
Turk. J. Math. Comput. Sci.
14(1)(2022) 16–23
©MatDer
DOI : 10.47000/tjmcs.975585

Weighted Statistical Limit Supremum-Infimum
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Abstract. In this paper, by using weight g-statistical density we introduce weight g-statistical supremum-infimum
for real valued sequences. We also define weight g-statistical limit supremum-infimum with the help of above new
concepts. In addition, we shall establish some results about weight g-statistical core.
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1. Introduction

The idea of statistical convergence was formerly described under the name ”almost convergence” by Zygmund in the
first edition of his celebrated monograph published in Warsaw in 1935 [24]. The concept was formally introduced by
Fast [12] and was later reintroduced by Schoenberg [20] and also, independently, by Buck [6]. Statistical convergence
becomes one of the most popular areas of studies in summability theory [13, 16, 21]. Some significant results on
statistical convergence of real valued sequences can be seen from [7–9, 14, 15, 17, 19, 22, 23].

In [5, 10], the authors proposed a modified version of density by replacing n by nα where 0 < α ≤ 1. In [4], the
authors defined a more general kind of density by replacing nα by a function g : N→ [0,∞) with lim

n→∞
g(n) = ∞.

Firstly, we remind some basic notions related to statistical convergence and weight g-statistical convergence of
sequences.

Let A be a subset of N. A(n) denotes the set of elements of the set A which are less or equal to n ∈ N. The natural
density of the set A is defined by d(A) := lim

n→∞

|A(n)|
n if the limit exists where |A(n)| denotes the number of elements of

A(n).
A sequence x = (xn) is statistical convergent to x0 (denoted by st − lim xn = x0) if for every ε > 0, the set

{k ∈ N : |xk − x0| ≥ ε}

has zero asymptotic density. The set of all statistical convergent sequences is denoted by the symbol cst.
Let g : N→ [0,∞) be a function with lim

n→∞
g(n) = ∞. The function g is called weight function and g density of a set

A ⊆ N defined by the formula

dg(A) = lim
n→∞

|A(n)|
g(n)

,

if the limit exists [4, 11] under the condition n
g(n) ↛ 0, n→ ∞.

Now let us remember the definition of weight g-statistical convergence.
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Definition 1.1. Let x̃ = (xn) be a real valued sequence. x̃ is weight g-statistical convergent to the number x0 if for each
ε > 0

lim
n→∞

|{k ≤ n : |xk − x0| ≥ ε}|

g(n)
= 0

holds. In this case we write stg − lim xn = x0. cst
g denotes the set of all weight g-statistical convergent sequences [1].

2. Some Definitions andMain Results

In this section, weighted analogue of statistical upper and statistical lower bound, introduced and studied in [2, 3],
will be given by considering g density.

g-statistical lower and upper bound can be defined for x̃ = (xn) as follows:

Definition 2.1. Let x̃ = (xn) be a real valued sequence.
(i) Weight g-Statistical Lower Bound: A number l ∈ R is weight g-statistical lower bound of the sequence x̃ = (xn),

if
dg({k : xk < l}) = 0

holds.
(ii) Weight g-Statistical Upper Bound: A number u ∈ R is weight g-statistical upper bound of the sequence x̃ = (xn),

if
dg({k : xk > u}) = 0 (2.1)

holds.

The set of weight g-statistical lower bounds and the set of weight g-statistical upper bounds of the sequence x̃ = (xn)
are denoted by Lstg (x̃) and Ustg (x̃), respectively.

Also, the set of all usual lower bounds and upper bounds of the sequence x̃ = (xn) are denoted by L(x̃) :=
{l ∈ R : l ≤ xn holds for all n ∈ N} and U(x̃) := {u ∈ R : xn ≤ u holds for all n ∈ N}, respectively.

Let us note that L(x̃) ⊂ Lstg (x̃) holds for any weight function g.
Actually, let l ∈ L(x̃) be an arbitrary element. Then, {k : xk < l} = ∅ and dg({k : xk < l}) = 0 holds. Therefore,

l ∈ Lstg (x̃). By the same way using (2.1) it can be obtained easily that U(x̃) ⊂ Ustg (x̃) holds for any weight function g.
The converses are not true. Let us consider the sequence (xn) = (− 1

n ) and take l = − 1
3 ∈ R. l = − 1

3 is a weight
g-statistical lower bound because dg({k : xk < −

1
3 }) = dg({1, 2}) = 0, but it is clear that − 1

3 is not usual lower bound
for given sequence.

Also, let us consider the sequence x̃ = (xn) = ( 1
n ) and take u = 1

3 ∈ R. u = 1
3 is a weight g-statistical upper bound

because dg({k : xk >
1
3 }) = dg({1, 2}) = 0, but it is clear that 1

3 is not usual upper bound for given sequence.
Following result is clearly obtained from Definition 2.1.

Corollary 2.2. (i) If l ∈ R is a weight g-statistical lower bound of the sequence x̃ = (xn), then any number less than l
is also weight g-statistical lower bound.

(ii) If u ∈ R is a weight g-statistical upper bound of the sequence x̃ = (xn), then any number greater than u is also
weight g-statistical upper bound.

Proof. (i) Let us assume that l ∈ R is a weight g-statistical lower bound of the sequence x̃ = (xn) and l′ < l be an
arbitrary real number. From the assumption the set {k : xk < l} has weight g density 0. Since l′ < l, the inclusion{

k : xk < l′
}
⊂ {k : xk < l}

holds. So, we have
0 ≤ dg(

{
k : xk < l′

}
) ≤ 0.

This gives that l′ is a weight g-statistical lower bound. Because of the arbitrariness of l′, desired result holds.
(ii) Let us assume that u ∈ R is a weight g-statistical upper bound of the sequence x̃ = (xn) and u < u′ be an arbitrary

real number. From the assumption the set {k : xk > u} has weight g density 0. Since u < u′, the inclusion{
k : xk > u′

}
⊂ {k : xk > u}

holds. So, we have
0 ≤ dg(

{
k : xk ≤ u′

}
) ≤ 0.
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This gives that u′ is a weight g-statistical upper bound. Because of the arbitrariness of u′, desired result holds. □

Now, let us give the main definitions that we will focus on.

Definition 2.3. (i) Weight g-Statistical Infimum (stg− inf): If l∗ ∈ R is the supremum of Lstg (x̃), then it is called weight
g-statistical infimum of the sequence x̃ = (xn). That is, stg − inf xn := sup Lstg (x̃).

(ii) Weight g-Statistical Supremum (stg−sup): If u∗ ∈ R is the infimum of Ustg (x̃), then it is called weight g-statistical
supremum of the sequence x̃ = (xn). That is, stg − sup xn := inf Ustg (x̃).

Theorem 2.4. Following inequalities

inf xn ≤ stg − inf xn ≤ stg − sup xn ≤ sup xn

hold for any real valued sequence x̃ = (xn) and any weight function g.

Proof. Definition of usual infimum gives

dg({k : xk < inf xn}) = dg (∅) = 0.

So, inf xn ∈ Lstg (x). Since stg − inf xn = sup Lstg (x), then we have stg − inf xn ≥ inf xn. Definition of usual supremum
gives

dg(
{
k : sup xn < xk

}
) = dg (∅) = 0.

So, sup xn ∈ Ustg (x). Since stg − sup xn = inf Ustg (x), we have

stg − sup xn ≤ sup xn.

To complete the proof it is enough to show that
l ≤ u (2.2)

holds for an arbitrary l ∈ Lstg (x) and u ∈ Ustg (x). Let us assume that the inverse of (2.2) holds. So, there exist l′ ∈ Lstg (x)
and u′ ∈ Ustg (x) such that u′ < l′ is satisfied. Since u′ is a weight g-statistical upper bound, from Corollary 2.2 (ii), l′

is also weight g-statistical upper bound of the sequence. This is a contradiction of the assumption on l′. That is, (2.2)
is true and desired result holds. □

Lemma 2.5. Let x̃ = (xn) be a real valued sequence and l∗ ∈ R. Then, stg − inf xn = l∗ if and only if for an arbitrary
ε > 0

(i) dg({k : xk < l∗ − ε}) = 0,
and

(ii) dg({k : xk < l∗ + ε}) , 0
hold.

Proof. ”⇒” Let us assume that stg − inf xn = l∗. That is, sup Lstg (x̃) = l∗. So, we have

(a) l ≤ l∗,∀ l ∈ Lstg (x̃),

and
(b) ∀ ε > 0 ∃ l′ ∈ Lstg (x̃) such that l∗ − ε < l′.

Corollary 2.2-(i) and (b) imply l∗ − ε is a weight g-statistical lower bound. So, (i) is hold. Now suppose that (ii) is not
true. That is, there exists ε0 such that dg({k : xk < l∗ + ε0}) = 0. It means that, l∗ + ε0 ∈ Lstg (x̃). Since l∗ < l∗ + ε0, it
contradicts to l∗ = sup Lstg (x̃).

”⇐” Now assume that (i) and (ii) are hold for all positive ε > 0. It is clear that l∗ − ε ∈ Lstg (x̃) and l∗ + ε < Lstg (x̃).
So, Lstg (x̃) = (−∞, l∗ − ε] for all ε > 0. Thus, sup Lstg (x̃) = l∗ holds. □

Lemma 2.6. Let x̃ = (xn) be a real valued sequence and u∗ ∈ R. Then, stg − sup xn = u∗ if and only if for an arbitrary
ε > 0

(i) dg({k : xk > u∗ + ε}) = 0,
and

(ii) dg({k : xk > u∗ − ε}) , 0
hold.
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Proof. ”⇒” Let us assume that stg − sup xn = u∗. That is, inf Ustg (x̃) = u∗. So, we have

(a) u∗ ≤ u,∀ u ∈ Ustg (x),

and
(b) ∀ε > 0 ∃ u′ ∈ Ustg (x̃) such that u′ < u∗ + ε.

Corollary 2.2-(ii) and (b) imply u∗ + ε is a weight g-statistical upper bound. So, (i) is hold. Now suppose that (ii) is not
true. That is, there exists ε0 > 0 such that dg({k : u∗ − ε0 < xk}) = 0. It means that, u∗ − ε0 ∈ Ustg (x̃), it contradicts to
u∗ = inf Ustg (x̃).

”⇐” Now assume that (i) and (ii) are hold for every ε > 0. It is clear that u∗ + ε ∈ Ustg (x̃) and u∗ − ε < Ustg (x̃). So,
Ustg (x̃) = [u∗ + ε,∞) for all ε > 0. Thus, inf Ustg (x̃) = u∗ holds. □

Theorem 2.7. Let x̃ = (xn) be a real valued sequence. If x̃ = (xn) is monotone increasing (or decreasing), then
stg − inf xn = sup xn (or stg − sup xn = inf xn) holds.

Proof. We shall prove only first case. The other case can be obtained by to follow same steps. Now, suppose that
x̃ = (xn) is monotone increasing and

sup xn < ∞.

So,
xk ≤ sup xn

holds for all k ∈ N. Also, there exists k0 ∈ N such that

sup xn − ε < xk0

for every ε > 0. From the first inequality above, sup xn < Lstg (x̃). From the second inequality we have{
k : xk < sup xn − ε

}
= {1, 2, 3, ..., k0} .

Since dg({1, 2, 3, ..., k0}) = 0, then sup xn − ε ∈ Lstg (x̃). So, Corollary 2.2-(i) gives that

Lstg (x̃) = (−∞, sup xn − ε)

for all ε > 0. Thus,
stg − inf xn = sup Lstg (x̃) = sup xn.

Now, let us assume that
sup xn = ∞.

It means that for all l ∈ R there exists k0 ∈ N such that l ≤ xk0 and xk0 ≤ xk holds for every k ≥ k0. Thus, we have

{k : xk < l} ⊂ {1, 2, 3, ..., k0} .

Since dg({1, 2, 3, ..., k0}) = 0, then for an arbitrary point l, l ∈ Lstg (x̃). So,

Lstg (x̃) = (−∞,∞) and sup Lstg (x̃) = ∞.

So, the proof is completed. □

Corollary 2.8. Let x̃ = (xn) be a bounded real valued sequence. If x̃ = (xn) is monotone decreasing (or increasing)
then,

lim
n→∞

xn = stg − sup xn (= stg − inf xn).

Theorem 2.9. If lim
n→∞

xn = x0, then stg − sup xn = stg − inf xn = x0.

Proof. Let us assume that lim
n→∞

xn = x0. That is, for any ε > 0, there exists n0 = n0(ε) ∈ N such that

|xn − x0| < ε, (2.3)

holds for all n ≥ n0. Thus, (2.3) implies

{k : xk < x0 − ε} ⊂ {1, 2, ..., n0} , {k : xk > x0 + ε} ⊂ {1, 2, ..., n0} . (2.4)

So, from (2.4) we have
dg({k : xk < x0 − ε}) = 0, dg({k : xk > x0 + ε}) = 0,
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respectively. This discussion gives
x0 − ε ∈ Lstg (x̃), x0 + ε ∈ Ustg (x̃)

for all ε > 0. Also, from Corollary 2.2-(i) and (ii)

Lstg (x̃) = (−∞, x0) and Ustg (x̃) = (x0,∞)

hold, respectively. Thus,
stg − inf xn = sup(−∞, x0) = x0,

and
stg − sup xn = inf(x0,∞) = x0

are obtained. □

Remark 2.10. The inverse of the Theorem 2.9 is not true.

Example 2.11. Let us consider the function g(n) = n and the sequence x̃ = (xn) as

xn =

{
3, n = m2,m = 1, 2, ...,
0, otherwise.

It is clear that stg − inf xn = stg − sup xn = 0 but this sequence does not converge to 0.

Theorem 2.12. stg − lim
n→∞

xn = x0 if and only if stg − sup xn = stg − inf xn = x0.

Proof. ”=⇒” Let us assume that stg − lim
n→∞

xn = x0. From the hypothesis,

lim
n→∞

1
g(n)
|{k : k ≤ n, |xk − x0| ≥ ε}| = 0 (2.5)

holds for every ε > 0. Also, we have

{k : k ≤ n, |xk − x0| ≥ ε} = {k : k ≤ n, xk ≥ x0 + ε} ∪ {k : k ≤ n, xk ≤ x0 − ε} .

By using last equality and (2.5), we obtain

dg ({k : xk > x0 + ε}) = 0, (2.6)

and
dg ({k : xk < x0 − ε}) = 0. (2.7)

From (2.6), x0 + ε is a weight g-statistical upper bound, also from (2.7), x0 − ε is a weight g-statistical lower bound.
Thus,

Lstg (x̃) = (−∞, x0), Ustg (x̃) = (x0,∞)
hold for all ε > 0. Therefore, we obtain

stg − inf xn = sup Lstg (x̃) = x0, stg − sup xn = inf Ustg (x̃) = x0.

”⇐=” Let us assume that
stg − sup xn = stg − inf xn = x0.

Namely,
x0 = sup Lstg (x̃) = inf Ustg (x̃).

From the definitions of usual supremum and infimum, for every ε > 0, there exists at least one element l ∈ Lstg (x̃) and
u ∈ Ustg (x̃) such that the inequalities

x0 − ε < l, u < x0 + ε

hold.
Since u is a weight g-statistical upper bound, then the following inclusion

{k : xk ≥ x0 + ε} ⊂ {k : xk > u}

holds. Thus, we have
dg({k : xk ≥ x0 + ε}) = 0. (2.8)

Since l is a weight g-statistical lower bound, then the following inclusion

{k : xk ≤ x0 − ε} ⊂ {k : xk < l}
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holds. Thus, we have
dg({k : xk ≤ x0 − ε}) = 0. (2.9)

From (2.8), (2.9) and following equation

{k : |xk − x0| ≥ ε} = {k : xk ≥ x0 + ε} ∪ {k : xk ≤ x0 − ε} ,

we have
dg({k : |xk − x0| ≥ ε}) = 0.

Thus, the sequence x̃ = (xn) is weight g-statistical convergent to x0 ∈ R. □

3. Weighted g-Statistical Core Theorem

In this section, we will define weight g-statistical limit supremum and weight g-statistical limit infimum for real
valued sequences. Then, we will express weight g-statistical core theorem.

Definition 3.1. Let x̃ = (xn) be a real valued sequence. Weight g-statistical limit supremum and weight g-statistical
limit infimum of x̃ defined as

stg − lim sup xn := lim
n→∞

(stg − sup
k≥n

xk)

and
stg − lim inf xn := lim

n→∞
(stg − inf

k≥n
xk),

respectively.

Lemma 3.2. Let x̃ = (xn) be a real valued sequence.
(i) If αn := stg − supk≥n xk for all n ∈ N, then (αn)n∈N is a constant sequence and so

stg − lim sup xn = stg − sup xn.

(ii) If βn := stg − infk≥n xk for all n ∈ N, then (βn)n∈N is a constant sequence and so

stg − lim inf xn = stg − inf xn.

As a result of Definition 3.1 and Theorem 2.4 we have following result.

Theorem 3.3. For any real valued sequence x̃,

lim inf xn ≤ stg − lim inf xn ≤ stg − lim sup xn ≤ lim sup xn (3.1)

hold.

Definition 3.4. The real number sequence x̃ = (xn) is said to be weight g-statistically bounded if there is a number M
such that dg({k : |xk | > M}) = 0.

Theorem 3.5. Weight g-statistical bounded sequence x̃ = (xn) is weight g-statistical convergent if and only if stg −
lim inf xn = stg − lim sup xn.

Proof. Let us assume that for simplicity that stg − lim inf xn := l∗ and
stg − lim sup xn := u∗.

(⇒) Let stg − lim xn = x0. So, dg({k : |xk − x0| ≥ ε}) = 0 holds for every ε > 0. Thus, dg({k : xk > x0 + ε}) = 0 which
implies that u∗ ≤ x0. Also, we have from the definition of g-statistical convergence that dg({k : xk < x0 − ε}) = 0 which
implies that x0 ≤ l∗. Therefore, l∗ = u∗.

(⇐) Conversely, assume that l∗ = u∗ and choose x0 := l∗ = u∗. If ε > 0 then from Theorem 2.5, Theorem 2.6 and
Definition 3.4 we have dg({k : xk > x0 + ε}) = 0 and dg({k : xk < x0 − ε}) = 0. Therefore, stg − lim xn = x0. □

In [18], Knopp defined core of a sequence and proved well-known Core Theorem. In this paper, we will use weight
g-statistical limit infimum and weight g-statistical limit supremum instead of limit points to obtain an analogue of
Knopp’s core.

Definition 3.6. Let x̃ = (xn) be a weight g-statistical bounded sequence. Then, weight g-statistical core of x̃ is the
closed interval [stg − lim inf xn, stg − lim sup xn] and it is denoted by stg − core{x̃}. If x̃ is not weight g-statistical
bounded, then stg − core{x̃} is defined as either [stg − lim inf xn,∞), (−∞, stg − lim sup xn] or (−∞,∞).
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K − core{x̃} is the usual core of x̃. It is clear from (3.1) that for any real valued sequence x̃

stg − core{x̃} ⊆ K − core{x̃}.

Theorem 3.7. Let g1 and g2 be two weight function and x̃ = (xn) be a real valued sequence. If we have following limit
condition

g1(n)
g2(n)

= 1, (n→ ∞), (3.2)

then
stg1 − core{x̃} = stg2 − core{x̃} (3.3)

holds.

Proof. Let x̃ = (xn) be a weight g1-statistical bounded sequence. Then, stg1 − core{x̃} = [stg1 − lim inf xn, stg1 −

lim sup xn]. For brevity, let us take l∗ = stg1 − lim inf xn and u∗ = stg1 − lim sup xn. So, from Theorem 2.5

dg1 ({k : xk < l∗ − ε}) = 0 and dg1 ({k : xk < l∗ + ε}) , 0

hold for every ε > 0. Thus, from (3.2)
|{k : xk < l∗ − ε}|

g2(n)
=
|{k : xk < l∗ − ε}|

g2(n)
·

g1(n)
g1(n)

=
|{k : xk < l∗ − ε}|

g1(n)
·

g1(n)
g2(n)

holds. If we take limit when n→ ∞, then from hypothesis we obtain

dg2 ({k : xk < l∗ − ε}) = 0.

Moreover, by the same way we obtain
dg2 ({k : xk < l∗ + ε}) , 0.

Therefore, l∗ = stg2 − lim inf xn. Considering that u∗ = stg1 − lim sup xn from Theorem 2.6 we obtain u∗ = stg2 −

lim sup xn. So, stg1 − core{x̃} = stg2 − core{x̃}. Now, let us assume that x̃ = (xn) is not weight g1-statistical bounded
sequence. Then, one of the last three cases in the Definition 3.6 is provided. In this case, (3.3) can be obtained by the
similar calculations above. □

4. Conclusion

In this paper, Theorem 2.9 and Theorem 2.12 are given as an application of stg − sup and stg − inf. It is seen that
equality of stg− sup and stg− inf necessary but not sufficient for existence of classical limit but necessary and sufficient
for weighted g statistical limit.
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