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Abstract. In this study, we propose an important numerical method for the numerical solution of singularly
perturbed convection-diffusion five points boundary value problem using nonuniform mesh. First, we give the some
behaviours of the exact solution and its first derivative. We establish finite difference scheme, which is based on
interpolating quadrature rules. Then, we prove the convergence of difference scheme and it is uniformly convergent
in ε perturbation parameter. Furthermore, by a numerical experiment, we demonstrate the efficiency of the proposed
method.
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1. Introduction

The singularly perturbed convection-diffusion problem with five points boundary value,

− εu′′(x) + a(x)u′(x) + b (x) u (x) = f (x) , 0 < x < 1, (1.1)

u (0) = A, (1.2)
u (1) = c1u (s1) + c2u (s2) + c3u (s3) + B, (1.3)

where 0 < ε << 1 is a small perturbation parameter, B and ci are given constants; a (x) ≥ α > 0, b(x) and f (x) are
continuous functions in [0, 1] and also 0 < s1 < s2 < s3 < 1 are parameters to be determined. It is easy to see that this
problem has a right boundary layer only at x = 1.

This kind of problems occur in a number of applications such as chemical-reactor theory, control theory, oceanog-
raphy, fluid mechanics, quantum mechanics, hydro mechanical problems, meteorology, electrical networks and other
physical models [9, 10, 16, 18, 19, 21, 22], and many more. The first time, Samarskii and Bitsadze introduced in nonlo-
cal boundary value problems with using Samarskii-Bitsadze Simple Condition, Samarskii-Bitsadze General Condition,
Integral Condition [1, 10]. These problems have been studied by many authors [1–8, 11–17]. Furthermore, finite dif-
ference method on various meshes have been used in [2–6, 8, 11–15, 17]. The study of existence and uniqueness of
these problems can be seen in [20]. Also, we refer the investigator to the excellent studies by Chegis [16], Bitsadze and
Samarskii [10], Amiraliyev [2] and references therein for important theoretical results.

Because of the ε perturbation parameter, standard discretization methods for these singularly perturbed problems
create instability. Therefore, we can propose suitable numerical methods such as finite difference method, finite element
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method, etc. We solve the problem of singularly perturbed convection-diffusion with five points condition using finite
difference method in this study as well.

This paper is organized as follows: Properties of exact solution are given in Section 2. In Section 3, the finite
difference method is presented. The reminder terms are evaluated in Section 4. In Section 5, the results of numerical
experiment is presented. These are shown by table and figures.

Throughout the paper, C and C0 will mean a positive constant independent of ε and the mesh parameter.

2. Properties of The Exact Solution

Here we give useful asymptotic estimates of the exact solution and its first derivative of the problem (1.1) − (1.3),
which are needed in the construction of nonuniform mesh.

Lemma 2.1. Let a(x), b(x) and f (x) be sufficiently smooth on interval [0, 1] and

w(1) − [c1w (s1) + c2w (s2) + c3w (s3)] , 0,

where w(x) is the solution of the following problem:

−εw′′ + a(x)w′(x) + b (x) w (x) = 0,

w (0) = 0,w (1) = 1.
Then, the solution of problem (1.1)-(1.3) satisfies the following inequalities:

‖u‖C[0,1] ≤ C0, (2.1)

where
C0 = |v (x)| + |λ| |w (x)| ,

and ∣∣∣u′ (x)
∣∣∣ ≤ C1

{
1 +

1
ε

(
e−

α(1−x)
ε

)}
, 0 < x < 1. (2.2)

Proof. Let us take u (1) = λ and u (x) = v (x) + λw (x) , where

λ =
B − v(1) + c1v (s1) + c2v (s2) + c3v (s3)
w(1) − [c1w (s1) + c2w (s2) + c3w (s3)]

,

and, the functions v (x) and w(x) is the solution of the following problems:

Lv = f (x) ,

v (0) = A, v (1) = 0,

Lw = 0,

w (0) = 0,w (1) = 1.
After using the Maximum Principle, we have the inequalities

|v (x)| = |v (0)| + |v (1)| + α−1 ‖ f ‖C[0,1] ≤ C1, (2.3)

and

|w (x)| = |w (0)| + |w (1)| ≤ 1. (2.4)

Finally, from (2.3) and (2.4), we obtain

|u (x)| = |v (x)| + |λ| |w (x)| ≤ C1 + 1 ≤ C0,

which proves (2.1).
Now, using u′(x) = v1(x) and G (x) = f (x)−b(x)u(x) in Equation (1.1), we rewrite (1.1) for proving (2.2) as follows

−εv′1(x) + a(x)v1(x) = G (x) ,

and its solution

v1(x) = u′(x) = u′(0)e
1
ε

∫ x
0 a(ξ)dξ −

∫ x

0
G(τ)e

1
ε

∫ x
τ

a(η)dηdτ.
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After this equation is integrated over (0, x) and some calculations, it is obtained that∣∣∣u′ (x)
∣∣∣ ≤ C +

C
ε

(
e−

α(1−x)
ε

)
≤ C

{
1 +

1
ε

(
e−

α(1−x)
ε

)}
.

Thus, the proof of Lemma 2.1 is completed. �

3. Difference Scheme Generating Using Finite DifferenceMethod

In this section, we apply the well-known finite difference method on nonuniform mesh for the problem (1.1)-(1.3).
Nonuniform mesh is defined as follows: For a positive integer N, we divide the interval [0, 1] into the two subintervals
[0, 1 − σ] and [1 − σ, 1]. In practice, we usually has σ << 1. Here σ is transition point which is called as following:

σ= min
{

1
2
,−α−1ε ln ε

}
.

We define a set of the mesh points ω̄N = {xi}
N
i=0 as

xi =


ih(1), h(1) =

2(1−σ)
N , xi ∈ [0, 1 − σ] , i = 1, .., N

2 ;
σ < 1

2 , 1 − σ − α−1ε ln
[
1 − (1 − ε) 2i

N

]
, xi ∈ [1 − σ, 1] , i = N

2 + 1, ...,N;
σ = 1

2 , 1 − σ − α−1ε ln
[
1 − (1 − e

−α
2ε ) 2i

N

]
, xi ∈ [1 − σ, 1] , i = N

2 + 1, ...,N.

Let us define the following any nonuniform mesh on the interval [0, 1]:

ωN = {0 < x1 < x2 < ... < xN−1 < 1} ,

and
ω̄N = ωN ∪ {x0 = 0, xN = 1} .

Before describing our numerical method, we introduce some notations for the mesh functions. We define the following
finite difference for any mesh function gi = g(xi) given on ω̄N :

gx̄,i =
gi − gi−1

hi
, gx,i =

gi+1 − gi

hi+1
,

gx̂,i =
gi+1 − gi

~i
, gx̄x̂,i =

gx,i − gx̄,i

~i
, ~i =

hi + hi+1

2
, hi = xi − xi−1,

‖g‖∞ ≡ ‖g‖∞,ω̄N
:= max

06i6N
|gi| .

We shall construct the difference scheme from the following identity,

~−1
i

xi+1∫
xi−1

Lu(x)ϕi(x)dx = ~−1
i

xi+1∫
xi−1

f (x)ϕi(x)dx, i = 1, ...,N − 1, (3.1)

where the functions {ϕi(x)}N−1
i=1 have the from

ϕi(x) =


ϕ(1)

i (x) = e
ai(x−xi−1)

ε −1

e
aihi
ε −1

, xi−1 < x < xi,

ϕ(2)
i (x) = 1−e

ai(x−xi+1)
ε

1−e−
aihi+1
ε

, xi < x < xi+1,

0, x < (xi−1, xi+1) ,

We also note that functions ϕ(1)
i (x) and ϕ(2)

i (x) are the solutions of the following problems, respectively

−εϕ
′′

+ aiϕ
′+ = 0, xi−1 < x < xi,

ϕ (xi−1) = 0, ϕ (xi) = 1,

−εϕ
′′

+ aiϕ
′ = 0, xi < x < xi+1,

ϕ (xi) = 1, ϕ (xi+1) = 0.
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The relation (3.1) can be rewritten as

ε~−1
i

xi+1∫
xi−1

u′(x)ϕ′i(x)dx + ai~
−1
i

xi+1∫
xi−1

u′(x)ϕi(x)dx + biui = fi + Ra,i + Rb,i, (3.2)

where Ri = fi + Ra,i + Rb,i,

Ri = ~−1
i

xi+1∫
xi−1

[a (xi) − a (x)] u′(x)ϕi(x)dx + ~−1
i

xi+1∫
xi−1

[b (xi) − b (x)] u(x)ϕi(x)dx + ~−1
i

xi+1∫
xi−1

[
f (x) − f (xi)

]
ϕi(x)dx. (3.3)

Using the interpolating quadrature rules from [2] and as a consequence of (3.2), we propose the following difference
scheme for approximating (1.1):

− εθiux̄x̂,i + ηiux̂,i + biui = fi + Ra,i + Rb,i = Ri, i = 1,N − 1, (3.4)

where

θi =

aihi
ε

1 − e−
aihi
ε

, (3.5)

and
ηi =

−aihi

hi+1[1 − e−
aihi
ε ]

+
ai

1 − e
aihi+1
ε

. (3.6)

Thus, by neglecting Ri in the equation (3.4), we suggest the following difference scheme for approximating (1.1)-
(1.3):

− εθiyx̄x̂,i + ηiyx̂,i + biyi = fi, i = 1,N − 1, (3.7)
y0 = A, (3.8)

yN = c1yN1

(
xN1

)
+ c2yN2

(
xN2

)
+ c3yN3

(
xN3

)
+ B, (3.9)

where xN1 , xN2 , xN3 are the mesh points nearest to s1, s2, s3, respectively. And also θi and ηi are given by (3.5) and (3.6).

4. Error Estimation

In this section, we obtain the convergence of the method. Let zi = yi − ui, i = 0, 1, ...,N,. Then the error in the
numerical solution satisfies where the truncation error Ri is given by (3.3).

− εθizx̄x̂,i + ηizx̂,i + bizi= −Ri, i = 1,N − 1, (4.1)

z0 = 0, (4.2)
zN = c1zN1

(
xN1

)
+ c2zN2

(
xN2

)
+ c3zN3

(
xN3

)
. (4.3)

Lemma 4.1. The solution of the problem (4.1)-(4.3) satisfies the following estimates

‖z‖∞,ω̄N
≤ C ‖R‖∞,ωN

.

holds.

Proof. According to the maximum principle, we have the following inequalities:

w (x) = ±zi + α−1 ‖R‖∞,ωN
, (4.4)

w (0) = ±z0 + α−1 ‖R‖∞,ωN
≥ 0, (4.5)

and
w (1) = ±zN + α−1 ‖R‖∞,ωN

≥ 0. (4.6)
Next, from (4.4)-(4.6), we have

‖zi‖ ≤ α
−1 ‖R‖∞,ωN

≤ C‖R‖∞,ωN
,

which proves Lemma 4.1. �

Lemma 4.2. If a(x), b(x), f (x) ∈ C1 [0, 1] , then for the truncation error Ri we have

‖R‖∞,ωN
≤ CN−1.
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Proof. we can rewrite for the truncation error Ri, such that

|Ri| ≤ ~
−1
i

xi+1∫
xi−1

|a (xi) − a (x) |u′(x)ϕi(x)dx + ~−1
i

xi+1∫
xi−1

|b (xi) − b (x) |u(x)ϕi(x)dx + ~−1
i

xi+1∫
xi−1

| f (x) − f (xi) |ϕi(x)dx. (4.7)

Using the mean value theorem for |a (xi) − a (x) |, |b (xi) − b (x) | and | f (x) − f (xi) | in (4.7), we get

|a(x) − a(xi)| =
∣∣∣a′(ξ)∣∣∣ |x − xi| ≤ Chi, ξ ∈ [xi, x],

|b(xi) − b(x)| =
∣∣∣b′(ξ)∣∣∣ |x − xi| ≤ Chi, ξ ∈ [xi, x],

| f (x) − f (xi)| =
∣∣∣ f ′(ξ)∣∣∣ |x − xi| ≤ Chi, ξ ∈ [xi, x],

and also we evaluate (2.2) as ∣∣∣u′ (x)
∣∣∣ ≤ C

{
hi + e−

α(1−xi+1)
ε

(
1 − e−

α(xi+1−xi−1)
ε

)}
≤ Chi.

From here with (2.1) and (4.7), we have

|Ri| ≤ Chi. (4.8)

Now, we can begin to evaluation for (4.7) on the intervals [0, 1 − σ] and [1 − σ, 1], respectively.

In the first case xi ∈ [0, 1 − σ]:

xi = σ + (i −
N
2

)h(1), i = 0, ...,
N
2
,

where

h(1) =
2(1 − σ)

N
≤ CN−1. (4.9)

It then follows from (4.8) and (4.9), we have
|Ri| ≤ Chi ≤ CN−1.

In the second case xi ∈ [1 − σ, 1]:
For σ < 1

2 ,

xi−1 = 1 − σ − α−1ε ln
[
1 − (1 − ε)

2(i − 1)
N

]
,

hi = −α−1ε ln
[
1 − (1 − ε)

2i
N

]
+ α−1ε ln

[
1 − (1 − ε)

2(i − 1)
N

]
. (4.10)

Applying the mean value theorem in (4.10), we obtain that

hi = α−1ε
2(1 − ε)N−1

1 − 2i1(1 − ε)N−1 ≤ CN−1. (4.11)

Thus, from (4.8) and (4.11), we can write

|Ri| ≤ CN−1, i =
N
2

+ 1, ...,N.

For σ = 1
2 ,

xi−1 = 1 − σ − α−1ε ln
[
1 − (1 − e

α
2ε )

2(i − 1)
N

]
,

hi = −α−1ε ln
[
1 − (1 − e

α
2ε )

2i
N

]
+ α−1ε ln

[
1 − (1 − e

=α
2ε )

2(i − 1)
N

]
. (4.12)

Applying the mean value theorem in (4.12), we get

hi = α−1ε
2(1 − e

α
2ε )N−1

1 − 2i1(1 − e
α
2ε )N−1

≤ CN−1. (4.13)

Thus, from (4.8) and (4.13), we can write

|Ri| ≤ CN−1, i =
N
2

+ 1, ...,N.
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According to all these situations, we have
‖R‖∞,ωN

≤ CN−1.

�

We can state the convergence result of this study the following Theorem 4.3.

Theorem 4.3. Let u (x) be the solution of the problem (1.1)-(1.3) and yi be the solution of the difference scheme
(3.7)-(3.9). Then, the following uniform error estimate satisfies

‖y − u‖∞,ω̄N
≤ CN−1.

5. Numerical Illustration

We apply the scheme (3.7)-(3.9) to calculate the solution of approximation of the following problem:

Example 5.1.
−εu′′ (x) + u′ (x) + b (x) u (x) = 1, 0 < x < 1,

u (0) = 0, u (1) = u
(

1
4

)
+ 2u

(
1
3

)
+ 3u

(
1
2

)
+ d.

The exact solution is given by

u (x) =

exp
(
− x
√
ε

)
+ exp

(
x−1
√
ε

)
1 + exp

(
− 1
√
ε

) − cos2 (πx) ,

and
b (x) = 0.

The corresponding ε uniform convergence rates are computed using the formula

PN =
ln

(
eN/e2N

)
ln 2

.

The error estimates are denoted by
eN = max

ε
eN
ε , eN

ε = ‖y − u‖∞,ω̄N
.

Table 1. The computed maximum pointwise errors eN and rates of convergence pN of Example 5.1

ε N = 24 N = 48 N = 96 N = 192 N = 384 N = 768

2−2 0.0235001 0.0133327 0.0081233 0.0044737 0.0021616 0.0010004
0.81 0.71 0.86 1.04 1.11

2−3 0.0272644 0.0142093 0.0072614 0.0036831 0.0018673 0.0009542
0.94 0.96 0.97 0.97 0.96

2−4 0.0280771 0.0155298 0.0081457 0.0041684 0.0021081 0.0010602
0.85 0.93 0.96 0.98 0.99

2−5 0.0236390 0.0149614 0.0083595 0.0044059 0.0022597 0.0011467
0.65 0.83 0.92 0.96 0.97

2−6 0.0160009 0.0121143 0.0077644 0.0043655 0.0023075 0.0011851
0.40 0.64 0.83 0.91 0.96

2−7 0.0158096 0.0105741 0.0061431 0.0039676 0.0022392 0.0011856
0.58 0.78 0.63 0.82 0.91

The values of ε for which we solve the test problem are ε = 2−i, i = 2, 3, 4, 5, 6, 7. Table 1 verifies first-order the ε−
uniform convergence of the numerical solution on both subintervals and computed rates are essentially in agreement
with our theoretical analysis.
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Figure 1. Comparison of approximate solution and exact solution of Example 5.1 for N = 192, ε = 2−4

Figure 2. Error distribution of Example 5.1 for N = 192, ε = 2−2, 2−4, 2−6, 2−7

The exact solution and approximate solution curves are almost identical as shown in Figure 1. In Figure 2, the
errors in boundary layer region are maximum because of the irregularity caused by the sudden and rapid change of the
solution in the layer region around x = 1 for different ε values.

6. Conclusion

In this study, the singularly perturbed convection-diffusion problem with five points boundary condition was exam-
ined. To solve this problem, finite difference method on nonuniform mesh was presented. First-order convergence in
the discrete maximum norm, independently of the ε− perturbation parameter was obtained. The errors and rates of
convergence are tabulated in Table 1 for the considered test problem in support of the theoretical results. The figures of
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the exact and the numerical solution of the test problem for different values of ε− perturbation parameter were plotted
in Figure 1. In Figure 2, error distributions of Example 5.1 for N = 192, ε = 2−2, 2−4, 2−6, 2−7 are plotted. We can say
that this study can improve academic understanding of the singularly perturbed problems with multipoint boundary
condition.
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