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Abstract. In this paper, firstly the ruled surface drawn by the Darboux vector is expressed as a quaternion.
Then, the spatial quaternionic definition of the striction curve is given and the integral invariants of the surface are
calculated. Finally, the ruled surface which corresponds to a dual curve drawn by a dual Darboux vector is derived
with the help of dual spatial quaternions and dual integral invariants of the ruled surface are obtained.
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1. Introduction

Quaternions arose historically from Hamilton’s essays to generalize complex numbers in some way that would apply
to 3D space. He struggled for years attempting to make sense of an unsuccessful algebraic system containing one real
and two imaginary parts. Hamilton had a brilliant stroke of imagination and invented in a single instant the idea of a
three-part imaginary system that became the quaternion algebra [7, 9]. Quaternions are used in many scientific fields
such as physic, quantum, camera, and robot kinematic. Shoemake takes the concept of the orientation frame for moving
3D objects and cameras and introduces quaternions to animators as a solution [10]. Quaternions are also used in curves
and surfaces theory. The Serret-Frenet formulae for quaternionic curves in IR3 and IR4 are introduced by Bharathi
and Nagaraj [3]. Şenyurt et al. calculate curvature and torsion of spatial quaternionic involute curve [13]. Recently,
surfaces and ruled surfaces have been studied as quaternions. The invariants (shape operator, Gauss curvature, etc.) of
surfaces are expressed quaternionically [1,2]. Ruled surfaces are examined in both Euclidean space and dual space and
some important results are given [4,14]. Let α be a unit-speed curve. Then the three vector fields ~t(s), ~n(s) and ~b(s) on
the curve are unit vector fields that are mutually orthogonal at each point. We call ~t(s), ~n(s) and ~b(s) the Frenet vectors
on the curve. The Frenet formulas can be given

~t′(s) = κ(s)~n(s), ~n′(s) = −κ(s)~t(s) + τ(s)~b(s), ~b′(s) = −τ(s)~n(s)

where κ and τ the first and second curvature of unit speed curve, respectively [6].
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2. Preliminaries

Definition 2.1. A ruled surface in IR3 is a surface that contains at least one 1-parameter family of straight lines. Thus
a ruled surface has a parametrization in the form

~ϕ(s, v) = ~α(s) + v~x(s). (2.1)

where we call α the base curve, ~x the generator vector of ruled surface [6].

Dual numbers were introduced in the 19th century by W. K. Clifford. The set of dual numbers given by ID =

{x + εx∗ : x, x∗ ∈ IR, ε2 = 0}. The set, ID3 = {~X = ~x + ε~x∗ : ~x, ~x∗ ∈ IR3, ε2 = 0} meets the all real vector space
axioms over the ring. The set is a module over the ring ID which is named ID - module or dual space. The vector ~x∗

call vectorial moment of the vector ~x satisfying ~x∗ = ~α ∧ ~x. If ‖~X‖ = 1, then the dual vector ~X is the dual point on the
dual unit sphere. According to E.Study theorem, there exists a one-to-one transformation between the dual points on
the unit dual sphere and the oriented lines in IR3. A dual curve corresponds to a ruled surface. This dual curve is called
the dual spherical image of the ruled surface [8].

The dual expression of ruled surface in (2.1) is

~ϕ(s, u) = ~x(s) ∧ ~x∗(s) + u~x(s)

where ∧ is cross product.
Real quaternion is defined by [7, 9]

q = d + a~e1 + b~e2 + c~e3, a, b, c, d ∈ IR, ~e1, ~e2, ~e3 ∈ IR
3.

The quaternion multiplication of q1 and q2 is given by [9]

q1 × q2 = d1d2 − (a1a2 + b1b2 + c1c2) + (d1a2 + a1d2 + b1c2 − c1b2)e1

+ (d1b2 + b1d2 + b1a2 − a1b2)e2 + +(d1c2 + c1d2 + a1b2 − b1a2)e3.

The quaternion inner product is defined as [3]

h(q1, q2) =
1
2

(q1 × q̄2 + q2 × q̄1). (2.2)

Let q be real quaternion. The quaternion satisfies q + q̄ = 0. In this case, the quaternion q is q = a~e1 + b~e2 + c~e3. This
new expression is called spatial(pure) quaterninon and its set is denoted Q [3]. As a result, the multiplication of the
two spatial quaternions is [3]

q1 × q2 = −〈q1, q2〉 + q1 ∧ q2.

Definition 2.2. [3] Let s ∈ I = [0, 1] be the arc parameter along the smooth curve

α : [0, 1] → Q, α(s) =

3∑
n=1

αi(s)ei.

This is called a spatial quaternionic curve.

Theorem 2.3. [14] The angle of pitch and the pitch of the closed ruled surface, λx and lx , are equal to the projection
of the generator x on the Steiner rotation vector d and the Steiner translation vector V

λx = h(~d(s), ~x(s)) (2.3)

lx = h(~V(s), ~x(s)).

Let q and q∗ be two real quaternions. Dual quaternion is denoted by [8]

Q = D + A~e1 + B~e2 + C ~e3, D, A, B,C ∈ ID.

The symmetric dual-valued bilineer form H which is defined as [11]

H(P,Q) =
1
2

(P × Q + Q × P).

Let Q be dual quaternion. The dual quaternion satisfies Q+Q̄ = 0. In this case, the quaternion Q is Q = A~e1+B~e2+C ~e3.
This new expression is called dual spatial quaterninon and its set is denoted QD [11].
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The dual quaternionic expression of the pitch of the ruled surface is given by [5]

LX = h( ~d∗(s), ~x(s)) + h(~d(s), ~x∗(s)). (2.4)

The dual angle of pitch of the ruled surface is given as quaternionic [4]

ΛX = −H(~D(s), ~X(s)) (2.5)

where ~X(s) = ~x(s) + ε~x∗(s) and ~D(s) = ~d(s) + ε~d∗(s).
The distribution parameter is defined as the ratio of the shortest distance between successive generators to the angle

between successive generators. Without specifying the arc-parameter “s” of the curve for the sake of brevity, we
calculate the integral invariants of the ruled surface. The distribution parameter is quaternionically given by [14]

Px =
h(~x × ~x′, ~α′)

N(~x′)2
=

1
2

(
(~x × ~x′) × ~α′ + ~α′ × (~x × ~x′)

)
N(~x′)2

· (2.6)

3. Main Results

3.1. Quaternionic Darboux Ruled Surface. In this section, we first calculate the striction curve of the quaternionic
ruled surface drawn by the Darboux vector. Then, if we investigate the distribution parameter of the surface, it is seen
that the surface is developable. Finally, integral invariants (pitch, and angle of pitch) of the surface are obtained.

The Darboux vector is the angular velocity vector of the Frenet frame of a space curve [12]. According to spatial
quaternion, the vector is expressed as

~w(s) = ~n(s) × ~n′(s) = τ(s)~t(s) + κ(s)~b(s). (3.1)

The Steiner rotation and Steiner translation vectors are, respectively,

~d(s) =

∮
~w(s)ds = ~t(s)

∮
τ(s)ds + ~b(s)

∮
κ(s)ds, ~V(s) =

∮
~t(s)ds.

Quaternionic Darboux ruled surface is a surface swept out by straight line moving along spatial quaernionic curve α.
The surface has a parametrization

~ϕ(s, v) = ~α(s) + v~w(s). (3.2)

We call α the base curve and ~w the Darboux vector (generator vector).
A ruled surface has striction curve that other surfaces do not have. It has an important geometric meaning such

that if there exists a common perpendicular to two constructive rulings, then the foot of the common perpendicular on
the main ruling is called striction point and striction curve is the locus of these points. Now, by using quaternionic
definition of the striction curve [14] and by taking into consideration the equation (2.2), we formula the striction curve
belonging to ϕ

~r(s) = ~α(s) −
h( ~w′(s),~t(s))

N( ~w′(s))2
~w(s) (3.3)

= ~α(s) −
h(τ′(s)~t(s) + κ′(s)~b(s),~t(s))

κ′2(s) + τ′2(s)
~w(s)

= ~α(s) −
τ(s)τ′(s)

κ′2(s) + τ′2(s)
~t(s) −

κ(s)τ′(s)
κ′2(s) + τ′2(s)

~b(s)·

Then the following proposition can be given:

Proposition 3.1. The striction curve of the quaternionic ruled surface drawn by the Darboux vector is

~r(s) = ~α(s) −
τ(s)τ′(s)

κ′2(s) + τ′2(s)
~t(s) −

κ(s)τ′(s)
κ′2(s) + τ′2(s)

~b(s)·

Theorem 3.2. The quaternionic ruled surface drawn by the Darboux vector is developable.
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Proof. A ruled surface is developable if and only if its distribution parameter is zero. Based on the definition from the
spatial quaternion and by using the equation (2.6), we have derived equation:

Pw =
h(~w × ~w′, ~α′)

N( ~w′(s))2
·

Considering the numerator part in the above equation, we can write

h(~w × ~w′,~t) =
1
2

(
(~w × ~w′) × ~t + ~t × (~w × ~w′)

)
=

1
2

(
− (~w × ~w′) × ~t + ~t × ( ~w′ × ~w)

)
=

1
2

(
−

(
− ττ′ − κκ′ + (κτ′ − τκ′)~n

)
× ~t + ~t ×

(
− ττ′ − κκ′ − (κτ′ − τκ′)~n

))
=

1
2

(
(−ττ′ − κκ′)~t + (κτ′ − τκ′)~b − (−ττ′ − κκ′)~t − (κτ′ − τκ′)~b

)
= 0.

Thus, Pw = 0 is found. Then, the quaternionic Darboux ruled surface is developable. �

Theorem 3.3. The pitch, and the angle of the pitch quaternionic ruled surface drawn by the Darboux vector are


lw = τ

∮
ds,

λw = κ

∮
κds + τ

∮
τds.

Proof. An orthogonal trajectory of quaternionic Darboux ruled surface is defined by differential equation

h(~w, d~ϕ) = 0⇒ h(~w, d~α + ~wdv + vd~w) = 0⇒ −h(~w, d~α) = dv.

According to quaternionic inner product, the pitch of closed ruled surface is given by

lx = −

∮
(α)

h(d~α, ~x) =

∮
(α)

dv.

By taking into consideration the above definition of the pitch, the pitch of the quaternionic Darboux ruled surface is

lw = h(
∮

d~α, ~w) = h(
∮
~tds, ~w)

=
1
2

(
~t
∮

ds × ~w + ~w × ~t
∮

ds
)

=
1
2

(
~t × (−τ~t − κ~b)

∮
ds − (τ~t + κ~b)) × ~t

∮
ds

= τ

∮
ds.
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From the equations (2.3), the angle of pitch of quaternionic Darboux ruled surface is found as

λw = h(~d, ~w) =
1
2

(
~d × ~w + ~w × ~d

)
=

1
2

(
− (~t

∮
τds + ~b

∮
κds) × ~w + ~w × (−~t

∮
τds − ~b

∮
κds)

)
=

1
2

(
− (~t × ~w)

∮
τds − (~b × ~w)

∮
κds − (~w × ~t)

∮
τds − (~w × ~b)

∮
κds)

)
=

1
2

(
− (~t × ~w)

∮
τds − (~b × ~w)

∮
κds − (~w × ~t)

∮
τds − (~w × ~b)

∮
κds)

)
=

1
2

(
− (~t × (τ~t + κ~b))

∮
τds − (~b × (τ~t + κ~b))

∮
κds − ((τ~t + κ~b) × ~t)

∮
τds

− ((τ~t + κ~b) × ~b)
∮

κds)
)

=
1
2

(
− (−τ − κ~n)

∮
τds − (τ~n − κ)

∮
κds − (−τ + κ~n)

∮
τds − (−τ~n − κ~b)

∮
κds)

)
= κ

∮
κds + τ

∮
τds. �

Example 3.4. Consider quaternionic curve α defined by

α(s) =

(
1
√

2
cos2(s),

1
√

2
sin2(s),

1
2

sin(2s)
)
.

Frenet invariants belonging to the curve are

t(s) =
1√

1 + sin2(s)

− √2
2

sin(2s),

√
2

2
sin(2s), cos(2s)

 ,
n(s) =

1√
1 + sin2(s)

− √2
2

cos(2s),

√
2

2
cos(2s),− sin(2s)

 ,
b(s) =

− √2
2
,−

√
2

2
, 0

 , κ(s) =
2(

1 + sin2(s)
) 3

2

, τ(s) = 0.

By considering the equation (3.1), the Darboux vector is written

~w(s) = ~n(s) × ~n′(s) =

−
√

2(
1 + sin2(s)

) 3
2

,−

√
2(

1 + sin2(s)
) 3

2

, 0

 .
If α, the Darboux vector and quaternion inner product are substituted in the equation (3.3), base curve is to be striction
curve. So, ~r(s) = ~α(s). If equation (3.2) is taken into account, then we obtain the closed ruled surface corresponding to
the Darboux vector ~w as

~ϕ(s, v) =

 1
√

2
cos2(s) − v

√
2(

1 + sin2(s)
) 3

2

,
1
√

2
sin2(s) − v

√
2(

1 + sin2(s)
) 3

2

,
1
2

sin(2s)

 .
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Figure 1. The green surface show the ruled surface and the red curve show the striction curve (base curve).

3.2. Dual Quaternionic Darboux Ruled Surface. In this section, the ruled surface which corresponds to a dual curve
drawn by dual Darboux vector is derived with the help of dual spatial quaternions. Then, dual integral invariants of the
surface are obtained as a quaternion.

A dual curve on a dual unit sphere corresponds to a ruled surface. The geometric location of dual vector ~W(s) =

~w(s) + ε ~w∗(s) draws dual curve on dual unit sphere.
The dual vector ~D(s) = ~d(s) + ε ~d∗(s) is called the dual Steiner vector [8]. By considering dual Darboux vector, we

display

~D(s) = ~d(s) + ε ~d∗(s) = ~t(s)
∮

τ(s) + ~b(s)
∮

κ(s) + ε
(
~t∗(s)

∮
τ(s) + ~t(s)

∮
τ∗(s)

+~b∗(s)
∮

κ(s) + ~b(s)
∮

κ∗(s)
)
.

The parametric equation of dual quaternionic Darboux ruled surface (DQDR) corresponding to the dual curve is

ϕW (s, u) = ~w(s) × ~w∗(s) + u~w(s), ~w∗(s) = ~α(s) × ~w(s). (3.4)

Without specifying the arc-parameter “s” of the curve for the sake of brevity, we calculate the integral invariants of
DQDR.

Theorem 3.5. The dual quaternionic Darboux ruled surface (DQDR) corresponding to the dual curve is developable.

Proof. Based on the equations from (2.6) and (3.4), we have derived the distribution parameter:

PW =
h
(
~w × ~w′

,
(
~w × ~w∗

)′)
N( ~w′ )2

=
h
(
−ττ′ − κκ′ + (κτ′ − τκ′)~n, ( ~w′ × (τ~t∗ + κ~b∗) + ~w × (τ~t∗ + κb∗)′

)
N( ~w′ )2

=
h
(
−ττ′ − κκ′ + (κτ′ − τκ′)~n, ( ~w′ × (τ~t∗ + κ~b∗) + ~w × (τ~t∗ + κ~b∗)′

)
N( ~w′ )2

.
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Considering the numerator part in the above equation, we can write

h(−ττ′ − κκ′ + (κτ′ − τκ′)~n, ( ~w′ × (τ~t∗ + κ~b∗) + ~w × (τ~t∗ + κ~b∗)′)

= h(−ττ′ − κκ′ + (κτ′ − τκ′)~n, ττ′(~t × ~t∗) + τ′κ(~t × ~b∗) + κ′τ(~b × ~t∗) + κκ′(~b × ~b∗)

+τ′(~w × ~t∗) + τ(~w × ~t∗′) + κ′(~w × ~b∗) + κ(~w × ~b∗′))

= h(−ττ′ − κκ′ + (κτ′ − τκ′)~n,−τ2~t + κτ2(~t × ~n∗) − κτ~b + κ2τ(~b × ~n∗) − κτ~b − κτ2(~t × ~n∗)

+κ2~t − κ2τ(~b × ~n∗))

= h(−ττ′ − κκ′ + (κτ′ − τκ′)~n, (κ2 − τ2)~t − 2κτ~b)

=
1
2

([
− ττ′ − κκ′ + (κτ′ − τκ′)~n

]
×

[
(κ2 − τ2)~t − 2κτ~b

]
+

[
(κ2 − τ2)~t − 2κτ~b

]
×
[
− ττ′ − κκ′ + (κτ′ − τκ′)~n

]
= 0.

Thus, PW = 0 is found. It is indicated that the distribution parameter of DQDR is developable. �

Theorem 3.6. The pitch and dual angle of pitch of the DQDR corresponding to the dual curve are
Lw = τ

∮
τ∗ + κ

∮
κ∗,

Λw = −τ

∮
τ − κ

∮
κ − ε

(
τ

∮
τ∗ + κ

∮
κ∗

)
.

Proof. By using the equation (2.4), the dual quaternionic expression of the pitch of the ruled surface in (3.4) is

LW = h
(~d, ~w∗) + h

( ~d∗, ~w)

=
1
2

(
~d × ~w∗ + ~w∗(s) × ~d

)
+

1
2

(
~d∗ × ~w + ~w × ~d∗

)
=

1
2

((
~t
∮

τ + ~b
∮

κ
)
× ~w∗ + ~w∗ ×

(
~t
∮

τ + ~b
∮

κ
)

+
(
~t∗

∮
τ + ~t

∮
τ∗ + ~b∗

∮
κ + ~b

∮
κ∗

)
× ~w

+~w ×
(
~t∗

∮
τ + ~t

∮
τ∗ + ~b∗

∮
κ + ~b

∮
κ∗

))
=

1
2

((
~t
∮

τ + ~b
∮

κ
)
× (−τt∗ − κb∗) + (+τt∗ + κb∗) ×

(
− ~t

∮
τ − ~b

∮
κ
)

+
(
~t∗

∮
τ + ~t

∮
τ∗

+~b∗
∮

κ + ~b
∮

κ∗
)
× (−τt − κb) + (τt∗ + κb∗) ×

(
− ~t∗

∮
τ − ~t

∮
τ∗ − ~b∗

∮
κ − ~b

∮
κ∗

))
= τ

∮
τ∗ + κ

∮
κ∗.

By taking into consideretion the equation (2.5), we can obtain

ΛW = −H(~D, ~W)

= −
1
2

(
~D × ~W + ~W × ~D

)
=

1
2

( (
~t
∮

τ + ~b
∮

κ + ε~t∗
∮

τ + ε~t
∮

τ∗ + ε~b∗
∮

κ + ε~b
∮

κ∗
)
× (~w + ε~w∗)

+ (~w + ε~w∗) ×
(
~t
∮

τ + ~b
∮

κ + ε~t∗
∮

τ + ε~t
∮

τ∗ + ε~b∗
∮

κ + ε~b
∮

κ∗
)

= −τ

∮
τ − κ

∮
κ − ε

(
τ

∮
τ∗ + κ

∮
κ∗

)
. �
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Example 3.7. Let α(s) = 1
√

2
(− cos s,− sin s, s) be a circular helix curve. Then, we obtain Frenet invariants as follows:

T (s) =
1
√

2
(sin s,− cos s, 1), N(s) = (cos s, sin s, 0),

B(s) =
1
√

2
(− sin s, cos s, 1),

κ(s) =
1
√

2
, τ(s) =

1
√

2
.

The Darboux vector is given by
~w(s) = (0, 0, 1).

The vectorial moment of the Darboux vector is written as quaternionic as following:

~w∗(s) = ~α(s) × ~w(s) =
1
√

2
(− sin s, cos s, 0) .

Then, the dual Darboux vector is

~W(s) = ~w(s) + ε ~w∗(s) =

(
−
ε
√

2
sin s,

ε
√

2
cos s, 1

)
.

Considering equation (3.4), we obtain closed ruled surface corresponding to the (ŵ) dual curves as

ψw(s, v) = ~w × ~w∗ + v~w =

(
−

1
√

2
cos s,−

1
√

2
sin s, v

)
.

Figure 2. The blue surface show the ruled surface and the red curve (~w × ~w∗) show base curve.

4. Conclusion

It is known that the striction curve, distribution parameter, pitch, and angle of pitch are the invariants in the ruled
surface. We quaternionically express the ruled surface drawn by the Darboux vector. These invariants are quaternion-
ically calculated for the ruled surface. We examine the ruled surface in dual space. By using dual spatial quaternions,
the integral invariants of the ruled surface and the relationships between the curvatures are obtained. Quaternionically
demonstrated that surfaces are developable. In the future, the geometric properties that are examined with the help of
the quaternions can be examined in the Lorentz and dual Lorentz space.
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[11] Sivridağ, A.İ., Güneş, R., Keleş, S., The Serret-Frenet formulae for dual quaternion-valued functions of a single real variable, Mechanism

and Machine Theory, 29(5)(1994), 749-754.
[12] Stoker, J.J., Differential Geometry, Wiley-Interscience, New York, 1969.
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