
Turk. J. Math. Comput. Sci.
14(1)(2022) 191–200
©MatDer
DOI : 10.47000/tjmcs.982426

Mutation-Based Algebraic Artificial Bee Colony Algorithm for Computing
the Distance of Linear Codes

Adrian Korban 1 , Serap Şahinkaya2 , Deniz Ustun3,∗

1 Department of Mathematical and Physical Sciences, University of Chester, Chester, England.
2Department of of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, 33400, Mersin, Turkey.

3Department of Computer Engineering, Faculty of Engineering, Tarsus University, 33400, Mersin, Turkey.

Received: 13-08-2021 • Accepted: 11-01-2022

Abstract. Finding the minimum distance of linear codes is a non-deterministic polynomial-time-hard problem
and different approaches are used in the literature to solve this problem. Although, some of the methods focus on
finding the true distances by using exact algorithms, some of them focus on optimization algorithms to find the lower
or upper bounds of the distance. In this study, we focus on the latter approach. We first give the swarm intelligence
background of artificial bee colony algorithm, we explain the algebraic approach of such algorithm and call it the
algebraic artificial bee colony algorithm (A-ABC). Moreover, we develop the A-ABC algorithm by integrating it
with the algebraic differential mutation operator. We call the developed algorithm the mutation-based algebraic
artificial bee colony algorithm (MBA-ABC). We apply both; the A-ABC and MBA-ABC algorithms to the problem
of finding the minimum distance of linear codes. The achieved results indicate that the MBA-ABC algorithm has
a superior performance when compared with the A-ABC algorithm when finding the minimum distance of Bose,
Chaudhuri, and Hocquenghem (BCH) codes (a special type of linear codes).

2010 AMS Classification: 11T71, 14G50, 68P30, 78M50, 80M50, 90C27

Keywords: Minimum distance, minimum-weight codeword, optimisation, heuristic, artificial bee colony algorithm.

1. Introduction

Coding theory is one of the fundamental tools of Information theory. Codes are used to convert messages into a
sequence of binary digits, then those messages are transmitted via communication channels. Although communications
channels are safer these days than in the past, codes can still be disturbed during the transmission. Therefore, for a
reliable communication, it is very important for codes to have the feature of determining and correcting the errors.
The error correction capability of a code depends on the notion of the distance. Thus, for a given block length n and
dimension k, the code is desired to have the minimum distance as large as possible. Finding the minimum distance of a
linear code is the major task for determining the error correction capability of the code. However, it is not an easy task
to compute the minimum distance of codes of large sizes. Vardy showed that, the computation of the minimum weight
of a non-zero binary codeword is a non-deterministic polynomial-time (NP)-complete [28]. Although, it is possible
to determine the minimum distance of linear codes, computation is getting harder when the size and block length of
the code grow. There exist different approaches in the literature to determine the minimum distance of linear codes.
Although some of them focus on finding the true distances by using the exact algorithms [7, 16, 20], some of them
focus on the approximate methods to find the lower or upper bounds for the distance. For the latter approach, several

*Corresponding Author
Email addresses: adrian3@windowslive.com (A. Korban), serap@tarsus.edu.tr (S. Şahinkaya), denizustun@tarsus.edu.tr (D. Ustun)

https://orcid.org/0000-0001-5206-6480
https://orcid.org/0000-0002-2084-6260
https://orcid.org/0000-0002-5229-4018

MBA-ABC Algorithm for Computing the Distance of Linear Codes 192

heuristic search algorithms like a genetic algorithms simulated annealing, Metropolis algorithm, hill climbing, tabu
search, ant colony optimization were applied to this problem [1, 4, 5, 8, 9, 11, 12, 15].

Swarm based intelligence optimization algorithms have been a very popular method among many researchers for
solving the complex optimization problems in recent years [27]. Although genetic algorithms have been used many
times for the problem of finding the minimum distance of linear codes, this is not the case for the algorithms based
on the swarm intelligence. As far as our knowledge, only the ant colony algorithm was used to optimize this problem
in terms of swarm intelligence [9, 11]. The artificial bee colony (ABC) algorithm [17–19] is a newly defined swarm
based intelligence optimization algorithm that is developed by the inspiration of honey bees foraging behaviours.
The ABC algorithm, based on swarm intelligence, is very effective for solving the difficult optimization problems
[25, 26]. Although, the ABC algorithm was designed for numerical problems and finding the minimum distance is a
combinatorial problem, this algorithm can not be used directly for the considered problem. Therefore, we introduce
the algebraic-based scheme, inspired by [23], for the ABC algorithm, which we call the algebraic artificial bee colony
(A-ABC) algorithm. Moreover, we develop the A-ABC algorithm by integrating the algebraic differential mutation
operator in the employed and onlooker bee phases of the A-ABC algorithm and we call this developed algorithm,
the mutational-based algebraic artificial bee colony (MBA-ABC) algorithm. We show that the MBA-ABC algorithm
outperforms the A-ABC algorithm . In order to control the effectiveness of the presented algorithm, Bose, Chaudhuri,
and Hocquenghem (BCH) codes are used since these are the standard codes with well known minimum distance
values [6, 22].

In most of the existing literature, researchers have attempted to solve the minimum distance problem by heuristic
methods with the use of the codewords as a search space. But it is known from [14] that for a generator matrix G of an
[n, k] binary linear code C, IiG is also generator matrix of C, where Ii is some k × k invertible matrices. By this fact,
generator matrices have been started to be used in minimum distance problem and as far as our knowledge, [1, 12, 13]
are the only papers in which the generator matrices are used as a search space. In [1], generator matrices were used
instead of codewords and it was showed that the generator matrix space is a better search space when compared to the
codeword space. In that paper, for a given generator matrix G of C, generator search space was considered as a set
of of k × k invertible matrices. For any invertible matrix Ii the cost of Ii was defined as the least Hamming weight of
the rows of IiG. In [12], authors proved that for a given generator matrix G of an [n, k] binary linear code C, there
exists a permutation x ∈ S n such that the reduced row echelon form of GPx , where Px is the permutation matrix for a
permutation x, satisfies the Hamming weight of some of its rows. Therefore, in that work, for a given generator matrix
G of C, generator search space was considered as a set of permutations, where permutations encoded as arrays of size n
and each array contains a column permutation of the initial generating matrix G. The cost of permutation x was defined
as the least Hamming weight of the rows of the reduced row echelon form of GPx. Also, in that paper, the authors
used the algebraic crossover operator for the solution set. In our paper, for a given generator matrix G of a code C, we
consider the permutation matrices Px, where each of the permutation matrices is obtained by shuffling the columns of
the identity matrices, as a search space. The cost of Px is considered as the least Hamming weight of the rows of the
reduced row echelon form of GPx. Generator matrices of the BCH codes are taken from the database of the software
MAGMA [10].

The rest of the paper is organised as follows. In Section 2, we give preliminary definitions and notions on linear
codes and we give a brief history of the ABC algorithm. In Section 3, we explain the algebraic approach of the
ABC algorithm and develop this algorithm by integrating it with the algebraic differential mutation operator. Then
we implement these two algorithms for the considered problem. In Section 4, we tabulate and compare our results
accordingly to the algorithms used.

2. Preliminaries

Some basic definitions and notions that will be used in later sections are recalled.
2.1. Linear Codes.

Definition 2.1. A binary linear code C is an k-dimensional vector subspace of the n-dimensional vector space Fn
2 over

the finite field F2.

The minimum distance d of a linear code C is determined by: d = mini, jdH(ci, c j), where dH(ci, c j) denotes the
Hamming distance between codewords ci, c j ∈ C. Hamming distance is defined as the number of positions that differs
between two distinct codewords. The weight of a codeword c ∈ C equals to the number of non-zero entry in it, for a
binary codeword it is just the number of ones in the codeword. A linear code C is given by parameters [n, k, d], where

A. Korban, S. Şahinkaya, D. Ustun, Turk. J. Math. Comput. Sci., 14(1)(2022), 191–200 193

n is the length, k is the dimension and d is the minimum distance of the code. Any codeword c ∈ C can be obtained
by a linear combination of k-basis codewords, that is, c = αG, where G is k × n generator matrix and α is an k-tuple
vector which is also called as an information vector and c is an n-tuple vector, called, codeword.

For a linear code C, a non-zero codeword of minimum Hamming weight is called a minimum-weight codeword. It is
clear by definitions that the minimum distance of a linear code equals to the minimum weight of a non-zero codeword
in the code. A linear code can be presented by providing either a basis or a generator matrix whose rows form a basis
for the code C.

Error detecting and correcting capability is a very important feature of a code and it is determined by the minimum
distance of the code. More precisely, for a given [n, k, d] linear code C, it can detect d − 1 errors and correct ⌊ d−1

2 ⌋

errors [21]. Therefore, for a given block of length n and dimension k, the code is desired to have the minimum distance
as large as possible. One of the main problems of coding theory is the Minimum Weight Codeword Problem which
determines the number of codewords of weight M or less, in an [n, k] linear code C for a given integer M.

2.2. Artificial Bee Colony (ABC) Algorithm. The approach of swarm intelligence has been a very popular method
among many researchers for solving the complex optimization problems in recent years [27]. The Artificial bee colony
(ABC) algorithm [17–19] is a new optimization method that is developed by the inspiration of honey bees foraging
behaviors. The ABC algorithm, based on swarm intelligence, is very effective for solving the difficult optimization
problems [25, 26]. In ABC, the bee colony includes three types of bees that are the employed, onlooker and scout.
Also, there are some assumptions in the processing of the algorithm. The number of the food source is equal to the
half size of the colony. The food sources are represented as the possible solutions and each bee is assigned to one food
source. Artificial bees find the optimal solutions by flying in a multidimensional search space. The employed bees are
appointed to a particular food source and this depends on their experiences. Then, the onlooker bees get information
about the food source by watching the dance of the employed bees within the hive and they select the food sources by
this information. Also, they adjust their positions in the search space. Any bee consuming its food source becomes a
scout bee and the scout bees perform a random search process for detecting a new food source. In the initial, the scout
bees discover the positions of the food sources and then these resources are consumed by the employed and onlooker
bees. In the ABC algorithm, a possible solution of the problem in the search space is represented by the position of
a food source. There is a correspondence between the nectar quantity of a food source and the quality (fitness) of the
associated solution. The pseudocode of the ABC algorithm is given in Algorithm 1.

Algorithm 1. Pseudocode of ABC Algorithm

1: Generate initial population xi(i=1,2,...,S N)
2: Evaluate the fitness f iti(xi) of the population
3: Set iteration to 1
4: repeat
5: for each Employed Bee do
6: Generate a new solution vi by using Equation (2.1)
7: Compute its fitness value f iti(vi) by using Equation (2.2)
8: Apply greedy selection process
9: end for

10: Compute probability value pi for the solution xi by using Equation (2.3)
11: for each Onlooker Bee do
12: Choose a solution xi depending on pi

13: Generate a new solution vi by using Equation (2.1)
14: Compute its fitness value f iti(vi) by using Equation (2.2)
15: Apply greedy selection process
16: end for
17: if There is an abandoned solution for the Scout Bee then
18: Replace old solution with new solution produced randomly as initial phase
19: end if
20: Save the best solution so far
21: iteration=iteration+1
22: until iteration=MaximumIteration

MBA-ABC Algorithm for Computing the Distance of Linear Codes 194

The ABC algorithm phases are given as follows:

Initialization Phase: Initial food source are determined by randomly chosen scouts.
REPEAT
Employed Bees Phase: Employed bees are sent to the food sources for the determination of nectar amounts.
Onlooker Bees Phase: Onlooker bees are appointed to food sources according to the calculated probability value of
the sources.
Scout Bees Phase: Randomly chosen scout bee is send for discovering new food sources if a source is abandoned by
an employed bee.
UNTIL(Cycle=Maximum Cycle Number)

After the initial phase, the employed, onlooker and scout phases are performed for a fixed number of iterations. An
employed bee generates a new position (solution) by modification the old position. In the ABC algorithm, the equation
for the new position is given as follows:

vi, j = xi, j + ϕi, j(xi, j − xk, j), (2.1)

where k ∈ {1, 2, . . . , S N} and j ∈ {1, 2, . . . ,D}. Here k and j are randomly generated and k is different from i. ϕi, j is
also a random number that belong to [−1, 1]. Then, the profitability (fitness value) of the new position is evaluated.
The fitness values of the solution, generated by employed bee, is computed for minimizing the problems as following:

f iti(xi) =
{ 1

1+ fi(xi)
i f fi(xi) ≥ 0

1 + | fi(xi)| i f fi(xi) < 0,
(2.2)

where fi(xi) is the objective function value of the solution xi.
When a new solution is generated, a process called greedy selection based on comparing the new solution to the old

solution is used. It tries to select the best solution between the new solution and the old solution to enhance the possible
solutions in the population. If the fitness value of the new solution is higher than previous one, the bee memorizes the
new solution and the employed bee abandons the old solution. Otherwise, the bee tries to improve the old solution in
the next iteration. After completing the employed bees phase, the onlooker bee phase is performed by considering the
probability values of all the solutions. In the onlooker bee phase, the employed bee shares the nectar information of
food source with the onlooker bees on the dance area within hive. An onlooker bee appraises the nectar information,
obtained from all the employed bees, and then it selects a food source according to the amount of the nectar. It performs
this selection process by using the probability value computed from the fitness values. After completing the selection
phase, the onlooker bee improves the new solution achieved by the previous solutions as in the employed bee phase.
The probability value pi with which xi is chosen by an onlooker bee can be calculated by using the expression given

pi =
f iti(xi)∑S N

i=1 f itn(xi)
(2.3)

where f iti is the fitness value of the solution which is proportional to the nectar amount of the food source in the
position i, and S N is the number of food sources which is equal to the number of the employed bees. In the scout bee
phase, when the nectar of any food source is consumed, that source is abandoned by the bee and then it transforms into
a scout bee for finding a new food source randomly. The fixed number of iteration, called the ”limit”, is a major control
parameter of the ABC algorithm for abandonment.

3. An Algebraic Approach of the ABC Algorithm

Although using the standard operator in the employed and onlooker bee phases exhibit the high performance for
continuous problems, the standard ABC algorithm is not suitable for combinatorial problems. Therefore, an algebraic
approach which is inspired from the paper of [23] is proposed for the ABC algorithm. In this section, we introduce the
algebraic ABC (A-ABC) algorithm and the mutation based algebraic ABC (MBA-ABC) algorithm. The parameters of
the algorithms, which are the population size, scale factor F, maximum number of iteration and limit value are given
in Table 1.

A. Korban, S. Şahinkaya, D. Ustun, Turk. J. Math. Comput. Sci., 14(1)(2022), 191–200 195

Parameters A-ABC MBA-ABC
Population Size 100 100
Scale Factor F - 0.6
Maximum Iteration 1000 1000
Limit 50 50

Table 1. Parameters of Proposed Algorithms

Let us recall the definition of the permutation matrix which is used for the search space. An n×n permutation matrix
is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. For a given
generator matrix G of an [n, k] binary BCH code, the A-ABC and MBA-ABC algorithms produce a distributed initial
population, consisting of the permutation matrices by shuffling the columns of n × n identity matrix.

3.1. Algebraic Artificial Bee Colony (A-ABC) Algorithm. It is well known that, the genetic algorithms have been
successively used for finding the minimum distance of linear codes [12] and the standard differential evaluation (DE)
algorithm developed by Storn and Price in 1997 is a population-based genetic search strategy [24]. Therefore, it
is natural to consider the DE algorithm for computing the minimum distance of linear codes but the standard DE
algorithm is not suitable for this combinatorial problem. Thus, we consider the algebraic DE (A-DE) algorithm that
was introduced in [23]. In [23], an algebraic differential mutation was given for a finitely generated group G with a
binary operation ⋆. For every population individual xi, mutant yi is generated as follows:

yi ← x1 ⊕ Fi ⊙ (x2 ⊖ x3),

where Fi ∈ (0, 1] is the differential evaluation (DE) scale factor and x1, x2, x3, are three randomly chosen distinct
population individuals, all different from xi. The operators ⊕,⊖,⊗ are the algebraic operators defined as follows,
x ⊕ y = x ⋆ y, x ⊖ y = y−1 ⋆ x and the multiplication z = F ⊙ x satisfies that |z| = ⌈F.|x|⌉, if F ≤ 1, the sequence of
generators in a minimal decomposition of z is a prefix of the sequence of generators in a minimal decomposition of x,
vice versa, when F > 1.

For our problem, each population individual Pxi is an n×n permutation matrix. Group, consisting of n×n permutation
matrices with a usual matrix multiplication as a group operator is considered. For each population individual Pxi a
mutant Pyi is generated according to

Pyi ← Px1 ⊕ F ⊙ (Px2 ⊖ Px3), (3.1)
where F = 0.6 is the fixed DE scale factor, Px1 , Px2 , Px3 are three randomly chosen distinct population individuals.

Figure 1. Algebraic differential mutation operator for permutation matrices

Algebraic operators ⊕,⊖,⊗ are defined as follows: Px1 ⊕Pz = Px1 .Pz, Px2 ⊖Px3 = P−1
x3
.Px2 , where ”.” is the usual matrix

multiplication. It is noted that multiplication of the permutation matrices is a permutation matrix so permutation

MBA-ABC Algorithm for Computing the Distance of Linear Codes 196

matrices are obtained after applying the ⊕ and ⊖ operators. The magnitude of the permutation matrix is defined from
the matrix Pz = P−1

y Px. More precisely, the magnitude |Pz| is defined as a minimum number of the shuffles that
are applied to the identity matrix for obtaining the matrix Pz. We simply calculate the number of shuffles from the
following formula;

k = Tr(In − Pz) − 1(mod 2),
where In is an n× n identity matrix and Tr denotes the trace of a matrix. This definition makes sense since permutation
matrices can be obtained by shuffling the columns of the n × n identity matrix. The multiplication F ⊙ Pz is defined as
follows: after obtaining the scaler number k = ⌈F.|Pz|⌉, k columns of the n×n identity matrix is shuffled. The flowchart,
given in Figure 1, illustrates the algebraic differential mutation for permutation matrices.

Unfortunately, calculations showed that the A-DE algorithm does not have a good performance for computing the
minimum distance of linear codes. It is known that the ABC algorithm has a better performance than the DE algorithm
for continuous problems [19]. It is natural to think that algebraic ABC algorithm can have a better performance than
the algebraic DE algorithm for combinatorial problems. Inspiring from the algebraic approach of the DE algorithm we
introduce the algebraic ABC (A-ABC) algorithm.

Figure 2. Generation process of the GPx

The A-ABC algorithm has three phases like in the classical ABC algorithm given in previous section. In the A-ABC
algorithm, each solution Pxi is an n × n permutation matrix and the cost function fi for each solution is calculated as
the least Hamming weight of the rows of the reduced row echelon form of GPxi , where G is a generator matrix of the
code. The flowchart, given in Figure 2), illustrates the generation process of GPx and also the calculation of its cost.

In the initial phase, permutation matrices which represent possible solutions in the population are created randomly
and then the cost values fi are calculated for each solution. For each fi the fitness value is calculated from Equation
(3.2).

f iti(Pxi) =
1

1 + fi(Pxi)
(3.2)

where fi(Pxi) is the cost function of the solution Pxi .
After the initial phase, the employed, onlooker and scout phases are performed for a fixed number of iterations. In

the classical ABC algorithm, the equation for the new food source is given in Equation (2.1). Although multiplication
of permutation matrices gives a permutation matrix, this property is not inherited by addition. That is, summation of
two or more permutation matrices is not a permutation matrix. Therefore, the classical addition operator of Equation
(2.1) can not be used for generating a new solution in the A-ABC algorithm. In this study, since the new food source is
generated by the permutation matrices, Equation (2.1) should be rewritten from the algebraic perspective. The A-ABC
algorithm is a permutation-based scheme of the standard ABC algorithm. The search operator in the standard ABC
algorithm given in Equation (2.1) is converted to the algebraic operator as follows:

Pvi ← Pxi ⊕ ϕi ⊙ (Pxi ⊖ Pxk), (3.3)
where ϕi ∈ (0, 1] is a random number, Pxi is the current solution and Pxk is a randomly chosen distinct population
individual different from Pxi . The operators ⊕,⊖,⊗ are defined in the same way as in the A-DE algorithm. An

A. Korban, S. Şahinkaya, D. Ustun, Turk. J. Math. Comput. Sci., 14(1)(2022), 191–200 197

employed bee generates a new position (solution) by modification the old position using Equation (3.3) and then the
profitability (fitness value) of the new position is evaluated by using Equation (3.2). If the fitness value of the new
solution is higher than previous one, the bee memorizes this new solution and the employed bee abandons the old
solution. Otherwise, the bee tries to improve the old solution in the next iteration. After completing the employed
bees phase, the onlooker bee phase is performed by considering the probability values of all the solutions. Next, the
onlooker bee phase is performed by considering the probability values of all the solutions. The probability value pi

with which Pxi is chosen by an onlooker bee can be calculated by using the Equation (2.3). In the scout bee phase,
when the nectar of any food source is consumed, that source is abandoned by the bee and than it transforms into a
scout bee for finding a new food source at random, by the generation process given in Figure 2. The pseudocode of the
A-ABC algorithm is given in Algorithm 2.

Algorithm 2. Pseudocode of A-ABC Algorithm

1: Generate initial population Pxi(i=1,2,...,S N)
2: Evaluate the fitness f iti(Pxi) of the population by using Equation (3.2)
3: Set iteration to 1
4: repeat
5: for each Employed Bee do
6: Generate a new solution Pvi by using Equation (3.3)
7: Compute its fitness value f iti(Pvi) by using Equation (3.2)
8: Apply greedy selection process
9: end for

10: Compute probability value pi for the solution Pxi by using Equation (2.3)
11: for each Onlooker Bee do
12: Choose a solution Pxi depending on pi

13: Generate a new solution Pvi by using Equation (3.3)
14: Compute its fitness value f iti(Pvi) by using Equation (3.2)
15: Apply greedy selection process
16: end for
17: if There is an abandoned solution for the Scout Bee then
18: Replace old solution with new solution produced randomly as initial phase
19: end if
20: Save the best solution so far
21: iteration=iteration+1
22: until iteration=MaximumIteration

3.2. Mutation-Based Algebraic Artificial Bee Colony (MBA-ABC) Algorithm. The performance of the standard
optimization algorithms may not be sufficient to achieve a good solution for the same problems with the complex and
difficult structure. In this case, the hybrid approaches have been developed and presented to the literature in order to
increase the performance of the standard optimization algorithms. It is known that the hybrid ABC algorithms have
better performances than the classical ABC algorithms [2, 3]. Therefore, it is natural to consider the same implication
for the algebraic ABC algorithm. We develop an A-ABC algorithm by integrating the algebraic differential mutation
operator from the A-DE algorithm to the employed and onlooker bee phases of the A-ABC algorithm and call this
hybrid algorithm, the mutation-based algebraic artificial bee colony algorithm (MBA-ABC). More precisely, we use
Equation (3.1) in place of Equation (3.3) in the employed and onlooker bee phases of the A-ABC algorithm. The
MBA-ABC algorithm is illustrated in Figure 3 and the pseudocode of the MBA-ABC Algorithm is given in Algorithm
3.

MBA-ABC Algorithm for Computing the Distance of Linear Codes 198

Figure 3. The Flowchart of MBA-ABC algorithm

Algorithm 3. Pseudocode of MBA-ABC Algorithm

1: Generate initial population Pxi(i=1,2,...,S N)
2: Evaluate the fitness f iti(Pxi) of the population by using Equation (3.2)
3: Set iteration to 1
4: repeat
5: for each Employed Bee do
6: Generate a new solution Pyi by using Equation (3.1)
7: Compute its fitness value f iti(Pyi) by using Equation 3.2
8: Apply greedy selection process
9: end for

10: Compute probability value pi for the solution Pxi by using Equation (2.3)
11: for each Onlooker Bee do
12: Choose a solution Pxi depending on on pi

13: Generate a new solution Pyi by using Equation (3.1)
14: Compute its fitness value f iti(Pyi) by using Equation (3.2)
15: Apply greedy selection process
16: end for
17: if There is an abandoned solution for the Scout Bee then
18: Replace old solution with new solution produced randomly as initial phase
19: end if
20: Save the best solution so far
21: iteration=iteration+1
22: until iteration=MaximumIteration

4. Comparasion with PreviousWork

Two nature-inspired algebraic optimization algorithms are presented in this study. The proposed algorithms are run
on a workstation with Intel Xeon 4.0 GHz processor and 64 GByte RAM. The parameters of the algorithms, which are
the population size, scale factor F, maximum number of iteration and limit value are given in Table 1 and the achieved
results by these algorithms are given in Table 2 for the BCH codes. In the literature, there have been some heuristic
attempts to calculate the minimum distance of some specific BCH codes [1, 4, 5, 8, 9, 15]. The performance of the
proposed optimization method is appraised and confirmed by a comparison with the GA-A, GA-B, GA, Hill Climbing,

A. Korban, S. Şahinkaya, D. Ustun, Turk. J. Math. Comput. Sci., 14(1)(2022), 191–200 199

Tabu Search, Ant Colony and Metropolis Algorithms given in Table 2. The algorithms are compared with the other
algorithms to illustrate their superior performances. It can be obviously seen from Table 2 that the presented algorithms
determine the exact minimum distance value for many BCH codes and they have an outstandingly better performance
than the other optimization methods in the table. When the MBA-ABC algorithm is compared with the A-ABC
algorithms, it is seen that the first one has much better performance. The differential mutation operator integrated to
the employed and onlooker bee phases of the MBA-ABC algorithm, increases the diversity of the population randomly
located in the search space. The diversity of population in the optimization algorithms affects the global and local
search abilities of the nature-inspired optimization algorithms. In this study, the diversity of the MBA-ABC algorithm’s
population is increased by the differential mutation operator and in this way, the MBA-ABC is provided that it exhibits
a higher performance than the A-ABC algorithms.

BCH Codes (n, k, d) Askali’s
GA-
A [4], [5]

Askali’s
GA-
B [4], [5]

Wallis’s
GA [4],
[15]

Hill
Climb-
ing [4],
[5], [15]

Tabu
Search
[4], [5],
[15], [8]

Ant
Colony
[9]

Metropolis
Algorithm [1]

A-ABC MBA-
ABC

(127, 64, 21) 21 21 21 28 24 24 21 21 21
(127, 57, 23) 23 23 23 28 23 24 23 23 23
(127, 50, 27) 27 27 27 32 31 27 27 27 27
(255, 71, 59) 64 63 66 79 79 70 63 61 61
(255, 79, 55) 57 57 60 74 64 69 57 55 55
(255, 87, 53) 57 58 57 70 66 66 57 53 53
(255, 91, 51) 58 53 59 72 69 68 54 51 51
(255, 99, 47) 51 52 55 64 61 62 51 47 47
(255, 107, 45) 53 49 51 64 62 60 50 45 45
(255, 115, 43) 48 45 50 57 55 58 46 43 43
(511, 304, 51) 87 74 79 90 85 - 73 66 64
(511, 286, 55) 98 84 84 96 92 - 78 76 71
(511, 238, 75) 113 103 105 118 112 - 99 95 95
(511, 220, 79) 112 109 111 123 117 - 108 104 101
(511, 184, 91) 111 127 128 135 140 - 120 120 119
(511, 166, 95) 143 135 137 152 140 - 128 131 120
(511, 121, 117) 159 155 152 163 163 - 148 148 135
(511, 103, 123) 164 160 164 179 179 - 160 155 147
(511, 76, 171) 176 176 176 195 184 - 171 171 171
(511, 58, 183) 183 184 185 207 199 - 183 183 183

Table 2. Comparasions of Some Heuristics For Finding the Minimum Distance of Linear Codes

5. Conclusion

In this article, two optimization algorithms, the A-ABC and MBA-ABC algorithms are presented to compute the
minimum distance of binary linear codes. The proposed algorithms are based on the algebraic differential mutation
operator. The proposed methods are applied to twenty BCH codes with known minimum distance values. It is clearly
seen from the Table 2 that the MBA-ABC algorithm presents a better performance when compared to the A-ABC,
GA-A, GA-B, GA, Hill Climbing, Tabu Search, Ant Colony and Metropolis Algorithms. Almost in all the papers in
the literature, the codewords are used as a search space to calculate the minimum distance of a given code. But, in
the presented algorithms, generator matrices are used as a search space, just like in [1, 12]. It is illustrated that the
performance of the MBA-ABC algorithm is effected positively by two factors: the use of generator matrices instead of
codewords as a search space and the use of the algebraic differential mutation operator in place of the classical operator
of the A-ABC algorithm.

Acknowledgement

The authors thank to Tarsus University for providing workstations with high computation performance used in the
optimization of the minimum distance problem.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

MBA-ABC Algorithm for Computing the Distance of Linear Codes 200

Authors Contribution Statement

All authors have contributed sufficiently to the planning, execution, or analysis of this study to be included as
authors. All authors have read and agreed to the published version of the manuscript.

References

[1] Ajitha Shenoy, K.B., Biswas, S., Kurur, P.P., Efficacy of the metropolis algorithm for the minimum-weight codeword problem using codeword
and generator search spaces, IEEE Transactions on Evolutionary Computation, 24(4)(2020), 664–678.

[2] Akdagli, A., Ustun, D., Bandwidth enhancement of rectangular microstrip antenna with a rectangular slot by using a novel hybrid optimization
method based on the ABC and DE algorithms, Int J Numer Model., 31(5)(2018).

[3] Akdagli, A., Ustun, D., Design of bandnotched UWB antenna using a hybrid optimization based on ABC and DE algorithms, AEU - Interna-
tional Journal of Electronics and Communications, 87(2018), 10–21.

[4] Askali, M., Azouaoui, A., Nouh, S., Belkasmi, M., On the computing of the minimum distance of linear block codes by heuristic methods, Int.
J. Commun. Netw. Syst. Sci., 5(2012), 774–84.

[5] Askali, M., Nouh, S., Belkasmi, M., An efficient method to find the minimum distance of linear block codes, in Proc. IEEE Int. Conf. Multimedia
Comput. Signal Process, Tangier, Morocco, (2012), 185–188.

[6] Augot, D., Charpin, P., Sendrier, N., Studying the locator polynomial of minimum weight codewords of BCH codes, IEEE Trans. Info. Theory,
38(1992), 960–973.

[7] Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert , A. et al., Error Correcting Linear Codes, Algorithms and Computation in
Mathematics, 18, Springer, 2006.

[8] Bland, J.A., Baylis, A.T., A tabu search approach to the minimum distance of error-correcting codes, Int. J. Electron., 79(6)(1995), 829–837.
[9] Bland, J.A., Local search optimisation applied to the minimum distance problem, Adv. Eng. Informat., 21(2007), 391–397.

[10] Bosma, W., Cannon, J., Playoust, C., The Magma algebra system I: The user language, J. Symbolic Comput., 24(1997), 235–265.
[11] Bouzkraoui, H. , Azouaoui, A., Hadi, Y., New ant colony optimization for searching the minimum distance for linear codes, Advanced Com-

munication Technologies and Networking (CommNet), International Conference on. IEEE, (2018).
[12] Cuellar, M.P., Gomez-Torrecillas, J. , Lobillo, F.J., Navarro, G., Genetic algorithms with permutation-based representation for computing the

distance of linear codes, Swarm and Evolutionary Computation, 60(2021), 100797.
[13] Gomez-Torrecillas, J., Lobillo, F.J., Navarro, G., Minimum distance computation of linear codes via genetic algorithms with permutation

encoding, ACM Communications in Computer Algebra, 52(3)(2019).
[14] Hogben, L., Handbook of Linear Algebra, Boca Raton, FL, USA, Champman and Hall, 2007.
[15] Houghten, S.K., Wallis, J.L., A comparative study of search techniques applied to the minimum distance problem of BCH codes, in Proc, 6th

IASTED Int. Conf. Artif. Intell. Soft Comput., (2002), 164–169.
[16] Joundan, I., Nouh, S., Azouazi, M., Namir, A., A new efficient way based on special stabilizer multiplier permutations to attack the hardness

of the minimum weight search problem for large BCH codes, Int. J. Electr. Comput.Eng., 9(2019), 1232.
[17] Karaboga, D., An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Kayseri, Turkey,

2005.
[18] Karaboga, D., Basturk, B., A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J.

Glob. Optim., 39(2007), 459–471.
[19] Karaboga D., Basturk, B., On the performance of artificial bee colony (ABC) algorithm, Applied Soft Computing, 8(2008), 687–697.
[20] Lisonek, P., Trummer, L., Algorithms for the minimum weight of linear codes, Adv. Math. Commun., 10(2016), 195–207.
[21] Ling, S., Xing, C., Coding Theory: A First Course, United Kingdom, Cambridge University Press, 2004.
[22] MacWilliams, F.J., Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam, North-Holland, 1993.
[23] Santucci, V., Baioletti, M., Milani, A., Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total

flowtime criterion, IEEE Transactions on Evolutionary Computation, 20(5)(2016), 682–694.
[24] Storn, R., Price, K., Differential evolution a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global

Optimization, 11(1997), 341–359.
[25] Toktas, A., Ustun, D., A triple-objective optimization scheme using butterfly-integrated ABC algorithm for design of multi-layer RAM, IEEE

Transactions on Antennas and Propagation, 68(7)(2020), 5602–5612.
[26] Toktas, A., Ustun, D., Erdogan, N., Pioneer Pareto artificial bee colony algorithm for three-dimensional objective space optimization of

composite-based layered radar absorber, Applied Soft Computing, 96(2020), 1–11.
[27] Ustun, D., An enhanced adaptive butterfly optimization algorithm rigorously verified on engineering problems and implemented to ISAR image

motion compensation, Engineering Computations, 37(9)(2020), 3543–3566.
[28] Vardy, A., The intractability of computing the minimum distance of a code, IEEE Transactions on Information Theory, 43(6)(1997), 1757–1766.

	Mutation-Based Algebraic Artificial Bee Colony Algorithm for Computing the Distance of Linear Codes. By

