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Received: 04-01-2021 • Accepted: 15-04-2021

Abstract. We will hereby introduce a new generalization of the Schurer, Stancu, Deo, and Izgi operators which
are the modifications of the Bernstein polynomials and calculate the rate of approximation for the new operator
with the help of the continuity module. Then, by using graphs and numerical values, we will demonstrate that the
new general operator yields better results than the above classical operators which can be seen as the basis of the
approximation theory.
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1. Introduction

Polynomial approach and the classical approximation theory constitute a basic research area in applied mathematics.
The development of the approximation theory played an important role in the numerical solution of partial differential
equations, data processing sciences, and many other disciplines. For example, it is widely used in geometric modeling
in the aerospace and automotive industries to calculate approximate values with basic functions. Work in this field
goes back to the 18th century and still continues as a powerful tool in scientific calculations. Furthermore, it is used in
civil engineering projects to analyze the energy efficiency and earthquake resistance data of different types of buildings
in thermography calculations and earthquake engineering. The purpose of the approximation theory is to provide an
approach between function spaces. In this context, the best approximation uses a linear positive operator. An operator
that brings a function of positive value in one function space to another function of positive value in another function
space is called a positive operator; whereas the operators that are both positive and linear are called linear positive
operators. We will introduce a generalization of Bernstein operators that form the basis of linear positive operators.
This new generalization to be defined will be a better version of Bernstein operators that contribute to all of the above
mentioned fields of study. In this way, it is aimed to have a better approach. Before introducing the operator, if we need
to talk about previous studies. Weierstrass, who laid the foundations of the approach with a linear positive operator,
said in 1885 [17] that each continuous function as an element of C [a, b] was a sequence that could be approached with
a polynomial in the same closed range, but he did not specify the properties of these sequences. In 1912 Bernstein [4]
proved that the sequences in the Weierstrass theorem were the polynomials referred to by his name and exposed them
as follows:

Bn(h; κ) =

n∑
k=0

(
n
k

)
κk(1 − κ)n−kh

(
k
n

)
.
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There is a plethora of work on Bernstein polynomials and their generalizations [1,3,5,8–10,13,14]. The best known
is the 1953 book ”Bernstein Polynomials” by Lorentz [12]. In 1953, Korovkin [11] proved that these operators defined
would satisfy the main conditions of approximation theory when they satisfy the Korovkin conditions formulated
under his name. In the light of these studies, we will combine a generalization of Bernstein operators. We combined a
modification of Bernstein polynomials, namely Schurer [15] 1962, Stancu [16] 1968, Deo et al. [6] 2008, and Izgi [7]
2012, to identify a new operator.

In this operator we defined: α, β, a, b, u, v, p ≥ 0 constant numbers and a ≤ b, α + β = 1, p ∈ N0 is

An =

(
n + b
n + a

)n+p n+p∑
k=0

(
n + p

k

)
κk

(n + a
n + b

− κ
)n+p−k

h
[
n + a
n + b

(
β

k
n

+ α
k + u

n + p + v

)]
, (1.1)

where An := An(h;α, β, a, b, u, v, p; κ) and κ ∈
[
0, n+a

n+b

]
, h ∈ C [0, 1] .

In the operator we defined for a ≤ b;
i) β = 1, α = p = 0 and a = b gives classical Bernstein [4] polynomials,
ii) α = 1, β = p = 0 and a = b gives the Bernstein-Stancu [16] polynomials,
iii) β = 1, α = 0 and a = b gives the Bernstein-Schurer [15] polynomials,
iv) β = 1 and α = p = 0 gives the Bernstein-Izgi [7] polynomials,
v) β = 1, α = p = a = 0 and b = 1 gives the Bernstein-Deo [6] polynomials.
It is seen that (1.1) is a generalization of some of the generalized and modified versions of the Bernstein polynomials.

Hereinafter the following will be used for convenience:

Ãn(h; κ) := An(h;α, β, a, b, u, v, p; κ).

In this study, Korovkin conditions will be met and the approach speed of the operator Ãn(h; κ) will be calculated
with the help of continuity module for a generalization of the Bernstein operator defined in (1.1). Thereafter, we will
prove the theorem which shows that the operator meets the Lipschitz condition. Finally, graphics and numerical values
will be presented to ensure a better explanation of the approach.

2. Estimation Moments

In this section, the Ãn(tm; κ) values will be calculated for m = 0, 1, 2 as well as the central moments of Ãn((t−κ)m; κ).
Then, the theorem will be presented to demonstrate that the operator meets the Korovkin condition.

Lemma 2.1. Ãn(h; κ) the following equations are provided for these polynomials:

i) Ãn(1; κ) = 1

ii) Ãn(t; κ) = κ +

(
βp
n
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αv
n + p + v

)
κ + α

n + a
n + b

u
n + p + v

iii) Ãn(t2; κ) = κ2 +
[
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(
α2θ2

n − 2αθn

)
(1 + ζn)

]
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n
κ + κn,

where
ζn =

(2p − 1) n + (p − 1) p
n2 , ηn =

n + p
n

n + a
n + b

, θn =
p + v

n + p + v
, ϑn =

2βαu
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+ 2α2u
n
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ii)Ãn(t; κ) =
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In order to avoid confusion, we will solve each sum in the last statement separately k2 = k(k−1)+k using the equation,
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Using the equation k(k + u) = k2 + uk = k(k − 1) + k + uk = k(k − 1) + k(u + 1),
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is obtained.
Using the equation (k + u)2 = k2 + 2uk + u2 = k(k − 1) + k(2u + 1) + u2,
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is obtained. If the required operation is completed and the I1,I2 and I3 is written in its place in the main equation and
ζn =
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n2 , ηn =
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n
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(
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then;
Ãn(t2; κ) = κ2 +

(
ζn +

(
α2θ2

n − 2αθn

)
(1 + ζn)

)
κ2 +

(
α2θ2

n − 2αθn + 2αunϑn + 1
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κ + κn

is obtained and the proof is completed. �

If β = 1, α = p = 0, a = b taken, then ζn = − 1
n , ηn = 1, θn = v

n+v , ϑn = κn = 0 and

Ãn(t2; κ) = Bn(t2; κ) = κ2 +
κ(1 − κ)

n
(2.1)

is obtained. As seen, where variables are attributed the required values at each step, the same values are obtained with
the classical Bernstein polynomial.

Lemma 2.2. The following moments are provided for the polynomials Ãn(h; κ)
i) Ãn((t − κ)0; κ) = 1
ii) Ãn((t − κ)1; κ) =

(
βp
n −

αv
n+p+v

)
κ + α n+a

n+b
u

n+p+v

iii) Ãn((t − κ)2; κ) = Unκ
2 − Vnκ,
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u
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− (α2θ2
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ηn

n
. (2.3)
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Lemma 2.1 and Lemma 2.2 yield the following results:

δn =

√
max

0≤κ≤ n+a
n+b

Ãn((t − κ)2; κ) =

√
V2

n

2Un
=

1
√

2

Vn
√

Un
,

where β = 1, α = p = 0, a = b is taken again,

δn =

√
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n+b

Ãn((t − κ)2; κ) =
√
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n+b

Bn((t − κ)2; κ) =
1

2
√

n
.

This is the same result as in the classical Bernstein polynomial.

Theorem 2.3. h ∈ C [0, 1] and h are limited to the whole real axis, then

lim
n→∞

∥∥∥Ãn(h; κ) − h(κ)
∥∥∥

C = 0.

Proof. From Lemma 2.1
lim
n→∞

∥∥∥Ãn(1; κ) − 1
∥∥∥

C = lim
n→∞
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0≤κ≤ n+a

n+b

∣∣∣Ãn(1; κ) − 1
∣∣∣ = 0,

lim
n→∞

∥∥∥Ãn(t; κ) − κ
∥∥∥
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∣∣∣Ãn(t; κ) − κ
∣∣∣
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n + p + v
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lim
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∥∥∥
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∣∣∣
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(
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) ηn
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κ + κn

∣∣∣∣∣
= 0,

as the conditions of the Korovkin theorem [2, 11] are met, the theorem is proven. �

3. Approximation of Ãn(h; κ) Operators

Now, the Ãn(h; κ) operator’s rate of approximation to the function h will be calculated with the help of the continuity
module defined and characterized below:

ω(h; δ) = sup
κ,t∈[0, n+a

n+b ]
|κ−t|≤δ

|h(t) − h(κ)| .

Best known and most frequently used properties of the continuity module:

ω(h; δ) ≥ 0,

|h(t) − h(κ)| ≤ ω(h; δ)
(
1 +
|κ − t|
δ

)
,

ω(h; |κ − t|) ≥ |h(t) − h(κ)| .

Theorem 3.1. If h ∈ C [0, 1] and h are limited on the whole real axis, then∥∥∥Ãn(h; κ) − h(κ)
∥∥∥

C ≤

1 +

√
2

2

ω (
h;

Vn
√

Un

)
.
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Proof. From among the properties of the Lemma 2.2, equation (2.1) and the continuity module,∣∣∣Ãn(h; κ) − h(κ)
∣∣∣ =

∣∣∣Ãn(h(t) − h(κ); κ)
∣∣∣

≤ Ãn(|h(t) − h(κ)| ; κ)
≤ Ãn(ω (h; |t − κ|) ; κ)

≤ Ãn

(
ω (h; δn)

(
1 +
|κ − t|
δ

)
; κ

)
= Ãn

((
1 +
|κ − t|
δ

)
; κ

)
ω (h; δn)

if the linearity of the operator Ãn and the Cauchy-Schwarz-Bunyakovsky inequation are used,

≤

(
Ãn (1; κ) +

1
δn

√
Ãn((t − κ)2; κ)

)
ω (h; δn) .

If the maximum values are taken from both sides of the equation on the
[
0, n+a

n+b

]
range and (2.3) is used,∥∥∥Ãn(h; κ) − h(κ)

∥∥∥
C ≤

(
1 +

1
δn

1
√

2

Vn
√

Un

)
ω (h; δn) .

Again, here, when δn = 1
√

2
Vn√
Un

is chosen, the proof is completed, where Un and Vn are described as an outcome of
Lemma 2.2. �

Theorem 3.2. If h,[0, 1] on a range of 0 < α ≤ 1 belongs with the class LipMα, i.e.

|h(t) − h(κ)| ≤ M |t − κ|α .

If the Lipschitz condition is met, then ∥∥∥Ãn(h; κ) − h(κ)
∥∥∥

C ≤ M
(

V2
n

2Un

) α
2

.

Proof. ∣∣∣Ãn(h; κ) − h(κ)
∣∣∣ =

∣∣∣Ãn(h(t) − h(κ); κ)
∣∣∣

≤ Ãn(|h(t) − h(κ)| ; κ)
≤ Ãn(M |t − κ|α ; κ)

if the Ãn linearity and the inequality of Cauchy-Schwarz-Bunyakovsky are used

≤ MÃn((t − κ)2; κ)
α
2 .

If the maximum values are taken from both sides of the equation on the
[
0, n+a

n+b

]
range and (2.3) is used,

∥∥∥Ãn(h; κ) − h(κ)
∥∥∥

C ≤ M
(

V2
n

2Un

) α
2

and the proof is completed. �

4. Some Plots

In this section, we will demonstrate that the operator we defined with the help of graphs and a table of numerical
values (2.2) has a better approach than the operator defined by Bernstein [4], Schurer [15], Stancu [16], Deo [6], and
Izgi [7], for a ≤ b.

Example 4.1. Figure 1 shows the Ãn(h; κ) operator is approach to the h(κ) = κ sin πκ
1+κ2 (black) function for the values

n = 5(pink), n = 15 (blue), n = 25(green), n = 50 (yellow), and n = 100 (red).

Example 4.2. Figure 2 shows the Ãn(h; κ) operator is approximation to the h(κ) = κ3 sin 2πκ (black) function for the
values n = 50 (blue), n = 100 (red), and n = 200 (green).
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Figure 1. Ãn(h; κ) Operator is approximation to the function h(κ) = κ sin πκ
1+κ2 for different n values

Figure 2. Ãn(h; κ) Operator is approximation to the function h(κ) = κ3 sin 2πκ for different n values

Example 4.3. Figure 3 shows how the Ãn(h; κ) (red), Schurer (green), Doe (brown), Stancu (blue), Izgi (yellow), and
classical Bernstein (pink) operators approach the h(κ) = κ sin πκ

1+κ2 (black) function for the value n=5.

Table 1 shows the numerical values obtained with the maximum value of the statement
∣∣∣Ãn(h; κ) − h(κ)

∣∣∣, in order to
examine how the Ãn(h; κ) operator approximation the function h(κ) = κ3 sin 2πκ for different n, κ values and a ≤ b.

The definition Izgi [7] provided to compare the approaches of different operators can be given as it comprises
statements that can be simplified as the numerator and the denominator. Ln and Tn are operators defined in the same
range:



A New Generalization of Bernstein Polynomials 218

Figure 3. Comparing the operator with the Bernstein, Stancu, Schurer, Izgi, and Doe operators for
n = 5 value

Table 1. Error margins between the Ãn(h; κ) operator and h(κ) = κ3 sin 2πκ.

n κ = 0.2 κ = 0.4 κ = 0.6 κ = 0.8
50 0.002186129458 0.01105454068 0.0176784371 0.0289053429
100 0.001231535748 0.00578340652 0.0099801896 0.0158938469
250 0.000529728394 0.00237235555 0.0043169198 0.0067480187
500 0.000271386963 0.00119560429 0.0022176598 0.0034433621
900 0.000152411674 0.00066650362 0.0012471474 0.0019304993

lim
n→∞

supa≤κ≤b |Ln(h; κ) − h(κ)|
supa≤κ≤b |Tn(h; κ) − h(κ)|

=


0, Tn, faster

∞, Ln, faster

c(constant), equally fast

Based on this definition, it is possible to examine the rate of approximation of the operators defined by Bernstein [4],
Schurer [15], Stancu [16], Deo [6], and Izgi [7] and the Ãn(h; κ) operator to the function h(κ) = κ sin πκ

1+κ2 .
As shown in Figure 3, the operators will be compared in Table 2 for a ≤ b and different n values in order to use the

κ = 0.6 point where the difference is seen more clearly. First of all, E1 for Bernstein [4], E2 for Schurer [15], E3 for
Stancu [16], E4 for Deo [6] and E5 for Izgi [7] ;

E1 =
supa≤κ≤b

∣∣∣Ãn(h; κ) − h(κ)
∣∣∣

supa≤κ≤b |Bn(h; κ) − h(κ)|
, E2 =

supa≤κ≤b

∣∣∣Ãn(h; κ) − h(κ)
∣∣∣

supa≤κ≤b |S rn(h; κ) − h(κ)|
,

E3 =
supa≤κ≤b

∣∣∣Ãn(h; κ) − h(κ)
∣∣∣

supa≤κ≤b |S tn(h; κ) − h(κ)|
, E4 =

supa≤κ≤b

∣∣∣Ãn(h; κ) − h(κ)
∣∣∣

supa≤κ≤b |Dn(h; κ) − h(κ)|
,

E5 =
supa≤κ≤b

∣∣∣Ãn(h; κ) − h(κ)
∣∣∣

supa≤κ≤b |Zn(h; κ) − h(κ)|

defined.
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Table 2. Rate of errors between the operator Ãn(h; κ) and other operators.

n E1 E2 E3 E4 E5

50 0.029833790240 0.029833790240 0.50781478720 0.029833790010 0.39025536560
100 0.016082703360 0.016082702880 0.30950848060 0.016082700060 0.25906284560
250 0.006745264924 0.006745265402 0.13877664440 0.006745264908 0.12734821250
500 0.003427741602 0.003427742078 0.07199830767 0.003427741598 0.06877087011
900 0.001918176732 0.001918176017 0.04065166956 0.001918176703 0.03959891401

Table 2 shows that our operator Ãn(h; κ) approaches the h(κ) = κ sin πκ
1+κ2 function better than the operators of Bernstein

[4], Schurer [15], Stancu [16], Deo [6], and Izgi [7].

5. Conclusions

As a result, the new generalization Bernstein operators that we have defined displays a better approximation than
the more studied Bernstein [4], Schurer [15], Stancu [16], Deo [6], and Izgi [7] operators. We have clearly shown this
with numerical value tables and graphs.
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