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Abstract. In this paper, first Zagreb and second Zagreb matrices are defined for weighted graphs and accordingly
the first Zagreb and second Zagreb energy of weighted graphs are introduced. Moreover, some upper and lower
bounds are presented for Zagreb energy of positive definite matrix weighted graphs. Also some bounds are obtained
for number weighted and unweighted graphs.
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1. Introduction and Preliminaries

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). If u, v are adjacent vertices, it is denoted
by u ∼ v or uv ∈ E(G). Degree of a vertex u is denoted by du. The concept of topological index of a graph is a
numerical value which is invariant under graph isomorphism is arisen from the work of famous chemist Wiener [19].
Degree based topological indices plays an essential role in chemical graph theory (see [15]). One of these are first
Zagreb and second Zagreb indices of a graph G which are defined by

M1 (G) =
∑

u∈V(G)

d2
u =

∑
uv∈E(G)

du + dv,

M2 (G) =
∑

uv∈E(G)

dudv,

respectively (see [4, 5]). There are many generalizations of Zagreb indices. In [10, 11], for α ∈ R, the following
generalizations of the first Zagreb and second Zagreb index are introduced as

M(α)
1 (G) =

∑
u∈V(G)

d α
u =

∑
uv∈E(G)

(
d α−1

u + d α−1
v

)
,

M(α)
2 (G) =

∑
uv∈E(G)

(dudv)α ,
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which are called general Zagreb indices or variable Zagreb indices, nowadays. M(α)
2 (G) is known as general Randić

index. In [21], another generalization is defined as

Hα (G) =
∑

uv∈E(G)

(du + dv)α , α ∈ R

and called general sum-connectivity index. For α = 2, Hα (G) is called hyper-Zagreb index and denoted by HM(G),
namely

HM = HM (G) =
∑

uv∈E(G)

(du + dv)2 ,

which is introduced by Shirdel et al. in [16].
In [6], energy of a graph is defined as sum of the absolute values of the eigenvalues of adjacency matrix. It is an

attractive concept for chemists and mathematicians (see [3, 7, 9, 17]).
Let G = (V (G) , E (G)) be a graph with n vertices. In [14], the first Zagreb

(
Z(1)(G)

)
n×n

and second Zagreb(
Z(2)(G)

)
n×n

matrices of a graph G are respectively defined such that the (i, j) − th element of Z(1)(G) is di + d j, if
viv j ∈ E (G) and 0, otherwise and the (i, j) − th element of Z(2)(G) is did j, if viv j ∈ E (G) and 0, otherwise. The
eigenvalues of Z(1)(G) and Z(2)(G) are called first Zagreb and second Zagreb eigenvalues of G which can be arranged
as in non-increasing order λ(1)

1 ≥ λ(1)
2 ≥ ... ≥ λ(1)

n and λ(2)
1 ≥ λ(2)

2 ≥ ... ≥ λ(2)
n , respectively. The first Zagreb energy

EZ(1) (G) and second Zagreb energy EZ(2) (G) are defined as EZ(1) (G) =
n∑

i=1

∣∣∣λ(1)
i

∣∣∣ and EZ(2) (G) =
n∑

i=1

∣∣∣λ(2)
i

∣∣∣ , respectively.

An edge weighted graph is a graph that has a numeric label wi j associated with each edge i j, called the weight of the
edge i j. In many applications, the weights are usually represented by nonnegative integers or square matrices. If each
edge weight is 1, then the graph is called unweighted graph. We consider edge weighted graphs with edge weights
of which have been assigned a positive definite matrix. Let wi j be t × t positive definite weight matrix of the edge i j,
assume that wi j = w ji and for all i ∈ V, wi =

∑
j: j∼i

wi j.

Eigenvalue bounds of graph matrices of weighted graphs are widely studied by many mathematicians (see [2, 8, 18,
20]). Energy and distance energy of weighted graphs are considered in [1] and [2], respectively. By this motivation,
we will define Zagreb energy of edge weighted graphs without loops and parallel edges. For this purpose, we firstly
introduce weighted first Zagreb matrix Z(1)

w (G) =
(
z(1)

i j

)
nt×nt

of G and weighted second Zagreb matrix Z(2)
w (G) =

(
z(2)

i j

)
nt×nt

of G respectively as

z(1)
i j =

{
wi + w j,
0 ,

if i ∼ j
otherwise , (1.1)

z(2)
i j =

{
wiw j,
0 ,

if i ∼ j
otherwise , (1.2)

where 0 denotes t × t zero matrix. Since Z(1)
w (G) and Z(2)

w (G) are real symmetric matrices, weighted first Zagreb
eigenvalues and weighted second Zagreb eigenvalues are real and can be arranged respectively as λ(1)

w,1 ≥ λ
(1)
w,2 ≥ ... ≥

λ(1)
w,nt and λ(2)

w,1 ≥ λ(2)
w,2 ≥ ... ≥ λ(2)

w,nt in non-increasing order. Also we can define the first Zagreb and second Zagreb
energy of a weighted graph G as

EZ(1)
w
= EZ(1)

w
(G) =

nt∑
i=1

∣∣∣λ(1)
w,i

∣∣∣ ,
EZ(2)

w
= EZ(2)

w
(G) =

nt∑
i=1

∣∣∣λ(2)
w,i

∣∣∣ ,
respectively. EZ(1)

w
and EZ(2)

w
can also be called as weighted first Zagreb energy and weighted second Zagreb energy. In

above definition, setting t = 1 gives the first Zagreb and second Zagreb energy of number weighted graphs. By setting
t = 1,wi j = 1 for all i, j and i ∼ j, we have wi = di, thus an unweighted graph is obtained. If we consider (1.1) and
(1.2) for an unweighted graph, then Z(1)(G) and Z(2)(G) matrices are obtained and also Zagreb energies EZ(1) (G) and
EZ(2) (G) .

In this paper, first Zagreb and second Zagreb energy of edge weighted graphs are introduced and some bounds
are presented for the first Zagreb and second Zagreb energy for positive definite matrix weighted graphs. By means of
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these bounds some results are also obtained for number weighted and unweighted graphs. Firstly, we give the following
known inequalities.

Lemma 1.1 (Pólya and Szegő, [13]). If xi and yi (1 ≤ i ≤ n) are positive real numbers, then
n∑

i=1

x2
i

n∑
i=1

y2
i ≤

1
4

√ M1M2

m1m2
+

√
m1m2

M1M2

2  n∑
i=1

xiyi

2

,

where M1 = max
1≤i≤n

{xi}, M2 = max
1≤i≤n

{yi}; m1 = min
1≤i≤n

{xi}, m2 = min
1≤i≤n

{yi} .

Lemma 1.2 (Ozeki, [12]). If xi and yi (1 ≤ i ≤ n) are non-negative real numbers, then
n∑

i=1

x2
i

n∑
i=1

y2
i −

 n∑
i=1

xiyi

2

≤
n2

4
(M1M2 − m1m2)2 ,

where Mi and mi defined in Lemma 1.1.

2. Bounds for Weighted First Zagreb Energy

In this section, we present upper and lower bounds for the first Zagreb energy of matrix weighted graphs and assume
that all of the matrix weighted graphs have t×t positive definite matrix edge weights. Further some bounds are obtained
for number weighted and unweighted graphs. Fundamental properties will be given in the following lemma.

Lemma 2.1. If G is a matrix weighted graph of order n (≥ 3) , then

(1)
nt∑

i=1
λ(1)

w,i = 0 and
nt∑

i=1
λ(2)

w,i = 0,

(2)
nt∑

i=1

(
λ(1)

w,i

)2
= 2W1 and

nt∑
i=1

(
λ(2)

w,i

)2
= 2W2,

whereW1 =
∑

j: j∼i
i, j∈{1,2,...,n}

(
wi + w j

)2
andW2 =

∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
.

Proof. (1) Since diagonal elements of Z(1)
w (G) and Z(2)

w (G) matrices are equal to zero, obviously we have
nt∑

i=1

λ(1)
w,i = tr

[
Z(1)

w (G)
]
= 0,

nt∑
i=1

λ(2)
w,i = tr

[
Z(2)

w (G)
]
= 0,

where tr(.) stands for trace of a matrix.
(2) Also we have

nt∑
i=1

(
λ(1)

w,i

)2
= tr

[(
Z(1)

w (G)
)2
]
=

n∑
i=1

∑
j: j∼i

(
wi + w j

)2
(2.1)

= 2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
= 2W1,

and
nt∑

i=1

(
λ(2)

w,i

)2
= tr

[(
Z(2)

w (G)
)2
]
=

n∑
i=1

∑
j: j∼i

(
wiw j

)2
(2.2)

= 2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
= 2W2.

�
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Remark 2.2. Let G be an unweighted graph. By setting t = 1, wi j = 1, for all i, j and i ∼ j, we have wi = di and
consider (2.1) and (2.2). Then

2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
= 2

∑
j: j∼i

i, j∈{1,2,...,n}

(
di + d j

)2
= 2HM = tr

[(
Z(1)

w (G)
)2
]

(2.3)

yields the result which is presented in [14] (see Lemma 1), where HM is the hyper-Zagreb index of G and

2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
= 2

∑
j: j∼i

i, j∈{1,2,...,n}

(
did j

)2
= 2M(2)

2 = tr
[(

Z(2)
w (G)

)2
]
, (2.4)

where M(2)
2 is the general Randić index of G with α = 2. Thus in unweighted caseW1 = HM andW2 = M(2)

2 .

Theorem 2.3. If G is a matrix weighted graph of order n (≥ 3), then

EZ(1)
w

(G) ≤
∣∣∣λ(1)

w,1

∣∣∣ + √
(nt − 1)

(
2W1 −

(
λ(1)

w,1

)2
)
, (2.5)

where λ(1)
w,1 is the largest eigenvalue of Z(1)

w (G) .

Proof. It is obvious that

EZ(1)
w
−

∣∣∣λ(1)
w,1

∣∣∣ = nt∑
i=2

∣∣∣λ(1)
w,i

∣∣∣ .
Setting xi = 1 and yi =

∣∣∣λ(1)
w,i

∣∣∣ (1 ≤ i ≤ nt), applying Cauchy-Schwarz inequality and using (2.1) yields

(
EZ(1)

w
−

∣∣∣λ(1)
w,1

∣∣∣)2
=

 nt∑
i=2

∣∣∣λ(1)
w,i

∣∣∣ .12

≤

nt∑
i=2

(
λ(1)

w,i

)2
nt∑

i=2

12

= (nt − 1)
nt∑

i=2

(
λ(1)

w,i

)2

= (nt − 1)

 nt∑
i=1

(
λ(1)

w,i

)2
−

(
λ(1)

w,1

)2


= (nt − 1)

2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
−

(
λ(1)

w,1

)2

 ,
sinceW1 =

∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
, we get the required result. �

Corollary 2.4. If G is a number weighted graph of order n (n ≥ 3) with positive edge weights, then

EZ(1)
w

(G) ≤
∣∣∣λ(1)

w,1

∣∣∣ + √
(n − 1)

(
2W1 −

(
λ(1)

w,1

)2
)
, (2.6)

where λ(1)
w,1 is the largest eigenvalue of Z(1)

w (G) .

Proof. For a number weighted graph, if we take t = 1 in (2.5), then proof is completed. �

Corollary 2.5. If G is an unweighted graph of order n (≥ 3), then

EZ(1) (G) ≤
∣∣∣λ(1)

1

∣∣∣ + √
(n − 1)

(
2HM −

(
λ(1)

1

)2
)
,

where HM is the hyper-Zagreb index of G and λ(1)
1 is the largest first Zagreb eigenvalue of G.



Zagreb Energy of Weighted Graphs 166

Proof. For an unweighted graph, t = 1, wi j = 1 and for all i, j and i ∼ j, we have wi = di in (2.5). Using (2.3),

EZ(1) ≤
∣∣∣λ(1)

1

∣∣∣ +
√√√√√√√√

(n − 1)

2
∑
j: j∼i

i, j∈{1,2,...,n}

(
di + d j

)2
−

(
λ(1)

1

)2


≤

∣∣∣λ(1)
1

∣∣∣ + √
(n − 1)

(
2HM −

(
λ(1)

1

)2
)
,

completes proof. �

Theorem 2.6. If G is a matrix weighted graph of order n (≥ 3), then√
2W1 ≤ EZ(1)

w
(G) ≤

√
(2nt)W1. (2.7)

Proof. Taking xi = 1 and yi =
∣∣∣λ(1)

w,i

∣∣∣ (1 ≤ i ≤ nt) in Cauchy-Schwarz inequality, we get

(
EZ(1)

w

)2
=

 nt∑
i=1

1.
∣∣∣λ(1)

w,i

∣∣∣2

≤

nt∑
i=1

12
nt∑

i=1

(
λ(1)

w,i

)2
= nt

nt∑
i=1

(
λ(1)

w,i

)2
.

From (2.1), we have (
EZ(1)

w

)2
≤ 2nt

∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
= (2nt)W1,

which determines the upper bound. On the other hand, if we use (2.1) then

(
EZ(1)

w

)2
=

 nt∑
i=1

∣∣∣λ(1)
w,i

∣∣∣2

≥

nt∑
i=1

(
λ(1)

w,i

)2

= 2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
= 2W1,

so, proof is completed. �

Corollary 2.7. If G is a number weighted graph of order n (≥ 3) with positive edge weights, then√
2W1 ≤ EZ(1)

w
(G) ≤

√
(2n)W1. (2.8)

Proof. If we take t = 1 in (2.7), then proof is obvious. �

The following bounds are presented in Theorem 1 in [14].

Corollary 2.8. If G is an unweighted graph of order n (≥ 3), then
√

2HM ≤ EZ(1) (G) ≤
√

2nHM,

where HM is the hyper-Zagreb index of G.

Proof. In an unweighted graph, t = 1, wi j = 1 and for all i, j and i ∼ j, wi = di. Thus from (2.7)√√√
2

∑
j: j∼i

i, j∈{1,2,...,n}

(
di + d j

)2
≤ EZ(1) ≤

√√√
2n

∑
j: j∼i

i, j∈{1,2,...,n}

(
di + d j

)2
,

by (2.3), we have
√

2HM ≤ EZ(1) ≤
√

2nHM,

completes proof. �
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Theorem 2.9. If G is a matrix weighted graph of order n (≥ 3) and zero is not an eigenvalue of Z(1)
w (G), then

EZ(1)
w

(G) ≥
2
√
λ(1)

w,1λ
(1)
w,nt
√

(2nt)W1

λ(1)
w,1 + λ

(1)
w,nt

, (2.9)

where λ(1)
w,1 and λ(1)

w,nt are maximum and minimum of the absolute value of λ(1)
w,is, respectively.

Proof. Assume that xi =
∣∣∣λ(1)

w,i

∣∣∣ and yi = 1 (1 ≤ i ≤ nt) and applying Pólya-Szegő inequality, we have

nt∑
i=1

∣∣∣λ(1)
w,i

∣∣∣2 nt∑
i=1

12 ≤
1
4


√√√
λ(1)

w,nt

λ(1)
w,1

+

√√√
λ(1)

w,1

λ(1)
w,nt


2  nt∑

i=1

∣∣∣λ(1)
w,i

∣∣∣2

.

By (2.1)

2nt
∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
≤

1
4

(
λ(1)

w,1 + λ
(1)
w,nt

)2

λ(1)
w,1λ

(1)
w,nt

(
EZ(1)

w

)2
,

and

EZ(1)
w
≥

2
√
λ(1)

w,1λ
(1)
w,nt

√
2nt

∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2

λ(1)
w,1 + λ

(1)
w,nt

=
2
√
λ(1)

w,1λ
(1)
w,nt
√

(2nt)W1

λ(1)
w,1 + λ

(1)
w,nt

.

�

Corollary 2.10. If G is a number weighted graph of order n (≥ 3) with positive edge weights and zero is not an
eigenvalue of Z(1)

w (G), then

EZ(1)
w

(G) ≥
2
√
λ(1)

w,1λ
(1)
w,n
√

(2n)W1

λ(1)
w,1 + λ

(1)
w,n

,

where λ(1)
w,1 and λ(1)

w,n are maximum and minimum of the absolute value of λ(1)
w,is, respectively.

Proof. If we write t = 1 in (2.9), then proof is obvious. �

Corollary 2.11. If G is an unweighted graph of order n (≥ 3) and zero is not an eigenvalue of Z(1)(G), then

EZ(1) (G) ≥
2
√

2nλ(1)
1 λ(1)

n HM

λ(1)
1 + λ

(1)
n

,

where λ(1)
1 and λ(1)

n are maximum and minimum of the absolute value of λ(1)
i s, respectively.

Proof. Assume that t = 1 and wi j = 1 for all i, j and i ∼ j, we have wi = di in (2.9), then

EZ(1) ≥

2
√
λ(1)

1 λ(1)
n

√
2n

∑
j: j∼i

i, j∈{1,2,...,n}

(
di + d j

)2

λ(1)
1 + λ

(1)
n

.

From (2.3), we have

EZ(1) ≥
2
√

2nλ(1)
1 λ(1)

n HM

λ(1)
1 + λ

(1)
n

,

thus we get the required result. �
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Theorem 2.12. If G is a matrix weighted graph of order n (≥ 3), then

EZ(1)
w

(G) ≥

√
2ntW1 −

n2t2

4

(
λ(1)

w,1 − λ
(1)
w,nt

)2
, (2.10)

where λ(1)
w,1 and λ(1)

w,nt are maximum and minimum of the absolute value of λ(1)
w,is, respectively.

Proof. By substituting xi =
∣∣∣λ(1)

w,i

∣∣∣ and yi = 1 (1 ≤ i ≤ nt) in Ozeki inequality, then

nt∑
i=1

∣∣∣λ(1)
w,i

∣∣∣2 nt∑
i=1

12 −

 nt∑
i=1

∣∣∣λ(1)
w,i

∣∣∣2

≤
n2t2

4

(
λ(1)

w,1 − λ
(1)
w,nt

)2
.

From (2.1), we have

2nt
∑
j: j∼i

i, j∈{1,2,...,n}

(
wi + w j

)2
−

(
EZ(1)

w

)2
≤

n2t2

4

(
λ(1)

w,1 − λ
(1)
w,nt

)2
,

and

EZ(1)
w
≥

√
2ntW1 −

n2t2

4

(
λ(1)

w,1 − λ
(1)
w,nt

)2
.

�

Corollary 2.13. If G is a number weighted graph of order n (≥ 3) with positive edge weights, then

EZ(1)
w

(G) ≥

√
2nW1 −

n2

4

(
λ(1)

w,1 − λ
(1)
w,n

)2
, (2.11)

where λ
(1)

w,1 and λ(1)
w,n are maximum and minimum of the absolute value of λ(1)

w,is, respectively.

Proof. Setting t = 1 in (2.10), proof is obvious. �

Corollary 2.14. If G is an unweighted graph of order n (≥ 3), then

EZ(1) (G) ≥

√
2nHM −

n2

4

(
λ(1)

1 − λ
(1)
n

)2
,

where λ(1)
1 and λ(1)

n are maximum and minimum of the absolute value of λ(1)
i s, respectively.

Proof. For an unweighted graph, t = 1, wi j = 1 and for all i, j and i ∼ j, wi = di. Thus from (2.10) and (2.3), we have

EZ(1) (G) ≥

√
2nW1 −

n2

4

(
λ(1)

1 − λ
(1)
n

)2

=

√
2nHM −

n2

4

(
λ(1)

1 − λ
(1)
n

)2
,

completes proof. �

In molecular graphs, the atoms of the molecule represent the vertices and the chemical bonds joining the atoms
represent the edges. Now, we give an example for a number weighted molecular graph and calculate the weighted first
Zagreb energy. In addition, the presented bounds are calculated for this graph (see Table 1).

Example 2.15. Consider the edge weighted molecular graph of methane (CH4) molecule and assume that each edge
has bond length weight (in nanometer). The bond length of C − H is 0.11. So, all of the edge weights are 0.11. Thus

Z(1)
w =


0 0.55 0.55 0.55 0.55

0.55 0 0 0 0
0.55 0 0 0 0
0.55 0 0 0 0
0.55 0 0 0 0
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with eigenvalues −1.1 (once) , 0 (3 times), 1.1(once). Hence EZ(1)
w
= 2.2. Moreover,

W1 =
∑
j: j∼i

i, j∈{1,2,3,4,5}

(
wi + w j

)2
= 4 (0.55)2 = 1.21.

lower bounds in Eq. (2.8)-(2.11) EZ(1)
w

upper bounds in Eq. (2.8)-(2.6)
1.5 − 2.1 2.2 3.4 − 3.3

Table 1. Bounds for number weighted first Zagreb energy

3. Bounds for Weighted Second Zagreb Energy

In this section, we obtain some bounds for the second Zagreb energy of matrix weighted graphs, number weighted
and unweighted graphs. Assume that all of the matrix weighted graphs have t × t positive definite matrix edge weights
and recallW2 =

∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
.

Theorem 3.1. If G is a matrix weighted graph of order n (≥ 3), then

EZ(2)
w

(G) ≤
∣∣∣λ(2)

w,1

∣∣∣ + √
(nt − 1)

(
2W2 −

(
λ(2)

w,1

)2
)

(3.1)

where λ(2)
w,1 is the largest eigenvalue of Z(2)

w (G) .

Proof. Consider EZ(2)
w

and setting xi = 1 and yi =
∣∣∣λ(2)

w,i

∣∣∣ (1 ≤ i ≤ nt), applying Cauchy-Schwarz inequality and using
(2.2) yields (

EZ(2)
w
−

∣∣∣λ(2)
w,1

∣∣∣)2
=

 nt∑
i=2

∣∣∣λ(2)
w,i

∣∣∣ .12

≤

nt∑
i=2

(
λ(2)

w,i

)2
nt∑

i=2

12

= (nt − 1)
nt∑

i=2

(
λ(2)

w,i

)2

= (nt − 1)

 nt∑
i=1

(
λ(2)

w,i

)2
−

(
λ(2)

w,1

)2


= (nt − 1)

2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
−

(
λ(2)

w,1

)2

 ,
the result. �

Corollary 3.2. If G is a number weighted graph of order n (≥ 3) with positive edge weights, then

EZ(2)
w

(G) ≤
∣∣∣λ(2)

w,1

∣∣∣ + √
(n − 1)

(
2W2 −

(
λ(2)

w,1

)2
)
, (3.2)

where λ(2)
w,1 is the largest eigenvalue of Z(2)

w (G) .

Proof. Proof is obvious from setting t = 1 in (3.1). �

Corollary 3.3. If G is an unweighted graph of order n (≥ 3) , then

EZ(2) (G) ≤
∣∣∣λ(2)

1

∣∣∣ + √
(n − 1)

(
2M(2)

2 −
(
λ(2)

1

)2
)
,

where λ(2)
1 is the largest eigenvalue of Z(2) (G) .

Proof. Consider (3.1) for an unweighted graph with t = 1. Proof is obvious from Remark 2.2, since for an unweighted
graphW2 = M(2)

2 . �
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Theorem 3.4. If G is a matrix weighted graph of order n (≥ 3), then√
2W2 ≤ EZ(2)

w
(G) ≤

√
(2nt)W2. (3.3)

Proof. Consider EZ(2)
w

(G) . Setting xi = 1, yi =
∣∣∣λ(2)

w,i

∣∣∣ (1 ≤ i ≤ nt) and applying Cauchy-Schwarz inequality, then

(
EZ(2)

w

)2
=

 nt∑
i=1

1.
∣∣∣λ(2)

w,i

∣∣∣2

≤

nt∑
i=1

12
nt∑

i=1

(
λ(2)

w,i

)2
= nt

nt∑
i=1

(
λ(2)

w,i

)2
.

From (2.2), we get the upper bound as (
EZ(2)

w

)2
≤ 2nt

∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
= 2ntW2.

On the other hand, using (2.2) (
EZ(2)

w

)2
=

 nt∑
i=1

∣∣∣λ(2)
w,i

∣∣∣2

≥

nt∑
i=1

(
λ(2)

w,i

)2

= 2
∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
= 2W2,

completes proof. �

Corollary 3.5. If G is a number weighted graph of order n (≥ 3) with positive edge weights, then√
2W2 ≤ EZ(2)

w
(G) ≤

√
2nW2. (3.4)

Proof. Proof can be seen by t = 1 in (3.3). �

Corollary 3.6. If G is an unweighted graph of order n (≥ 3), then√
2M(2)

2 ≤ EZ(2) (G) ≤
√

2nM(2)
2 ,

where M(2)
2 is the general Randić index of G with α = 2.

Proof. Consider (3.3) for an unweighted graph with t = 1. Proof can be seen from Remark 2.2 sinceW2 = M(2)
2 for

unweighted case. �

Theorem 3.7. If G is a matrix weighted graph of order n (≥ 3) and zero is not an eigenvalue of Z(2)
w (G), then

EZ(2)
w

(G) ≥
2
√
λ(2)

w,1λ
(2)
w,nt
√

2ntW2

λ(2)
w,1 + λ

(2)
w,nt

, (3.5)

where λ(2)
w,1 and λ(2)

w,nt are maximum and minimum of the absolute value of λ(2)
w,is, respectively.

Proof. By choosing xi =
∣∣∣λ(2)

w,i

∣∣∣ and yi = 1 (1 ≤ i ≤ nt) and applying Pólya-Szegő inequality yields

nt∑
i=1

∣∣∣λ(2)
w,i

∣∣∣2 nt∑
i=1

12 ≤
1
4


√√√
λ(2)

w,nt

λ(2)
w,1

+

√√√
λ(2)

w,1

λ(2)
w,nt


2  nt∑

i=1

∣∣∣λ(2)
w,i

∣∣∣2

.

From (2.2), we have

2nt
∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
≤

1
4

(
λ(2)

w,1 + λ
(2)
w,nt

)2

λ(2)
w,1λ

(2)
w,nt

(
EZ(2)

w

)2
.

So, proof is obvious sinceW2 =
∑

j: j∼i
i, j∈{1,2,...,n}

(
wiw j

)2
. �
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Corollary 3.8. If G is a number weighted graph of order n (≥ 3) with positive edge weights and zero is not an eigen-
value of Z(2)

w (G), then

EZ(2)
w

(G) ≥
2
√
λ(2)

w,1λ
(2)
w,n
√

2nW2

λ(2)
w,1 + λ

(2)
w,n

,

where λ(2)
w,1 and λ(2)

w,n are maximum and minimum of the absolute value of λ(2)
w,is, respectively.

Proof. Taking t = 1 in (3.5) completes proof. �

Corollary 3.9. If G is an unweighted graph of order n (≥ 3) and zero is not an eigenvalue of Z(2)(G), then

EZ(2) (G) ≥
2
√

2nM(2)
2 λ(2)

1 λ(2)
n

λ(2)
1 + λ

(2)
n

,

where λ(2)
1 and λ(2)

n are maximum and minimum of the absolute value of λ(2)
i s, respectively.

Proof. Consider (3.5) for an unweighted graph with t = 1. Proof is obvious from Remark 2.2 since W2 = M(2)
2 for

unweighted case. �

Theorem 3.10. If G is a matrix weighted graph of order n (≥ 3), then

EZ(2)
w

(G) ≥

√
2ntW2 −

n2t2

4

(
λ(2)

w,1 − λ
(2)
w,nt

)2
, (3.6)

where λ(2)
w,1 and λ(2)

w,nt are maximum and minimum of the absolute value of λ(2)
w,is, respectively.

Proof. If we choose xi =
∣∣∣λ(2)

w,i

∣∣∣ and yi = 1 (1 ≤ i ≤ nt) and apply Ozeki inequality, then

nt∑
i=1

∣∣∣λ(2)
w,i

∣∣∣2 nt∑
i=1

12 −

 nt∑
i=1

∣∣∣λ(2)
w,i

∣∣∣2

≤
n2t2

4

(
λ(2)

w,1 − λ
(2)
w,nt

)2
.

From (2.2), we have

2nt
∑
j: j∼i

i, j∈{1,2,...,n}

(
wiw j

)2
−

(
EZ(2)

w

)2
≤

n2t2

4

(
λ(2)

w,1 − λ
(2)
w,nt

)2
.

Now, proof is obvious. �

Corollary 3.11. If G is a number weighted graph of order n (≥ 3) with positive edge weights, then

EZ(2)
w

(G) ≥

√
2nW2 −

n2

4

(
λ(2)

w,1 − λ
(2)
w,n

)2
, (3.7)

where λ(2)
w,1 and λ(2)

w,n are maximum and minimum of the absolute value of λ(2)
w,is, respectively.

Proof. Setting t = 1 in (3.6), proof can be seen. �

Corollary 3.12. If G is an unweighted graph of order n (≥ 3), then

EZ(2) (G) ≥

√
2nM(2)

2 −
n2

4

(
λ(2)

1 − λ
(2)
n

)2
,

where λ(2)
1 and λ(2)

n are maximum and minimum of the absolute value of λ(2)
i s, respectively.

Proof. Consider (3.6) with (2.4) for an unweighted graph, we obtain

EZ(2) (G) ≥

√
2nW2 −

n2

4

(
λ(2)

1 − λ
(2)
n

)2

=

√
2nM(2)

2 −
n2

4

(
λ(2)

1 − λ
(2)
n

)2
,

which completes proof. �
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Finally, we calculate the number weighted second Zagreb energy of a molecular graph and compute the bounds
presented in this section (see Table 2).

Example 3.13. Consider the edge weighted molecular graph of methane (CH4) molecule with bond length weight (in
nanometer). The bond length of C − H is 0.11. So, all of the edge weights are 0.11. Thus

Z(2)
w =


0 0.0484 0.0484 0.0484 0.0484

0.0484 0 0 0 0
0.0484 0 0 0 0
0.0484 0 0 0 0
0.0484 0 0 0 0


with eigenvalues −0.0968 (once) , 0 (3 times), 0.0968 (once). Hence EZ(2)

w
= 0.1936. Further,W2 =

∑
j: j∼i

i, j∈{1,2,3,4,5}

(
wiw j

)2
=

4 (0.0484)2 = 0.0093.

lower bounds in Eq. (3.4)-(3.7) EZ(2)
w

upper bounds in Eq. (3.2)-(3.4)
0.1368 − 0.1874 0.1936 0.2904 − 0.3061

Table 2. Bounds for number weighted second Zagreb energy
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