaidyanathaswamy, R., The localisation theory in set-topology, Proc. Indian Acad. Sci., Sect. A., 20(1944), 51-61.
- [16] Veličko, N. V., *H-closed topological spaces*, Mat. Sb. (N.S.), **70**(112)(1966), 98–112. English transl., Amer. Math. Soc. Transl., **78**(2)(1968), 102–118.