
Turk. J. Math. Comput. Sci.
14(2)(2022) 376–383
©MatDer
DOI : 10.47000/tjmcs.984372

On the Bertrand Mate of Cubic Bézier Curve by Using Matrix
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Abstract. In this study, we have examined Bertrand mate of a cubic Bezier curve based on the control points with
matrix form in E3. Frenet vector fields and also curvatures of Bertrand mate of the cubic Bezier curve are examined
based on the Frenet apparatus of the first cubic Bezier curve in E3.
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1. Introduction and Preliminaries

French engineer Pierre Bézier, who used Bézier curves to design automobile bodies studied with them in 1962.
However, the study of these curves was first developed in 1959 by the mathematician Paul de Casteljau using de
Casteljau’s algorithm which is a numerically stable method to evaluate Bézier curves [11]. A Bézier curve is frequently
used in computer graphics and related fields, in vector graphics and in animations as a tool to control motion. To
guarantee smoothness, the control point at which two curves meet must be on the line between those two control
points on either side. In animation applications, such as Adobe Flash and Synfig, Bézier curves are used to outline, for
example, movement. Users define the desired path in Bézier curves, and the application creates the required frames
for the object to move along that path. For 3D animations, Bézier curves are often used to define 3D paths as well
as 2D curves for key-frame interpolation. We have been motivated by the following studies. First Bezier-curves with
curvature and torsion continuity has been examined in [4]. Also in [12] and [14] Bezier curves and surfaces has been
given. In [3], Bézier curves are designed for Computer-Aided Geometric. Recently, equivalence conditions of control
points and application to planar Bezier curves have been examined in [5]. A new way of designing ruled surfaces by
means of Bezier curves has been given in [13]. In [7], Frenet apparatus of the cubic Bézier curves has been examined
in E3.We have already examined the cubic Bézier curves in [7], whereas the Mannheim and the involutes of Bezier
curves have been contented in [8] and [9], respectively. Before, 5thorder Bézier curve and its, first, second, and third
derivatives based on the control points of 5thorder Bézier in E3 is examined [10], as well. Moreover, the Bertrand mate
of Nurbs curves has been studied in [2] whereas for open Nurbs curves in [6]. In this paper, the Bertrand mate of a
cubic Bezier curve based on the control points with matrix form has been examined by Frenet apparatus.

The set, whose elements are Frenet vector fields and the curvatures of a curve α (t) ⊂ IE3, is called Frenet apparatus
of the curves.
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Let α(t) be the curve, with η = ∥α′ (t)∥ , 1 and Frenet apparatus are {T (t) ,N (t) , B (t) , κ (t) , τ (t)}. Frenet vector
fields are given for a non arc-lengthed curve

T (t) =
α′ (t)
∥α′ (t)∥

,N (t) = B (t)ΛT (t) , B (t) =
α′ (t)Λα′′ (t)
∥α′ (t)Λα′′ (t)∥

,

where curvature functions are defined by

κ (t) =

∥∥∥α′ (t)Λα′′ (t)
∥∥∥

∥α′ (t)∥3
and τ (t) =

〈
α′ (t)Λα

′′

(t) , α′′′(t)
〉

∥α′ (t)Λα′′ (t)∥2
.

Also, Frenet formulae are well known as T ′

N′

B′

 =
 0 ηκ 0
−ηκ 0 ητ

0 −ητ 0


 T

N
B

 .
Generally, Bézier curves can be defined by n + 1 control points P0, P1, ..., Pn with the parametrization

B(t) =
n∑

i=0

(
n
i

)
ti (1 − t)n−i (t) [Pi] .

In this study, we will define and work on cubic Bézier curves which are defined in E3. For more detail see [1].

Definition 1.1. A cubic Bézier curve is a special Bézier curve has only four points P0, P1, P2 and P3, with the
parametrization

α (t) = (1 − t)3 P0 + 3t (1 − t)2 P1 + 3t2 (1 − t) P2 + t3P3.

The matrix form of the cubic Bezier curve with control points P0, P1, P2, P3, is

α (t) =


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




P0
P1
P2
P3

 .
Also using the derivatives of a cubic Bézier curve Frenet apparatus {T,N, B, κ, τ} have already been given as in the

following theorems by using matrix representation. For more detail see in [7].
The first derivative of a cubic Bézier curve by using matrix representation is

α′(t) =

 t2

t
1


T  1 −2 1
−2 2 0
1 0 0


 Q0

Q1
Q2

 ,
where

Q0 = 3 (P1 − P0) = (x0, y0, z0) ,
Q1 = 3 (P2 − P1) = (x1, y1, z1) ,
Q2 = 3 (P3 − P2) = (x2, y2, z2)

are control points.
The second derivative of a cubic Bézier curve by using matrix representation is

α′′(t) =
[

t
1

]T [
−1 1
1 0

] [
R0
R1

]
,

where R0 = 6 (P2 − 2P1 + P0) , R1 = 6 (P3 − 2P2 + P1) are control points.
The third derivative of a cubic Bézier curve is constant by using matrix representation is

α′′′(t) = [R0R1]

with the control point [R0R1] = R1 − R0 = 2 [Q1Q2] − 2 [Q0Q1]



On the Bertrand Mate of Cubic Bézier Curve by Using Matrix Representation in E3 378

1.1. Frenet Apparatus of a Cubic Bezier Curve. Frenet apparatus {T (t) ,N (t) , B (t) , κ (t) , τ (t)} of a cubic Bézier
curve have already been given as in the following theorems by using the matrix representation. For more detail see
in [8].

Tangent vector field of a cubic Bezier curve α with, ∥α′∥ = η has the following the matrix representation

T (t) =
1
η

 t2

t
1


T  1 −2 1
−2 2 0
1 0 0


 x0 y0 z0

x1 y1 z1
x2 y2 z2

 .

Binormal vector field of a cubic Bezier curve by using the matrix representation is

B (t) =
6
m

 t2

t
1


T  b11 b12 b13

b21 b22 b23
b31 b32 b33

 ,
where ∥α′Λα′′∥ = m,

b11 = (y0z1 − y1z0 − y0z2 + y2z0 + y1z2 − y2z1) ,
b12 = (x1z0 − x0z1 + x0z2 − x2z0 − x1z2 + x2z1) ,
b13 = (x0y1 − x1y0 − x0y2 + x2y0 + x1y2 − x2y1) ,
b21 = (2y1z0 + y0z2 − 2y0z1 − y2z0) ,
b22 = (2x0z1 − 2x1z0 − x0z2 + x2z0) ,
b23 = (2x1y0 − 2x0y1 + x0y2 − x2y0) ,
b31 = y0z1 − y1z0,

b32 = x1z0 − x0z1,

b33 = x0y1 − x1y0.

Normal vector field of a cubic Bezier curve is 4 th degree and has the matrix representation as in

N (t) =
6
ηm


t4

t3

t2

t
1


T 

n11 n12 n13
n21 n22 n23
n31 n32 n33
n41 n42 n43
n51 n52 n53

 =
6
ηm


t4

t3

t2

t
1


T 

N0
N1
N2
N3
N4

 ,

where

n11 = b12d13 − b13d12,

n21 = b12d23 − b13d22 + b22d13 − b23d12,

n31 = b12d33 − b13d32 + b22d23 − b23d22 + b32d13 − b33d12,

n41 = b22d33 − b23d32 + b32d23 − b33d22,

n51 = b32d33 − b33d32,
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n12 = b11d13 − b13d11,

n22 = −b11d23 − b21d13 + b13d21 + b23d11,

n32 = b23d21 + b33d11 − b11d33 − b21d23 + b13d31 − b31d13,

n42 = −b21d33 − b31d23 + b23d31 + b33d21,

n52 = −b31d33 + b33d31,

n13 = b11d12 − b12d11,

n23 = b11d22 − b12d21 + b21d12 − b22d11,

n33 = b11d32 − b12d31 + b21d22 − b22d21 + b31d12 − b32d11,

n43 = b21d32 − b22d31 + b31d22 − b32d21,

n53 = b31d32 − b32d31.

First and second curvatures of a cubic Bezier curve by using the matrix representation are

κ (t) =
6
η3


t4

t3

t2

t
1


T 

b2
11 + b2

12 + b2
13

2b11b21 + 2b12b22 + 2b13b23
2b11b31 + 2b12b32 + 2b13b33 + b2

21 + b2
22 + b2

23
2b21b31 + 2b22b32 + 2b23b33

b2
31 + b2

32 + b2
33


and

τ (t) =
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2 .

2. BertrandMate of a Cubic Bezier Curve

Definition 2.1. Five points P0, P1, P2, P3, and P4 in the plane or in higher-dimensional space define a 4th order Bézier
curve with the following equation

α(t) =
4∑

i=0

(
4
i

)
ti (1 − t)4−i (t) [Pi] , t ∈ [0, 1] .

The matrix form of the 4th order Bézier curve based on the control points is

α(t) =


t4

t3

t2

t
1


T 

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




P0
P1
P2
P3
P4

 .
Definition 2.2. Let a curve α∗ is Bertrand mate of α with Frenet-Serret apparatus {T ∗,N∗, B∗, κ∗, τ∗} , then they have
common principal normal lines, i.e. N = N∗ where ∥α′∥ = η , 1. Hence the equation of Bertrand mate α∗ of the curve
α has the following parametrization; α∗ (t) = α (t)+ µN∗ (t) . Also it can be written as in the following parametrization,
since µ is constant

α∗ (t) = α (t) + µN (t) .

Theorem 2.3. The Bertrand mate of a cubic Bezier curve has the matrix form

α∗ (t) =


t4

t3

t2

t
1


T


6
mηN0

+ 6
mηN1 + P3 − 3P2 − P0 + 3P1

+ 6
mηN2 + 3P2 + 3P0 − 6P1

+ 6
mηN3 + 3P1 − 3P0

+ 6
mηN4 + P0


.
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Proof. Let α∗ = α (t) + µN, hence

α∗ (t) =


t3

t2

t
1


T 
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




P0
P1
P2
P3

 + 6µ
ηm


t4

t3

t2

t
1


T 

N0
N1
N2
N3
N4



=


t4

t3

t2

t
1


T


6µ
ηm N0

+
6µ
ηm N1 + P3 − 3P2 − P0 + 3P1

+
6µ
ηm N2 + 3P2 + 3P0 − 6P1

+
6µ
ηm N3 + 3P1 − 3P0

+
6µ
ηm N4 + P0


.

□

Theorem 2.4. Bertrand mate of a cubic Bezier curve can be written as the 4th order Bezier curve with the the control
points P0, P1, P2 and P3 of any cubic Bezier curve with constant speed , as in the following waywhere η,m are constants

P∗0
P∗1
P∗2
P∗3
P∗4

 =


P0
1
4 P0 +

3
4 P1

1
2 P1 +

1
2 P2

3
4 P2 +

1
4 P3

P3

 +


6µ
ηm N4

3µ
2mηN3 +

6µ
ηm N4

µ
mηN2 +

3µ
mηN3 +

6µ
ηm N4

3µ
2mηN1 +

3µ
mηN2 +

9µ
2mηN3 +

6µ
ηm N4

6µ
ηm N0 +

6µ
ηm N1 +

6µ
ηm N2 +

6µ
ηm N3 +

6µ
ηm N4


.

Proof. Let P∗0, P
∗
1, P

∗
2, P

∗
3 and P∗4 be control points of Bertrand mate of a cubic Bezier curve α∗, so we can write
1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0




P∗0
P∗1
P∗2
P∗3
P∗4

 =


6µ
mηN0

+
6µ
mηN1 + P3 − 3P2 − P0 + 3P1

+
6µ
mηN2 + 3P2 + 3P0 − 6P1

+
6µ
mηN3 + 3P1 − 3P0

+
6µ
mηN4 + P0


.

Using invers matrix we get the proof as in the following way,
P∗0
P∗1
P∗2
P∗3
P∗4

 =


P0 +
6µ
mηN4

1
4 P0 +

3
4 P1 +

3µ
2mηN3 +

6µ
mηN4

1
2 P1 +

1
2 P2 +

µ
mηN2 +

3µ
mηN3 +

6µ
mηN4

3
4 P2 +

1
4 P3 +

3µ
2mηN1 +

3µ
mηN2 +

9µ
2mηN3 +

6µ
mηN4

P3 +
6µ
mηN0 +

6µ
mηN1 +

6µ
mηN2 +

6µ
mηN3 +

6µ
mηN4


.

□

2.1. Frenet Apparatus of Bertrand Mate of Any Cubic Bezier Curve in E3.

Theorem 2.5. Let a curve α∗ is Bertrand mate of α with Frenet-Serret apparatus {T ∗,N∗, B∗, κ∗, τ∗} , then

T ∗ =
γT + B√
γ2 + 1

, N∗ = N, B∗ =
−T + γB√
γ2 + 1

,

κ∗ =
γκ − τ

µτ
√
γ2 + 1

, µτ > 0

τ∗ =
−γτ − κ

µτ
√
γ2 + 1

, µτ > 0

Proof. It is trivial for a Bertrand curve α, that there are constants µ and γ such that 1
µ
= κ + γτ, with Bertrand mate

α∗ (t) = α + µN. □
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Theorem 2.6. Tangent vector field of Bertrand mate of any cubic Bezier curve is

T ∗ =

 t2

t
1


T 

6
m b11 +

γ
η

x0 − 2 γ
η

x1 +
γ
η

x2
6
m b12 +

γ
η
y0 − 2 γ

η
y1 +

γ
η
y2

6
m b13 +

γ
η
z0 − 2 γ

η
z1 +

γ
η
z2

6
m b21 − 2 γ

η
x0 + 2 γ

η
x1

6
m b22 − 2 γ

η
y0 + 2 γ

η
y1

6
m b23 − 2 γ

η
z0 + 2 γ

η
z1

6
m b31 +

γ
η

x0
6
m b32 +

γ
η
y0

6
m b33 +

γ
η
z0

√
γ2 + 1

.

Proof. We have already known that T ∗ = γT+B
√
γ2+1

T ∗ =

γ
η

 t2

t
1


T  1 −2 1
−2 2 0
1 0 0


 x0 y0 z0

x1 y1 z1
x2 y2 z2

 + 6
m

 t2

t
1


T  b11 b12 b13

b21 b22 b23
b31 b32 b33

√
γ2 + 1

,

T ∗ =

 t2

t
1


T 

6
m b11 +

γ
η

x0 − 2 γ
η

x1 +
γ
η

x2
6
m b12 +

γ
η
y0 − 2 γ

η
y1 +

γ
η
y2

6
m b13 +

γ
η
z0 − 2 γ

η
z1 +

γ
η
z2

6
m b21 − 2 γ

η
x0 + 2 γ

η
x1

6
m b22 − 2 γ

η
y0 + 2 γ

η
y1

6
m b23 − 2 γ

η
z0 + 2 γ

η
z1

6
m b31 +

γ
η

x0
6
m b32 +

γ
η
y0

6
m b33 +

γ
η
z0

√
γ2 + 1

.

□

Corollary 2.7. The control points S ∗0, S
∗
1, S

∗
2 which are belong to tangent vector field of Bertrand mate which is a

quadratic Bezier curve are

 S ∗0
S ∗1
S ∗2

 = 1√
γ2 + 1


6
m b31 +

γ
η

x0
6
m b32 +

γ
η
y0

6
m b33 +

γ
η
z0

3
m b21 +

6
m b31 +

γ
η

x1
3
m b22 +

6
m b32 +

γ
η
y1

3
m b23 +

6
m b33 +

γ
η
z1

6b11
m +

6b21
m +

6b31
m +

γx2
η

6b12
m +

6b22
m +

6b32
m +

γy2
η

6b13
m +

6b23
m +

6b33
m +

γz2
η

 .
Proof. Since η,m are constants and using inverse matrix we have the result. □

Theorem 2.8. Normal vector field of Bertrand mate α∗of any cubic Bezier curve is

N∗ = N =
6
ηm


t4

t3

t2

t
1


T 

N0
N1
N2
N3
N4


with the same degree and control points of Bertrand curve.

Theorem 2.9. Binormal vector field of Bertrand mate α∗of any cubic Bezier curve has the matrix representation as

B∗ =

 t2

t
1


T


2
η

x1 −
1
η

x0 −
1
η

x2 +
6γ
m b11

2
η
y1 −

1
η
y0 −

1
η
y2 +

6γ
m b12

2
η
z1 −

1
η
z0 −

1
η
z2 +

6γ
m b13

2
η

x0 −
2
η

x1 +
6γ
m b21

2
η
y0 −

2
η
y1 +

6γ
m b22

2
η
z0 −

2
η
z1 +

6γ
m b23

6γ
m b31 −

1
η

x0
6γ
m b32 −

1
η
y0

6γ
m b33 −

1
η
z0

√
γ2 + 1

.



On the Bertrand Mate of Cubic Bézier Curve by Using Matrix Representation in E3 382

Proof. Since B∗ =
−T + γB√
γ2 + 1

,

B∗ =

−1
η

 t2

t
1


T  1 −2 1
−2 2 0
1 0 0


 x0 y0 z0

x1 y1 z1
x2 y2 z2

 + 6γ
m

 t2

t
1


T  b11 b12 b13

b21 b22 b23
b31 b32 b33

√
γ2 + 1

,

B∗ =

 t2

t
1


T
−1
η

 1 −2 1
−2 2 0
1 0 0


 x0 y0 z0

x1 y1 z1
x2 y2 z2

 + 6γ
m

 b11 b12 b13
b21 b22 b23
b31 b32 b33

√
γ2 + 1

,

which completes the proof. □

Corollary 2.10. The control points K∗0 ,K
∗
1 ,K

∗
2 which are belong to Binormal vector field of Bertrand mate α∗ which is

a quadratic Bezier curve are

 K∗0
K∗1
K∗2

 =


6γb31

m −
x0
η

6γb32
m −

y0
η

6γb33
m −

z0
η

3γb21
m − 1

η
x1 +

6γb31
m

3γb22
m − 1

η
y1 +

6γb32
m

3γb23
m −

z1
η
+

6γb33
m

6γb11
m −

x2
η
+

6γb21
m +

6γb31
m

6γb12
m −

y2
η
+

6γb22
m +

6γb32
m

6γb13
m −

z2
η
+

6γb23
m +

6γb33
m

√
γ2 + 1

.

Proof. Since η,m are constants 1 −2 1
−2 2 0
1 0 0


 K∗0

K∗1
K∗2

 =


2x1
η
−

x0
η
−

x2
η
+

6γb11
m

2
η
y1 −

y0
η
−

y2
η
+

6γb12
m

2z1
η
−

z0
η
−

z2
η
+

6γb13
m

2
η

x0 −
2
η

x1 +
6γb21

m
2
η
y0 −

2
η
y1 +

6γb22
m

2
η
z0 −

2
η
z1 +

6γb23
m

6γb31
m − 1

η
x0

6γb32
m − 1

η
y0

6γb33
m − 1

η
z0

 .
By using inverse matrix, we have the result. □

Theorem 2.11. The first and second curvature of Bertrand mate α∗of any cubic Bezier curve in E3are

κ∗ =

6γ
η3


t4

t3

t2

t
1


T 

b2
11 + b2

12 + b2
13

2b11b21 + 2b12b22 + 2b13b23
2b11b31 + 2b12b32 + 2b13b33 + b2

21 + b2
22 + b2

23
2b21b31 + 2b22b32 + 2b23b33

b2
31 + b2

32 + b2
33

 − τ
µτ

√
γ2 + 1

,

τ∗ =
−γτ

µτ
√
γ2 + 1

−

6


t4

t3

t2

t
1


T 

b2
11 + b2

12 + b2
13

2b11b21 + 2b12b22 + 2b13b23
2b11b31 + 2b12b32 + 2b13b33 + b2

21 + b2
22 + b2

23
2b21b31 + 2b22b32 + 2b23b33

b2
31 + b2

32 + b2
33


µτη3

√
γ2 + 1

.

Proof. Since Bertrand mate has κ∗ =
γκ − τ

µτ
√
γ2 + 1

, curvatures τ∗ =
−γτ − κ

µτ
√
γ2 + 1

, µτ > 0 it is trivial. □
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