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A Note on the Libera Type Meromorphic Close-to-convex Functions
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ABSTRACT. The main purpose of this paper is to introduce a new subclass of meromorphic univalent functions,
namely Libera type meromorphic close-to-convex functions, and to obtain general coefficient bounds for functions
belonging to this class. For this purpose, we consider a certain convex univalent function in the open unit disk U,
that maps U onto a strip domain.
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1. INTRODUCTION

Let C be the set of complex numbers and N = {1, 2, 3, ...} be the set of positive integers. Assume that H is the class
of analytic functions in the open unit disc

U={z€eC:|z <1} =:TU"U{0}.
For two functions f, g € H, we say that the function f is subordinate to g in U, and write
f@=<gl@  (zel),
if there exists a Schwarz function
weQ={weH:w0)=0 and |w()|<1 (z€U)},

such that
f@=gw@) ((el).

Indeed, it is known that

f@<g@ @elU)=f0)=¢g@0) and f(U) cg@).

Furthermore, if the function g is univalent in U, then we have the following equivalence
fR)<gR@ (zel)e f(0)=g(0) and f(U)cg).

Let A denote the subclass of H consisting of functions normalized by
J0)=f(0)-1=0.
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Each function f € A can be expressed as
f@ =2+ a7
n=2

which are analytic in the open unit disk U. We also denote by S the class of all functions in the normalized analytic
function class A which are univalent in U.

Lemma 1.1. [/]Let f € Aand a <1 < f. The function f,p : U — C defined by

-a, 1 - ¥y
fup@ =142 zlog[ (1.1)
bis -z
is analytic in U with f, (0) = 1 and maps the unit disk U onto the vertical strip domain
Qop={weC:ra<Rw) <p}
conformally.
We note that, the function f, g defined by (1.1) is a convex univalent function in U and has the form
Jap(2) = 1+ Z B,
n=1
where
anﬁ_“i(l—ez”"")ﬁ) (neN). (1.2)
nm
Let o denote the class of all meromorphic univalent functions g of the form
@=z+ i b (1.3)
g o .

n=0
defined on the domain
A={z:z€eC and 1<z < oo}.

A function g € o is said to be meromorphic starlike of order o (0 < @ < 1), if it satisfies the inequality

%(Z‘g,@) sa  (zel).
8(2)

We denote the class which consists of all functions g € o that are starlike of order « by S;(@). In particular, we set
S50 = S,

Very recently, Sim and Kwon [3] introduced the subclass of meromorphic functions associated with a vertical strip
domain as follows:

Definition 1.2. Let @ and 3 be real numbers such that 0 < @ < 1 < . The function g € o belongs to the class S, («,8)
if it satisfies the inequality

< %(Zg/(Z))<ﬁ (zeA).
g

Theorem 1.3. [3] Let @ and 8 be real numbers such that 0 < @ < 1 < B and let the function g € o be defined by (1.3).
If‘g € SO’ (Q,ﬁ), then

2(6—-a) sin”(l_a’)
T B—a

bol <
and

(bl

<2([3—a) Ca(l-a) (1+2(ﬂ—a)sin7r(l—a)
1

_(n+1)7rsm B—-a kr B—a ) (n€N).

k=

Now, we introduce the class of Libera type meromorphic close-to-convex functions as follows:
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Definition 1.4. Let @ and B be real such that 0 < @ < 1 < 8. We denote by C, («,8) the class of functions g € o
satisfying

78’ (2)
<?’\(h(z))<ﬁ (zeA),

where h € Sy (5,8) with0 < 6 < 1 < .

Remark 1.5. (i) If we let 8 — oo in Definition 1.4, then the class C, («, 8) reduces to the class C,(a, §) of Libera type
meromorphic close-to-convex functions of order @ and type 6 which consists of functions g € o satisfying

%(%)>a (zeN),

where h € S.. (6) with0 <6 < 1.
(i) If we let 6 = 0, B — oo in Definition 1.4, then the class C, (@, ) reduces to the class C,(a) of meromorphic
close-to-convex functions of order @ which consists of functions g € o satisfying

%(zg’(z))>a (ze N,

h(z)

where h € S;;.
(iii) If welet @ = 6 = 0, B — oo in Definition 1.4, then the class C, (@, 8) reduces to the meromorphic close-to-convex
functions class C, which consists of functions g € o satisfying

%(Zi/(g)) >0  (zeA),

where h € S

2. MAIN REsuLTs

Lemma 2.1. [2] Let the function g given by
9@ =) b (zeD)
k=1

be convex in U. Also let the function T given by

00

@)=Y ad (el

k=1
be holomorphic in U. If
f(2) <g(2) (zeU),
then
lag] < [by] (keN).

Theorem 2.2. Let a,f8 and 6 be real numbers such that 0 < a,6 < 1 < 8 and let the function g € o be defined by (1.3).
If g € Cs (a,B), then for all n € N, we have

2(8-06) Sinn(l—é) . (1+2(ﬁ—6)sinn(l—5))
nn+ Dn B-0 km B—90

zw—a).na—a>”( 2w—a).nu—aq
+ sin 1+ sin s
nw B-«a kn B-«a

1Dl
k=1

k=1
where h € S5 (6,0) .

Proof. Let the function g € C, (a,8) be of the form (1.3). Therefore, there exists a function

oo h”
=2+ = €Se6p),
n=0
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so that

28" (2)
<9%(h(z))<ﬁ (zeA).

Note that by Theorem 1.3, we have

2(B-9) Sin7r(1—6)
b B—0

ol <
and

|| <

2(8-9) Sinn(l—é) = (1+2(ﬂ—6) Sinn(l—é)
(n+Drm B-6 kr B-6

Define the functions ¢, ¢ : U* — C by

k=1

and

Since g € C, (@, ), we get

Let us define the function p(z) by
' (@)
¥ (2)

p(z) = (z€ V).

It is clear that p(z) is an analytic function and p(0) = 1. Then according to the assertion of Lemma 1.1, we get

P(2) < fap(2) (zel),
where f, 3(2) is defined by (1.1). Hence, using Lemma 2.1, we obtain

PO
m! -

leml < 1B (meN),

where
p@=l+ciz+e++  (zel)
and (by (1.2))
2-a) . 71(1—a)
= sin .
b B—a

1Bi| = ‘B_ai(l —ez’”‘z‘fi)

T

Also from (2.2), we find
- 2¢'(2) = p@WY(2).
In view of (2.4), we obtain
—ho = ¢

and

n
—nb,—h, =cps1 +crho+ - +ci1hp—1 = Ccpy1 + chh,,_j (neN).

j=1
Now we get from (2.1),(2.3) and (2.5),

n—-1 n
B
n|bn|s|hn|+|Bl|[1+Z|hk|]s|hn|+|31|| |(1+'k—") (nem.
k=0 k=1

This evidently completes the proof of Theorem 2.2.

) (neN).

2.D

2.2)

2.3)

2.4

2.5)

O

Letting 8 — oo in Theorem 2.2, we have the coefficient bounds for Libera type meromorphic close-to-convex

functions of order @ and type 6.
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Corollary 2.3. Let a and 6 be real numbers such that 0 < @, < 1 and let the function g € o be defined by (1.3). If
g € Cy(a,0), then

i< 200 (1, 20-0) 200 200y,
k=1

“nn+1) o k k

Letting 6 = 0, 8 — oo in Theorem 2.2, we have the following coefficient bounds for meromorphic close-to-convex
functions of order a.

Corollary 2.4. Let a be a real number such that 0 < a < 1 and let the function g € o be defined by (1.3). If f € Cy(a),
then

|bnls$+¥ﬂ(l+¥) (neN).
k=1

Letting @ = § = 0, B — oo in Theorem 2.2, we have the following coefficient bounds for meromorphic close-to-
convex functions.

Corollary 2.5. Let the function g € o be defined by (1.3). If f € C,, then

P (n+2)>*

(neN).
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