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Abstract. In this study, we define third order bronze Fibonacci quaternions. We obtain the generating functions,
the Binet’s formula and some properties of these quaternions. We give d’Ocagne’s-like and Cassini’s-like identity
and we use q-determinants for quaternionic matrices to give the Cassini’s identity for third order bronze Fibonacci
quaternions.
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1. Introduction

The real quaternions were first defined by Sir William Rowan Hamilton in 1843, [13]. Let Q be a four dimensional
vector space over R with an ordered base 1, i, j, k. A real quaternion is a vector quaternion

Qn = a + bi + c j + dk ∈ Q,

where a, b, c, d ∈ R. The product of two quaternions in this space is defined by

i2 = j2 = k2 = −1,

i j = − ji = k, jk = −k j = i, ki = −ik = j.

Horodam in [15] defined Fibonacci and Lucas quaternions as follows:

Qn = Fn + Fn+1 + Fn+2i + Fn+3k

and
Kn = Ln + Ln+1 + Ln+2i + Ln+3k,

where Fn and Ln are the nth Fibonacci and Lucas numbers [14]. Fibonacci quaternions and the properties of these
sequences are also studied by Halici in [8, 9]. They also studied Gaussian Fibonacci, complex Fibonacci and dual Fi-
bonacci quaternions, see [10–12]. Generalized Fibonacci quaternions are studied by Swammy in [17]. The properties
of bicomplex Fibonacci and generalized dual Fibonacci quaternions are studied in [2] and [18], respectively. k-Pell
and k-Pell Lucas quaternions are studied in [7] and k-Fibonacci and k-Lucas quaternions over Zp in [19]
In [4] Cerda-Morales introduced third order Jacobsthal quaternions and Jacobsthal-Lucas quaternions. The author also
studied bicomplex third order Jacobsthal quaternions in [3] and dual third-order Jacobsthal quaternions in [5, 6]. They
obtained the generating function, Binet Formula, d’Ocagne-like identity and Cassini-like identity for these quaternions.

Email address: jeta@beykent.edu.tr (J. Alo)

https://orcid.org/0000-0002-9149-7811


On Third Order Bronze Fibonacci Quaternions 332

However, the Cassini Identity for generalized third order Pell numbers and third order bronze Fibonacci numbers is
obtained in [16] and [1], respectively.

2. Preliminaries

In this study, we will define and study third order bronze Fibonacci quaternions by using third order bronze Fibonacci
numbers which are studied in [1]. The authors investigated the generalized third order bronze Fibonacci sequence and
three specific sequences which are derived from its De-Moivre Type Identities. The sequence {BG

n } with the recurrence
relation BG

n = 3BG
n−1 +B

G
n−2 +B

G
n−3 for n ≥ 3, where BG

0 ,B
G
1 ,B

G
2 are any arbitrary numbers not all being zero, is called

a generalized third order bronze Fibonacci sequence [1]. The sequences derived from the De-Moivre Type Identities
of this sequence are: third order bronze Lucas sequence {BL

n }, modified third order bronze Fibonacci sequence {BM
n }

and third order bronze Fibonacci sequence {BF
n } [1].

The first ten terms of above sequences are presented in the following table.

Table 1. The Third Order Bronze Fibonacci Numbers

n 0 1 2 3 4 5 6 7 8 9 10

BLn 3 3 11 39 131 443 1499 5071 17155 58035 196331
BMn 1 2 7 24 81 274 927 3136 10609 35890 121415
B
F
n 1 3 10 34 115 389 1316 4452 15061 50951 172366

Some of identities of third order bronze Fibonacci sequences that will be used in this study are:

− The generating function for generalized third order bronze Fibonacci numbers

B
G(x) =

BG
0 + (BG

1 − 3BG
0 )x + (BG

2 − 3BG
1 −B

G
0 )x2

1 − 3x − x2 − x3 , (2.1)

where BG(x) =
∑∞

n=0B
G
n xn [1].

− The Binet’s Formula for third order bronze Fibonacci numbers

B
G
n = d1α

n
1 + d2α

n
2 + d3α

n
3, (2.2)

where

d1 =
BG

0 α2α3 −B
G
1 (α2 + α3) +BG

2

(α2 − α1)(α3 − α1)
,

d2 =
−BG

0 α1α3 +B
G
1 (α1 + α3) −BG

2

(α3 − α2)(α2 − α1)
,

d3 =
BG

0 α1α2 −B
G
1 (α1 + α2) +BG

2

(α3 − α2)(α3 − α1)

(2.3)

and α1, α2, α3 are roots of the equation x3 − 3x2 − x − 1 = 0, i.e,

α1 = 1 + U + V,

α2 = 1 −
1
2

(U + V) + i

√
3

2
(U − V),

α3 = 1 −
1
2

(U + V) − i

√
3

2
(U − V),

(2.4)

where U =
3

√
2 +
√

4 − 64
27 , V =

3

√
2 −
√

4 − 64
27 , UV = 4

3 , and U3 + V3 = 4 [1].
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− The linear sum for generalized third order bronze Fibonacci numbers [1]
n∑

k=0

B
G
k =

1
4

(BG
n+3 − 2BG

n+2 − 3BG
n+1 −B

G
2 + 2BG

1 + 3BG
0 ). (2.5)

Now, we define quaternionic matrices which will be used to obtain Cassini’s Identity. Let Mm×n(Q) be the set of all
m× n matrices with quaternion entries and Mn(Q) the set of all square matrices with quaternion entries. The properties
of these matrices are studied in [20]. For A = A1 + A2 j ∈ Mn(Q), the 2n × 2n complex matrix[

A1 A2

−A2 A1

]
is called the complex adjoint of the quaternion matrix A and is denoted by χA. This matrix is uniquely determined by
A and some of the properties of this matrix given in [20] are
a) χIn = I2n,
b) χAB = χAχB,
c) χA+B = χA + χB,
d) χA is unitary, Hermitian or normal⇔ A is unitary, Hermitian or normal, respectively.

The author in [20] also defined the q-determinant of A to be det(χA), i.e. |A|q = |χA| and obtained the following
results which will be used in this study
a) A is invertible⇔ |A|q , 0,
b) |AB|q = |A|q|B|q, consequently |A−1|q = |A|−1

q ,
c) |PAQ|q = |A|q, for any elementary matrices P and Q.

3. Third Order Bronze Fibonacci Quaternions and Some Properties

We define third order generalized bronze Fibonacci quaternions by

BQG
n = B

G
n +B

G
n+1i +BG

n+2 j +BG
n+3k,

where BG
n is the nth generalized third order bronze Fibonacci number. Then, it can be shown that for n ≥ 3

BQG
n = 3BQG

n−1 +BQG
n−2 +BQG

n−3.

By using recurrence relation and initial terms for bronze Fibonacci numbers, we also define

B
L
−1 = −1,BL

−2 = −5,

B
M
−1 = 0,BM

−2 = −1,

B
F
−1 = 0,BL

−2 = 0.

(3.1)

The sum of the first n terms of the generalized third order bronze Fibonacci quaternions sequence can be given by the
following theorem.

Theorem 3.1. The linear sum of the first n terms of the generalized third order bronze Fibonacci quaternion sequence
is

n∑
k=0

BQG
k =

1
4
{BQG

n+3 − 2BQG
n+2 − 3BQG

n+1 +B
G
0 (3 − i − j − k) +BG

1 (2 + 2i − 2 j − 2k) −BG
2 (1 + i + j + 5k)}. (3.2)

Proof.
n∑

k=0

BQG
k =

n∑
k=0

B
G
k +

n∑
k=0

B
G
k+1i +

n∑
k=0

B
G
k+2 j +

n∑
k=0

B
G
k+3

=

n∑
k=0

B
G
k + (

n+1∑
k=0

B
G
k −B

G
0 )i + (

n+2∑
k=0

B
G
k −B

G
0 −B

G
1 ) j + (

n+3∑
k=0

B
G
k −B

G
0 −B

G
1 −B

G
2 )k.
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By using (2.5), we find
n∑

k=0

BQG
k =

1
4
{BG

n+3 − 2BG
n+2 − 3BG

n+1 −B
G
2 + 2BG

1 + 3BG
0 } +

1
4

(BG
n+4 − 2BG

n+3 − 3BG
n+2 −B

G
2 + 2BG

1 −B
G
0 )i

+
1
4

(BG
n+5 − 2BG

n+4 − 3BG
n+3 −B

G
2 − 2BG

1 −B
G
0 ) j +

1
4

(BG
n+6 − 2BG

n+5 − 3BG
n+4 − 5BG

2 − 2BG
1 −B

G
0 )k

which implies (3.2). □

Corollary 3.2. Linear sums for the sequences {BQL
n }, {BQM

n }, and {BQF
n } can be calculated as:

n∑
k=0

BQL
k =

1
4
{BQL

n+3 − 2BQL
n+2 − 3BQL

n+1 + 4 − 8i − 20 j − 64k},

n∑
k=0

BQM
k =

1
4
{BQM

n+3 − 2BQM
n+2 − 3BQM

n+1 − 4i − 12 j − 40k},

n∑
k=0

BQF
k =

1
4
{BQF

n+3 − 2BQF
n+2 − 3BQF

n+1 − 1 − 5i − 17 j − 57k}.

4. Generating Functions and Binet’s Formula

In this section, we obtain the generating function and Binet’s formula for generalized third order bronze Fibonacci
quaternion sequence and its three specific sequences.

Theorem 4.1. The generating function for generalized third order bronze Fibonacci quaternion sequence {BQG
n } is

given by

BQG(x) =
1

1 − 3x − x2 − x3 {BQG
0 + (BQG

−2 +BQG
−1)x +BQG

−1x2}, (4.1)

where BQG(x) =
∑∞

n=0BQG
n xn.

Proof. Let BQG(x) =
∑∞

n=0BQG
n xn. Then,

BQG(x) =

∞∑
n=0

B
G
n xn +

∞∑
n=0

B
G
n+1xni +

∞∑
n=0

B
G
n+2xn j +

∞∑
n=0

B
G
n+3xnk,

= B
G(x) +

1
x

(BG(x) −BG
0 )i +

1
x2 (BG(x) −BG

0 −B
G
1 x) +

1
x3 (BG(x) −BG

0 −B
G
1 x −BG

2 x2)k.

By using equation (2.1) and the fact that Bn+1 − 3Bn = Bn−1 +Bn−2 and Bn+2 − 3Bn+1 −Bn = Bn−1 we find

BQG(x) =
1

1 − 3x − x2 − x3 {B
G
0 + (BG

−2 +B
G
−1)x +BG

−1x2 + (BG
1 + (BG

−1 +B
G
0 )x +BG

0 x2)i

+(BG
2 + (BG

0 +B
G
1 )x +BG

1 x2) j + (BG
3 + (BG

1 +B
G
2 )x +BG

2 x2)k},

which implies equation (4.1). □

By using (3.1) we can give the following corollary.

Corollary 4.2. The generating functions for the sequences {BQL
n }, {BQM

n } and {BQF
n } can be calculated as follows;

BQL(x) =
1

1 − 3x − x2 − x3 {3 − 6x − x2 + (3 + 2x + 3x2)i + (11 + 6x + 3x2) j + (39 + 14x + 11x2)k},

BQM(x) =
1

1 − 3x − x2 − x3 {1 − x + (2 + x + x2)i + (7 + 3x + 2x2) j + (24 + 9x + 10x2)k},

BQF(x) =
1

1 − 3x − x2 − x3 {1 + (3 + x + x2)i + (10 + 4x + 3x2) j + (34 + 13x + 10x2)k}.
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Theorem 4.3. The Binet’s formula for generalized third order bronze Fibonacci quaternion sequence {BQG
n } is given

by
BQG

n = d1ω1α
n
1 + d2ω2α

n
2 + d3ω3α

n
3,

where d1, d2, d3 are coefficients given in (2.3), α1, α2, α3 are roots of the equation x3 − 3x2 − x − 1 = 0 given in (2.4)
and

ωi = 1 + αii + α2
i j + α3

i k, i = 1, 2, 3.

Proof. Let BQG
n = B

G
n +B

G
n+1i +BG

n+2 j +BG
n+3k be the n-th generalized third order bronze Fibonacci Quaternion, then

by using the Binet Formula for generalized bronze Fibonacci numbers (2.2) we find

BQG
n = d1α

n
1 + d2α

n
2 + d3α

n
3 + (d1α

n+1
1 + d2α

n+1
2 + d3α

n+1
3 )i

+ (d1α
n+2
1 + d2α

n+2
2 + d3α

n+2
3 ) j + (d1α

n+3
1 + d2α

n+3
2 + d3α

n+3
3 )k

= d1(1 + α1i + α2
1 j + α3

1k)αn
1 + d2(1 + α2i + α2

2 j + α3
2k)αn

2 + d3(1 + α3i + α2
3 j + α3

3k)αn
3

which proves the theorem. □

Corollary 4.4. Binet’s Formulas for the sequences {BQL
n }, {BQM

n }, and {BQF
n } can be calculated as:

BQL
n =

3α2α3 − 3(α2 + α3) + 11
(α2 − α1)(α3 − α1)

ω1α
n
1 +
−3α1α3 + 3(α1 + α3) − 11

(α3 − α2)(α2 − α1)
ω2α

n
2 +

3α1α2 − 3(α1 + α2) + 11
(α3 − α2)(α3 − α1)

ω3α
n
3

or
BQL

n = ω1α
n
1 + ω2α

n
2 + ω3α

n
3,

BQM
n =

α2α3 − 2(α2 + α3) + 7
(α2 − α1)(α3 − α1)

ω1α
n
1 +
−α1α3 + 2(α1 + α3) − 7

(α3 − α2)(α2 − α1)
ω2α

n
2 +
α1α2 − 2(α1 + α2) + 7

(α3 − α2)(α3 − α1)
ω3α

n
3

and

B
F
n =
α2α3 − 3(α2 + α3) + 10

(α2 − α1)(α3 − α1)
ω1α

n
1 +
−α1α3 + 3(α1 + α3) − 10

(α3 − α2)(α2 − α1)
ω2α

n
2 +
α1α2 − 3(α1 + α2) + 10

(α3 − α2)(α3 − α1)
ω3α

n
3.

5. Matrix Representation of Generalized Third Order Bronze Fibonacci Quaternions

In this section, we will use the matrix representation of quaternions to find the expression of BQG
n+m.

Define the matrix

B =

3 1 1
1 0 0
0 1 0

 .
Then, in [1] it is shown that

Bn =

 B
F
n BF

n−1 +B
F
n−2 BF

n−1
BF

n−1 BF
n−2 +B

F
n−3 BF

n−2
BF

n−2 BF
n−3 +B

F
n−4 BF

n−3

 (5.1)

and det Bn = 1. We define the matrix

BQ =

BQG
2 BQG

1 +BQG
0 BQG

1
BQG

1 BQG
0 +BQG

−1 BQG
0

BQG
0 BQG

−1 +BQG
−2 BQG

−1

 (5.2)

and give the next theorem.

Theorem 5.1. If BQG
n is the n-th generalized third order bronze Fibonacci quaternion then,

BQ · Bn =

BQG
n+2 BQG

n+1 +BQG
n BQG

n+1
BQG

n+1 BQG
n +BQG

n−1 BQG
n

BQG
n BQG

n−1 +BQG
n−2 BQG

n−1


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Proof. We will use induction by n to prove this theorem. For n = 0 the result is obvious. Suppose it is true for n := n
and let us show that it is true for n := n + 1, too.

BQ · Bn+1 = (BQ · Bn) · B =

BQG
n+2 BQG

n+1 +BQG
n BQG

n+1
BQG

n+1 BQG
n +BQG

n−1 BQG
n

BQG
n BQG

n−1 +BQG
n−2 BQG

n−1

 ·
3 1 1
1 0 0
0 1 0


=

3BQG
n+2 +BQG

n+1 +BQG
n BQG

n+2 +BQG
n+1 BQG

n+2
3BQG

n+1 +BQG
n +BQG

n−1 BQG
n+1 +BQG

n BQG
n+1

3BQG
n +BQG

n−1 +BQG
n−2 BQG

n +BQG
n−1 BQG

n

 =
BQG

n+3 BQG
n+2 +BQG

n+1 BQG
n+2

BQG
n+2 BQG

n+1 +BQG
n BQG

n+1
BQG

n+1 BQG
n +BQG

n−1 BQG
n

 .
□

Corollary 5.2. For n ≥ 0 we have

BQG
n+1 = BQG

1B
F
n + (BQG

0 +BQG
−1)BF

n−1 +BQG
0B

F
n−2.

Proof. BQG
n+1 is the (2,1) entry of the matrix BQ · Bn which is the product of the third row of the matrix BQ given in

(5.2) and the first column of the matrix Bn given in (5.1). □

Now, for n ≥ 0 let us define

Yn =

BQG
n+2 BQG

n+1 +BQG
n BQG

n+1
BQG

n+1 BQG
n +BQG

n−1 BQG
n

BQG
n BQG

n−1 +BQG
n−2 BQG

n−1

 .
It can be easily shown that Yn+1 = B · Yn and the bellow theorem holds.

Theorem 5.3. For n,m ≥ 0 we have
(1) Yn = BnY0,
(2) Y0Bn = BnY0,
(3) Yn+m = YnBm.

Proof. (1) We can show this by induction. For n = 0 it is obvious, Let’s suppose that this equality is satisfied for
n := n then,

Yn+1 = B · Yn = B · Bn · Y0 = Bn+1 · Y0.

(2) We will use induction over n. It can be easily shown by straightforward calculation that

Y0 · B = B · Y0.

Suppose that this equality is true for n := n, then

Y0 · Bn+1 = Y0 · Bn · B = Bn · Y0 · B = Bn · B · Y0 = Bn+1 · Y0.

(3) From 1 and 2 it follows that

Yn+m = Bn+m · Y0 = Bn · Bm · Y0 = Bn · Y0 · Bm = Yn · Bm.

□

Theorem 5.4. For n,m ≥ 0 we have

BQG
n+m = BQG

nB
F
m + (BQG

n−1 +BQG
n−2)BF

m−1 +BQG
n−1B

F
m−2.

Proof. From the above theorem we have Yn+m = YnBm or

Yn+m =

BQG
n+m+2 BQG

n+m+1 +BQG
n+m BQG

n+m+1
BQG

n+m+1 BQG
n+m +BQG

n+m−1 BQG
n+m

BQG
n+m BQG

n+m−1 +BQG
n+m−2 BQG

n+m−1


=

BQG
n+2 BQG

n+1 +BQG
n BQG

n+1
BQG

n+1 BQG
n +BQG

n−1 BQG
n

BQG
n BQG

n−1 +BQG
n−2 BQG

n−1

 ·
 B

F
m BF

m−1 +B
F
m−2 BF

m−1
BF

m−1 BF
m−2 +B

F
m−3 BF

m−2
BF

m−2 BF
m−3 +B

F
m−4 BF

m−3

 .
Since BQG

n+m is the (3,1) entry of the matrix Yn+m it is equal to the product of the third row of the matrix Yn and the
first row of the matrix Bm. □
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6. Some Identities for Third Order Bronze Fibonacci Quaternions

In this section, we first give the d’Ocagne’s-like identity and Cassini’s-like identity and then we obtain Cassini’s
identity for third order bronze Fibonacci quaternions by using q-determinants for matrices with quaternionic entries.

Theorem 6.1. (d’Ocagne’s-like identity). Let BQG
m be the nth bronze Fibonacci quaternion and n ≥ m ≥ 0, then the

d’Ocagne’s-like identity for third order bronze Fibonacci quaternions is given by

BQG
m ·BQG

n+1 −BQG
m+1 ·BQG

n =
∑
i< j

did j(α j − αi)αm
i α

m
j (ωiω jα

n−m
j − ω jωiα

n−m
i ),

where d1, d2, d3 are given in (2.3), α1, α2, α3 in (2.4) and ω1, ω2, ω3 in (4.3).

Proof. The proof can be shown by using the Binet’s formula (4.3)

(d1ω1α
m
1 + d2ω2α

m
2 + d3ω3α

m
3 ) · (d1ω1α

n+1
1 + d2ω2α

n+1
2 + d3ω3α

n+1
3 )

− (d1ω1α
m+1
1 + d2ω2α

m+1
2 + d3ω3α

m+1
3 ) · (d1ω1α

n
1 + d2ω2α

n
2 + d3ω3α

n
3)

=
∑
i< j

did j(ωiω jα
m
i α

n
j (α j − αi) + ω jωiα

m
j α

n
i (αi − α j))

=
∑
i< j

did j(α j − αi)αm
i α

m
j (ωiω jα

n−m
j − ω jωiα

n−m
i ).

□

For m := n + 1 in d’Ocagne’s we get the Cassini’s-like identity for third order bronze Fibonacci quaternions in the
next result.

Corollary 6.2. (Cassini’s-like identity). For a natural number n we have

BQG
n+1

2
−BQG

n+2 ·BQG
n =
∑
i< j

did j(α j − αi)αn
i α

n
j (ωiω jαi − ω jωiα j).

Now, we give Cassini’s identity for generalized third order bronze Fibonacci quaternions by using q-determinants.

Theorem 6.3. Cassini’s Identity for generalized third order bronze Fibonacci quaternions is given by∣∣∣∣∣∣∣∣
BQG

n+2 BQG
n+1 BQG

n
BQG

n+1 BQG
n BQG

n−1
BQG

n BQG
n−1 BQG

n−2

∣∣∣∣∣∣∣∣
q

=

∣∣∣∣∣∣∣∣
BQG

2 BQG
1 BQG

0
BQG

1 BQG
0 BQG

−1
BQG

0 BQG
−1 BQG

−2

∣∣∣∣∣∣∣∣
q

.

Proof. The proof is given by mathematical induction, using recurrence relations and the properties of q-determinant of
matrices with quaternionic entries. For n = 0 the result is obvious. Let us assume that identity is satisfied for n := n
then by using recurrence relation it can be easily proved that it is satisfied for n := n + 1

∣∣∣∣∣∣∣∣
BQG

n+3 BQG
n+2 BQG

n+1
BQG

n+2 BQG
n+1 BQG

n
BQG

n+1 BQG
n BQG

n−1

∣∣∣∣∣∣∣∣
q

=

∣∣∣∣∣∣∣∣
3BQG

n+2 +BQG
n+1 +BQG

n BQG
n+2 BQG

n+1
3BQG

n+1 +BQG
n +BQG

n−1 BQG
n+1 BQG

n
3BQG

n +BQG
n−1 +BQG

n−2 BQG
n BQG

n−1

∣∣∣∣∣∣∣∣
q

=

∣∣∣∣∣∣∣∣
BQG

n BQG
n+2 BQG

n+1
BQG

n−1 BQG
n+1 BQG

n
BQG

n−2 BQG
n BQG

n−1

∣∣∣∣∣∣∣∣
q

=

∣∣∣∣∣∣∣∣
BQG

n+2 BQG
n+1 BQG

n
BQG

n+1 BQG
n BQG

n+1
BQG

n BQG
n−1 BQG

n−2

∣∣∣∣∣∣∣∣
q

.

□

Corollary 6.4. Cassini’s Identity for {BQF
n }, {BQL

n }, {BQM
n } sequences is given by∣∣∣∣∣∣∣∣

BQF
n+2 BQF

n+1 BQF
n

BQF
n+1 BQF

n BQF
n−1

BQF
n BQF

n−1 BQF
n−2

∣∣∣∣∣∣∣∣
q

= 1088, (6.1)
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BQL

n+2 BQL
n+1 BQL

n
BQL

n+1 BQL
n BQL

n−1
BQL

n BQL
n−1 BQL

n−2

∣∣∣∣∣∣∣∣
q

= 31234981888 + 31426560000i, (6.2)

∣∣∣∣∣∣∣∣
BQM

n+2 BQM
n+1 BQM

n
BQM

n+1 BQM
n BQM

n−1
BQM

n BQM
n−1 BQM

n−2

∣∣∣∣∣∣∣∣
q

= 349660 − 501220i. (6.3)

Proof. Since BQF
n = B

F
n +B

F
n+1i +BF

n+2 j +BF
n+3k we can write

BQF
n = (BF

n +B
F
n+1i) + (BF

n+2 +B
F
n+3i) j.

Now, let

A =

BQF
2 BQF

1 BQF
0

BQF
1 BQF

0 BQF
−1

BQF
0 BQF

−1 BQF
−2


be a matrix with quaternion entries, and

A1 =

B
F
2 +B

F
3 i BF

1 +B
F
2 i BF

0 +B
F
1 i

BF
1 +B

F
2 i BF

0 +B
F
1 i BF

−1 +B
F
0 i

BF
0 +B

F
1 i BF

−1 +B
F
0 i BF

−2 +B
F
−1i


=

10 + 34i 3 + 10i 1 + 3i
3 + 10i 1 + 3i 0 + 1i
1 + 3i 0 + 1i 0 + 0i


and

A2 =

B
F
4 +B

F
5 i BF

3 +B
F
4 i BF

2 +B
F
3 i

BF
3 +B

F
4 i BF

2 +B
F
3 BF

1 +B
F
2 i

BF
2 +B

F
3 i BF

1 +B
F
2 i BF

0 +B
F
1 i


=

115 + 89i 34 + 115i 10 + 34i
34 + 115i 10 + 34i 3 + 10i
10 + 34i 3 + 10i 1 + 3i


matrices with complex entries, then A = A1 + A2 j. We define the complex adjoint of the quaternion matrix A by

χA =

[
A1 A2

−A2 A1

]
and define the q-determinant of A as |A|q = |χA|, [20]. Then by using the properties of the determinant of block matrices
we have

|χA| =

∣∣∣∣∣∣ A1 A2

−A2 A1

∣∣∣∣∣∣ = detA1det(A1 + A2A−1
1 A2),

A−1
1 =

1
4

−1 + i 2 − 4i 5 + i
2 − 4i −2 + 14i −1 − 2i
5 + i −1 − 2i −3 − 5i

 ,
A2A−1

1 A2 =

1316 − 4452i 389 − 1316i 115 − 389i
389 − 1316i 115 − 389i 34 − 115i
115 − 389i 34 − 115i 10 − 34i

 ,
A1 + A2A−1

1 A2 =

1326 − 4486i 392 − 1326i 116 − 392
392 − 1326i 116 − 392i −116i + 34
116 − 392i −116i + 34 10 − 34i


and

det(A1 + A2A−1
1 A2) = −272 + 272i,
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detA1 = −2 − 2i.
Then,

|A|q = |χA| = (−2 − 2i)(−272 + 272) = 1088.
By the above theorem, we get equation (6.1).

Equations (6.2) and (6.3) are obtained similarly. □

7. Conclusion

There have been many studies about Fibonacci and other second order quaternions. As for third order quaternions,
there are studies about Jacobsthal, dual Jacobsthal and bicomplex Jacobsthal third order quaternions. We introduce
generalized third order bronze Fibonacci quaternions and its three specific sequences. We present Binet’s formula,
generating functions, matrix representation for these sequences, d’Ocagne’s-like and Cassini’s-like formulas. Further-
more, we give a new method to calculate the Cassini’s Identity for generalized third order bronze Fibonacci quaternions
and its three specific sequences.
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