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Abstract. A golden Riemannian structure (J, g) on a Riemannian manifold is given by a tensor field J of type
(1, 1) satisfying the golden section relation J2 = J + I, and a pure Riemannian metric g, that is a metric satisfy-
ing g(JX,Y) = g(X, JY). We investigate some fundamental properties of the induced structure on submanifolds
immersed in golden Riemannian manifolds. We obtain effective relations for some induced structures on submani-
folds of codimension 2. We also construct an example on submanifold of a golden Riemannian manifold.
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1. Introduction

The theory of submanifolds is an interesting topic in the study of differential geometry. It has the origin in the study
of geometry of plane curves and surfaces initiated by Fermat. Since then, it has been evolving in different directions
of differential geometry and mechanics, especially. It is still an active research field playing an important role in
the development of modern differential geometry. Ahmad M et. al. ( [1–3, 8]) studied submanifolds of almost r-para-
contact Riemannian manifold endowed with semi-symmetric and quater symmetric connections. Hretcanu [14] studied
submanifolds of almost product Riemannian manifolds. CR-submanifolds of LP-Sasakian manifolds were studied by
Ahmad, Ozgur and Haseeb [18].

Crasmareanu and Hretcanu [6] constructed the golden structure on a differentiable Riemannian manifold (M, g) as
a particular case of polynomial structure [12] based on golden ratio. Gezer et. al [10] investigated the integrability
conditions of golden Riemannian structures. The Golden structure was also studied in [5, 9, 11, 17, 19]. Hretcanu
and Crasmareanu [15] also defined metallic structure as a generalization of golden structure. Blaga and Hretcanu
[16] studied submanifolds of metallic manifolds. Hretcanu and Crasmareanu [7] studied some properties of invariant
submanifolds in a Riemannian manifold with golden structure. Poyraz and Erol [19] studied the hypersurface of a
Golden Riemannian manifold. Hretcanu [13] studied submanifolds of Riemannian manifold with golden structure.
Bahadur and Uddin [4] studied slant submanifolds of golden Riemannian manifolds.

Motivated by above studies in this paper, we study submanifold of a golden Riemannian manifold.The paper is
organized as follows:

In section 2, we define golden Riemannian manifolds.
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In section 3, we establish several properties of induced structure (P, g, ξ, u, a) on the submanifold immersed in golden
Riemannian manifold. In last section, we construct an example of golden Riemannian structure on Euclidean space
and its submanifolds.

2. Golden RiemannianManifolds

In this section, we give a brief information of golden Riemannian manifolds.

Definition 2.1. [6] Let (M, g) be a Riemannian manifold. A golden structure on (M, g) is a non-null tensor J of type
(1,1) which satisfies the equation

J2 = J + I, (2.1)
where I is the identity transformation. We say that the metric g is J-compatible if

g(JX,Y) = g(X, JY) (2.2)

for all X,Y vector fields on M. If we substitute JX into X in (2.2), then we have

g(JX, JY) = g(JX,Y) + g(X,Y).

The Riemannian metric (2.2) is called J-compatible and (M, J, g) is called a Golden Riemannian manifold.

Proposition 2.2. [6] A golden structure on the manifold M has the power

Jn = FnJ + Fn−1I (2.3)

for any integer n, where (Fn) is the Fibonacci sequence.
Using an explicit expression for the Fibonacci sequence namely the Binet’s formula

Fn =
Jn − (1 − J)n

√
5

,

we obtain a new form for the equality (2.3) as

Jn = (
φn − (1 − φ)n

√
5

)J + (
φn−1 − (1 − φ)n−1

√
5

)I.

The straight forward computations yield:

Proposition 2.3. [6] (i) The eigen values of a golden structure J are the golden ratio φ and 1 − φ.
(ii) A golden structure J is an isomorphism on the tangent space TxM of the manifold M for every x ∈ M.
(iii) It follows that J is invertible and its inverse Ĵ = J−1 satisfies

φ̂2 = −φ̂ + 1.

3. Properties of Induced Structure on Submanifolds in Golden RiemannianManifolds

Let us consider that M is an n-dimensional submanifold of codimension r, isometrically immersed in an (n + r)-
dimensional golden Riemannian manifold (M, g, J) with n, r ∈ N.

We denote by TxM the tangent space of M in a point x ∈ M and by T⊥x M the normal space of M in x. Let i be the
differential of the immersion i : M → M. The induced Riemannian metric g on M is given by g(X,Y) = g(iX, iY) for
every X,Y ∈ χ(M).

We consider a local orthonormal basis N1,N2, ...,Nr of the normal space T⊥x M. We assume that the indices α, β, γ
run over the range 1, 2, ..., r.

For every X ∈ TxM the vector fields J(iX) and J(Nα) can be decomposed in tangential and normal components as
follows:

J(i(X)) = i(P(X)) +

r∑
α=1

uα(X)Nα, (3.1)

J(Nα) = (ξα) +

r∑
β=1

aαβNβ, (3.2)

where P is a (1, 1) tensor field on M, ξ ∈ ξ(M), uα are 1 − f orms on M and (aαβ)r is an r × r matrix of smooth real
functions on M.
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Proposition 3.1. [7] The structure
∑

= (P, g, uα, ξα, (aαβ)r) induced on the submanifold M by the golden Riemannian
structure (g, J) on M satisfies the following equalities:

P2(X) = P(X) + X −
∑
α

uα(X)ξα,

uα(P(X)) = uα(X) −
∑
β

aαβuβ(X),

aαβ = aβα,

uβ(ξα) = δαβ + aαβ −
∑
γ

aαγaγβ,

P(ξα) = ξα −
∑
β

aαβξβ,

uα(X) = g(X, ξα),

g(PX,Y) = g(X, PY),

g(PX, PY) = g(X, PY) + g(X,Y) +
∑
α

uα(X)uα(Y)

for every X,Y ∈ χ(M), where δαβ is the Kronecker delta.

Definition 3.2. A submanifold M in a manifold M endowed with structural tensor field J (i.e J is a tensor field on M)
is called invariant with respect to J if J(Tx) ⊂ Tx(M) for every x ∈ M.

Remark 3.3. The induced structure
∑

= (P, g, uα, ξα, (aαβ)r) on the submanifold M by the golden Riemannian structure
(g, J) is invariant if and only if uα = 0 (equivalently ξα = 0) for every α ∈ (1, ..., r).

The Gauss and Weingarten formula are

∇XY = ∇xY +

r∑
α=0

hα(X,Y)Nα, (3.3)

∇XNα = −AαX + ∇⊥X Nα. (3.4)

If {N1, ...,Nr} and {N′1, ...,N
′
r} are two local orthogonal basis on a normal space T⊥x , then the decomposition of N′α in

the basis {N1, ...,Nr} is the following

N′α =

r∑
γ=1

kγαNγ

for any α ∈ {1, ..., r}, where (kγα) is an r × r orthogonal matrix and we have

u′α =
∑
γ

kγαuγ, ξ′γ =
∑
γ

kγαξγ and a′αβ =
∑
γ

kγαaγδkδβ.

Thus, if ξ1, ξ2, ..., ξr are linearly independent vector fields, then ξ′1, ξ
′
2, ..., ξ

′
r are also linearly independent.

We know that aαβ is symmetric in α and β, under a suitable transformation, we can find that aαβ can be reduced to a′αβ =

λαδαβ, where λα(α ∈ {1, .., r} are eigen values of the matrix (aαβ)r and in this case we have u′β(ξα) = δαβ(1 + λα − λαλβ)
and from this we obtain u′α(ξα) = (1 + λα − λ

2
α).

Remark 3.4. If M is a non-invariant n-dimensional submanifold of codimension r, immersed in a golden Riemannian
manifold (M, g, J) so that the tangent vector fields ξ1, ξ2, ...., ξr are linearly independent, then from Proposition 3.1 we
obtain

‖ξα‖
2 = 1 + aαα −

∑
γ

a2
αγ

and, for α , β, we have ∑
γ

aαγaγβ = aαβ.
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For the normal connection ∇⊥X Nα, we have the decomposition

∇⊥X N =

r∑
β=1

lαβ(X)Nβ (3.5)

for every X ∈ χ(M).
Therefore, we obtain an r × r matrix (lαβ(X))r of 1 − f orm on M. From g(Nα,Nβ) = δαβ, we get

g(∇⊥x ,Nβ) + g(Nα,∇
⊥
X Nβ) = 0

which is equivalent with
g(

∑
γ

lαγ(X)Nγ,Nβ) + g(Nα,
∑
γ

lβγ(X)Nγ) = 0

for any X ∈ χ(M). Thus, we obtain
lαβ = −lβα

for any α, β ∈ {1, ..r}.

Theorem 3.5. Let M is an n-dimensional submanifold of codimension r in a golden Riemannian manifold with struc-
ture (M, g, J). If the structure J is parallel with respect to the Levi - Civita connection ∇ defined on g, then the induced
structure (P, g, uα, ξα, (aαβ)r) induced on M by the structure J has the following properties:

(∇XP)(Y) =
∑
α

[g(AαX,Y)ξα + uα(Y)AαX], (3.6)

(∇Xuα)(Y) =
∑
β

[hβ(X,Y)aβα − uβ(Y)lαβ(X)] − hα(X, PY), (3.7)

∇Xξα = −P(AαX) +
∑
β

aαβAβX +
∑
β

lαβ(X)ξβ, (3.8)

X(aαβ) = −uα(AβX) − uβ(AαX) +
∑
γ

[lαγ(X)aγβ + lβγ(X)aαγ, ] (3.9)

for any X ∈ χ(M).

Proof. Using (3.1) and ∇J = 0, we obtain

J(∇XY) = ∇X(PY) + ∇X

∑
α

(uα(Y))Nα

J(∇XY) = ∇XPY +
∑
α

[uα(Y)∇XNα + Nα∇X(uα(Y))].

Using (3.3) and (3.4), we obtain

J[∇XY +

r∑
α=1

hα(X,Y)Nα] = ∇X(PY) +

r∑
α=1

hα(X, PY)Nα+

∑
α

[uα(Y)(−AαX + ∇⊥X Nα) + Nα(∇Xuα(Y) +

r∑
β=1

hβ(X, u(Y))Nβ].

Using (3.1), (3.2) and (3.5), we obtain
r∑

α=1

hα(X,Y)ξα +

r∑
α=1

hα(X,Y)
r∑
β=1

aαβNβ

= (∇XP)(Y) +

r∑
α=1

hα(X, PY)Nα −
∑
α

uα(Y)AαX+∑
α

uα(Y)[
∑
β

lαβ(X)Nβ] +
∑
α

(∇Xuα)(Y)Nα.

Comparing tangential and normal components, we obtain (3.6) and (3.7).
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Using (3.2) and ∇J = 0, we obtain

J(∇X(Nα)) = ∇Xξα + ∇X

∑
β

aαβNβ.

Using (3.3), (3.4) and (3.5), we obtain

−P(AαX) −
∑
α

uα(AαX)Nα +
∑
β

lαβ(X)ξβ +
∑
β

lαβ(X)
∑
γ

aβγNγ =

∇Xξα +
∑
α

hα(X, ξα)Nα +
∑
β

X(aαβ)Nβ −
∑
β

aαβAβX +
∑
β

aαβ
∑
γ

lβγ(X)Nγ.

Thus, identifying the tangential part and respectively the normal part in the last equality, we obtain (3.8) and (3.9).
�

Definition 3.6. If we have the equality NP(X,Y)−2
∑
α duα(X,Y)ξα = 0 for any X,Y ∈ χ(M), then the (P, g, uα, ξα, (aαβ)r)

induced structure on submanifold M in a golden Riemannian manifold (M, g, J) is said to be normal.

Remark 3.7. The compatibility condition ∇J = 0, where ∇ is Levi-Civita connection with respect to the metric g
implies the integrability of the structure J which is equivalent with the vanishing of the Nijenhuis torsion tensor field
of J:

NJ(X,Y) = [JX, JY] + J2[X,Y] − J[JX,Y] − J[X, JY].
For this assumption, we must have the next general lemma:

Lemma 3.8. We suppose that we have golden structure J on a manifold M and linear connection D with the torsion
T . If NJ is Nijenhuis torsion tensor field of J, then we obtain

NJ(X,Y) = (DJX J)(Y) − (DJY J)(X) − T [JX, JY] − JT (X,Y)−

T (X,Y) + J(DY J)(X) + J(T (JX,Y)) − J(DX J)(Y) + T (X, JY).
Proof. From the definition of the torsion T follows that

[X,Y] = DXY − DY X − T (X,Y) (3.10)

and from this we get
[JX, JY] = DJX JY − DJY JX − T (JX, JY), (3.11)

[JX,Y] = DJXY − DY JX − T (JX,Y) (3.12)
and

[X, JY] = DX JY − DJY X − T (X, JY). (3.13)
Using relations (DX J)(Y) = DX JY − J(DXY) and (2.1) and replacing the relations (3.10), (3.11), (3.12) and (3.13) in
the formula of Nijenhuis tensor field of J, we obtain

NJ(X,Y) = DJX JY − DJY JX − T (JX, JY) + (J + I)[X,Y]−

J[DJXY − DY JX − T (JX,Y)] − J[DX JY − DJY X − T (X, JY)]
NJ(X,Y) = (DJX J)(Y) + J(DJXY) − (DJY J)(X) − J(DJY X) − T [JX, JY]+

J(DXY) − J(DY X) − JT (X,Y) + DXY − DY X − T (X,Y) − J(DJXY)+
J((DY J)(X) + J(DY X)) + J(DJY X) + T (X, JY)

NJ(X,Y) = (DJX J)(Y) − (DJY J)(X) − T (JX, JY) − JT (X,Y)−
T (X,Y) + J(DY J)(X) + J(T (JX,Y)) − J(DX J)(Y) + T (X, JY).

Proposition 3.9. Let M be a submanifold of codimension r in a golden Riemannian manifold (M, g, J). If the induced
structure (P, g, uα, ξα, (aαβ)r) on M is normal and the normal connection ∇⊥ on M vanishes identically (i.e. lαβ = 0),
then we obtain the equality ∑

α

g(X, ξα)(PAα − AαP)(Y) =
∑
α

g(Y, ξα)(PAα − AαP)(X)

for any X,Y ∈ χ(M).



M. Ahmad, M.A. Qayyoom, Turk. J. Math. Comput. Sci., 11(1)(2019), 8–23 13

Proof. From the definition 3.6, we have

NP(X,Y) − 2
∑
α

duα(X,Y)ξα = 0

for any X,Y ∈ χ(M). Then we have∑
α

g(X, ξα)(PAα − AαP) −
∑
α

g(Y, ξα)(PAα − AαP)(X)

+
∑
α,β

[g(X, ξβ)lαβ(X) − g(Y, ξβ)lαβ(Y)]ξα = 0

for any X,Y ∈ χ(M).
Also, given that normal connection ∇⊥ of M vanishes identically (i.e. lαβ = 0), we obtain∑

α

g(X, ξα)(PAα − AαP)(Y) =
∑
α

g(Y, α)(PAα − AαP)(X).

�

Proposition 3.10. Under the assumption of last result, Proposition 3.9 does not depend on the choice of a basis in the
normal space T⊥x (M) for any x ∈ M.

Proof. If {N′α} is another basis in T⊥x (M), then we have

N′α =
∑
β

OαβNα, (3.14)

where (Oαβ)r is an orthogonal matrix.
From the condition ∇XN′α = 0, we obtain

∇XN′α =
∑
β

Oαβ∇XNβ +
∑
β

∇XOαβNβ∑
β

X(Oαβ)Nα = 0 (3.15)

for any X ∈ M.
{Nβ} is linearly independent set, then

Oαβ = constant.
On the other hand,

∇XN′α = −A′αX
and

∇XN′α =
∑
β

∇X(Oαβ)Nβ −
∑
β

OαβAβX. (3.16)

Thus, from the relations (3.14), (3.15) and (3.16), we obtain

−A′αX =
∑
β

∇X(Oαβ)Nβ −
∑
β

OαβOβα,

A′αX =
∑
β

OαβAβX.

Therefore, we have
J(N′α) = i∗ξα +

∑
β

a′αβN′β.

Using (3.14), we obtain
J(N′α) = i∗ξ′α +

∑
β

∑
γ

a′αβOβγNγ. (3.17)

Using equality (3.2) and (3.14), we get

J(N′α) =
∑
β

Oαβξβ +
∑
β

∑
γ

OαβaβγNγ. (3.18)
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From (3.17) and (3.18), we obtain
ξ′α =

∑
β

Oαβξβ (3.19)

and ∑
β

∑
γ

a′αβOβγ =
∑
β

∑
γ

Oαβaβγ.

On the basis {N′1, ....,N
′
r}, the condition of Proposition 3.10 becomes∑

α

g(X, ξ′α)(PA′α − A′αP)(Y) =
∑
α

g(Y, ξ′α)(PA′α − A′αP)(X).

From (3.16) and (3.19), we get∑
α

g(X,Oαβξβ)(POαγAγ − OαγAγP)(Y) −
∑
α

g(Y,Oαβξβ)(POαγAγ − OαγAγP)(X)

=
∑
α

OαβOαγ[g(X, ξβ)(PAγ − AγP)(Y) − g(Y, ξβ)(PAγ − AγP)] = 0.

From the orthogonality of the matrix (Oαβ), it follows that∑
α

[g(X, ξα)(PAα − AαP)(Y) − g(Y, ξα)(PAα − AαP)(X)] = 0.

Therefore, the Proposition 3.9 does not depend on the choice of a basis in the normal space T⊥x (M) for any x ∈ M. �

Lemma 3.11. Let M be a submanifold in a golden Riemannian manifold (M, g, J). Let (P, g, uα, ξα, (aαβ)r) be the
induced structure on M. Then

g((PAα − AαP)(X),Y)

on M is skew-symmetric for any X,Y ∈ χ(M).

Proof.
g(PAαX − AαPX,Y) = g(PAαX,Y) − g(AαPX,Y)

g(PAαX − AαPX,Y) = g(X, AαPY) − g(PAαY, X)

g(PAαX − AαPX,Y) = −g((PAα − AαP)(Y), X).

So, g((PAα − AαP)(X),Y) is skew-symmetric. �

Proposition 3.12. Let M be a submanifold of codimension r (r ≥ 2) in a golden Riemannian manifold (M, g, J) and
structure J is parallel to Levi-Civita connection ∇ defined on M with (P, g, uα, ξα, (aαβ)r) induced structure on M by J.
If the normal connection ∇⊥ vanishes identically on the normal bundle T⊥(M) (i.e. lαβ = 0,) then the tangent vector
fields {ξ1, ξ2, ..., ξr} are linearly independent if and only if the determinant of the matrix (Ir + A − A2) does not vanish
in any x ∈ M, ( where Ir is the r × r identity matrix ).

Proof. Let k1, ..., kr be the real number with the properties that

k1ξ1 + k2ξ2 + .... + krξr = 0 (3.20)

in any point x ∈ M.
From the equality (3.6), we obtain

g(ξα, ξβ) = uβ(ξα) = δαβ + aαβ −
∑
γ

aαγaγβ. (3.21)

Multiplying the equality (3.20) by ξα { for any α ∈ (1, 2..., r) } and using the equality (3.21), we obtain
k1(1 + a11 −

∑
γ a1γaγ1) + k2(a12 −

∑
γ a1γaγ2) + ...... + kr(a1r −

∑
γ a1γaγr) = 0

k1(a21 −
∑
γ a2γaγ2) + k2(1 + a22 −

∑
γ a2γaγ2) + ...... + kr(a2r −

∑
γ arγaγr) = 0

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

k1(ar1 −
∑
γ arγaγ1) + k2(ar2 −

∑
γ arγaγ2) + ...... + kr(1 + arr −

∑
γ arγaγr) = 0.
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This linear system of equations has the unique solution k1 = k2 = ......... = kr = 0 if and only if it does not have
a vanishing determinant. Furthermore, the determinant of the linear system of equations is the determinant of the
following matrix

Ir +


a11 a12 a13.....a1r

a21 a22 a23.....a2r

. . ......

. . .....
ar1 ar2 ar3.....arr

 −


a11 a12.....a1r

a21 a22.....a2r

. .

. .
ar1 ar2.....arr




a11 a12.....a1r

a21 a22.....a2r

. .

. .
ar1 ar2.....arr

 ,
that is determinant of the matrix

Ir + A − A2.

�

Lemma 3.13. Let M be an n-dimensional submanifold of co-dimension 2 in a golden Riemannian manifold (M, g, J)
, with the normal induced structure (P, g, uα, ξα, (aαβ)) and structure J is parallel to Levi-Civita connection ∇. If the
normal connection ∇⊥ vanishes identically (i.e. lαβ) then the following equation is hold good

g(Y, ξ1)(PA1 − A1P)(X) + g(Y, ξ2)(PA2 − A2X)(X) + g((PA1 − AP1)(X),Y)ξ1

+g((PA2 − A2P)X,Y) = 0 (3.22)

for any X,Y ∈ χ(M).

Proof. By virtue of Lemma 3.11 we obtain

g(X, ξ1)(PA1 − A1P)(Y) + g(X, ξ2)(PA2 − A2P)(Y)

= g(Y, ξ1)(PA1 − A1P)(X) + g(Y, ξ2)(PA2 − A2P)(X)

for any X,Y ∈ χ(M).
Multiplying by Z ∈ χ(M) we have

g(X, ξ1)g((PA1 − A1P)(Y),Z) + g(X, ξ2)g((PA2 − A2P)(Y),Z)

= g(Y, ξ1)g((PA1 − A1P)(X),Z) + g(Y, ξ2)g((PA2 − A2P)(X),Z) (3.23)

for any X,Y,Z ∈ χ(M).
Inverting Y by Z in the last equality we obtain

g(X, ξ1)g((PA1 − A1P)Z,Y) + g(X, ξ2)g((PA2 − A2P)Z,Y)

= g(Z, ξ1)g((PA1 − A1P)X,Y) + g(Z, ξ2)g((PA2 − A2P)(X),Y). (3.24)

Adding equalities (3.23) and (3.24) we obtain

g(X, ξ1)g((PA1 − A1P)Z,Y) + g(X, ξ2)g((PA2 − A2P)Z,Y)

+g(X, ξ1)g((PA1 − A1P)Y,Z) + g(X, ξ2)g((PA2 − A2P)Y,Z)

= g(Y, ξ1)g((PA1 − A1P)X,Z) + g(Y, ξ2)g((PA2 − A2P)X,Z)

+g(Z, ξ1)g((PA1 − A1P)X,Y) + g(Z, ξ2)g((PA2 − A2P)X,Y).

By property of skew-symmetry, we obtain

g([g(Y, ξ1)((PA1 − A1P)(X),Z) + (g(Y, ξ2)(PA2 − A2P)(X),Z)

+g((PA1 − PA1)X,Y)ξ1) + g((PA2 − A2P)X,Y)ξ2],Z) = 0

for any Z ∈ χ(M). Thus we obtain equality (3.22) . �
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Lemma 3.14. Let M be an n-dimensional submanifold of codimension 2 in a golden Riemannian manifold (M, g, J),
with the normal induced structure (P, g, uα, ξα, (aαβ)r) and structure J is parallel to Levi - Civita connection∇⊥ vanishes
identically (i.e., lαβ = 0) and σ , 0, then the following equations are good

(PA1 − A1P)ξ1 = 0,

(PA2 − A2P)ξ2 = 0,

(PA1 − A1P)ξ2 = 0,

(PA2 − A2P)ξ1 = 0.

Proof. With X = Y = ξ1 in equality (3.22)

g(ξ1, ξ1)(PA1 − A1P)(ξ1) + g(ξ1, ξ2)(PA2 − A2P)(ξ1)

+g((PA1 − A1P)(ξ1), ξ1) + g((PA2 − A2P)(ξ1), ξ1)ξ2 = 0.

Using g(ξ1, ξ1) = a + σ , 0, g(ξ1, ξ2) = 0

g((PA1 − A1P)ξ1, ξ1) = −g((PA1 − A1P)ξ1, ξ2)

g((PA1 − A1P)ξ1, ξ2) = 0

(PA1 − A1P)ξ1 = 0.

With X = Y = ξ2, in equality (3.22), we obtain

g(ξ2, ξ2)(PA1 − A1P)ξ2 + g(ξ1, ξ2)(PA2 − A2P)ξ1

+g((PA1 − A1P)ξ1, ξ2)ξ1 + g((PA2 − A2P)ξ1, ξ1)ξ2 = 0.

Using that g(ξ2, ξ2) = b + σ , 0, g(ξ1, ξ2) = 0,

(PA2 − A2P)ξ2 = 0.

If we put X = ξ1 and Y = ξ2 in equality (3.22), we obtain

g(ξ2, ξ1)(PA1 − A1P)ξ1 + g(ξ2, ξ2)(PA2 − A2P)ξ1

+g((PA1 − A1P)ξ1, ξ2)ξ2 + g((PA2 − A2P)ξ1, ξ2)ξ2 = 0.

Using that g(ξ2, ξ2) = b + σ , 0, g(ξ1, ξ2) = 0, we obtain

(PA2 − A2P)ξ1 = 0.

Again X = ξ2 and Y = ξ1, we obtain

g(ξ1, ξ1)(PA1 − A1P)ξ2 + g(ξ2, ξ2)(PA2 − A2P)ξ2

+g((PA1 − A1P)ξ2, ξ1)ξ1 + g((PA2 − A2P)ξ2, ξ1)ξ2 = 0.

Using that g(ξ1, ξ1) = a + σ , 0, g(ξ1, ξ2) = 0, we obtain

(PA1 − A1P)ξ2 = 0.

�

Proposition 3.15. Let M be an n-dimensional submanifold of codimension 2 in a golden Riemannian manifold
(M, g, J), with the normal induced structure (P, g, uα, ξα, (aαβ)r) and structure J is parallel to Levi - Civita connec-
tion ∇⊥ vanishes identically (i.e., lαβ = 0) and σ , 0, and trace A = 0. Then P commutes with the Weingartan operator
Aα (α ∈ {1, 2}), thus the following relations take place

(i)(PA1 − A1P)(X) = 0, (3.25)

(ii)(PA2 − A2P)(X) = 0 (3.26)

∀X ∈ χ(M)
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Proof.
g((PAα − AαP), ξβ) = g(PAαX, ξβ) − g((AαP)X, ξβ)

g((PAα − AαP)X, ξβ) = −[g(PAαξβ, X) − g((AαP)ξβ, X)

g((PAα − AαP)X, ξβ) = −g((PAα − AαP)ξβ, X),

where α β ∈ {1, 2}, from the last Lemma
(PAα − AαP)ξβ = 0

for any α β ∈ {1, 2}.
g((PA1 − A1P)X, ξβ) = −g((PA1 − A1P)ξβ, X)

(PA1 − A1P)X = 0.

Similarly
(PA2 − A2P)X = 0

for any α β ∈ {1, 2}.
In the following we assume that M is an n-dimensional submanifold of codimension 2 in golden Riemannian man-

ifold (M, g, J) with induced structure (P, g, uα, ξα, (aαβ)2) on M (α, β ∈ {1, 2}). We suppose that the normal connection
vanishes identically, thus (lαβ = 0). In these conditions, the relations of Proposition 3.1 have the following forms:

P2X = P(X) + X − u1(X)ξ1 − u2(X)ξ2, (3.27)

and
u1(PX) = u1(X) − a11u1(X) − a12u2(X),

u2(PX) = u2(X) − a21u1(X) − a22u2(X),

u1(ξ1) = 1 + a11 − a2
11 − a2

12,

u2(ξ2) = 1 + a22 − a2
12 − a2

22,

u1(ξ1) = u2(ξ1) = a21 − a21(a11 + a22),

P(ξ1) = ξ1 − a11ξ1 − a12ξ2,

P(ξ2) = ξ2 − a21ξ1 − a22ξ2,

g(PX, PY) = g(X, PY) + g(X,Y) + u1(X)u1(Y) + u2(X)u2(Y)

for any X,Y ∈ χ(M). We denote by A =

(
a11 a12
a21 a22

)
.

Furthermore, from Theorem 3.5 under the assumption that the normal connection ∇⊥ vanishes identically (i.e. lαβ),
we obtain

(∇XP)(Y) = g(A1X,Y)ξ1 + g(A2X,Y)ξ2 + g(Y, ξ1)A1X + g(Y, ξ2)A2X,

(∇Xu1)(Y) = −g(A1X, PY) + a11g(A1X,Y) + a21g(A2X,Y),

(∇Xu2)(Y) = −g(A2X, PY) + a12g(A1X,Y) + a22g(A2X,Y),

∇Xξ1 = −P(A1X) + a11A1X + a12A2X,

∇Xξ2 = −P(A2X) + a21A1X + a22A2X,

X(a12) = −2u1(A1X),

X(a22) = −2u2(A2X).

�
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Remark 3.16. A simplifier assumption for these relations is a11 + a22 = 0. Thus, trace A = 0. Under this assumption,
if we denote a11 = −a22 = a a12 = a21 = b and 1 − a2 − b2 = σ, from the relations , we easily see that

u1(ξ1) = u2(ξ2) = a + σ⇔ g(ξ1, ξ1) = g(ξ2, ξ2) = a + σ,

u1(ξ2) = u2(ξ1) = b,
u1(PX) = (1 − a)u1(X) − bu2(X),
u2(PX) = (1 − a)u2(X) − bu1(X),

and
P(ξ1) = (1 − a)ξ1 − bξ2, (3.28)
P(ξ2) = (1 − a)ξ2 − bξ1. (3.29)

Proposition 3.17. Let M ba a submanifold of codimension 2 in a golden Riemannian manifold (M, g, J) and structure
J is parallel to Levi - Civita connection ∇ defined on M with the normal induced structure (P, g, uα, ξα, (aαβ)2). If the
normal connection ∇⊥ vanishes identically, that is lαβ = 0, trace A = 0 and σ , 0, then the following relations occurs
:

(a + σ)A1ξ1 + bA1ξ2 = h1(ξ1, ξ1)ξ1 + h1(ξ1, ξ2)ξ2, (3.30)
(a + σ)A1ξ2 + bA1ξ1 = h1(ξ1, ξ2)ξ1 + h1(ξ2, ξ2)ξ2, (3.31)
(a + σ)A2ξ1 + bA2ξ2 = h2(ξ1, ξ1)ξ1 + h2(ξ1, ξ2)ξ2, (3.32)
(a + σ)A2ξ2 + bA2ξ1 = h2(ξ1, ξ2)ξ1 + h2(ξ2, ξ2)ξ2. (3.33)

Proof. Using (3.25) and applying P it follows that

P2A1X = PA1PX

for any X ∈ χ(M).
Using the equality (3.27) and if we put X = ξ1 and X = ξ2 respectively, we obtain

P(A1ξ1) + A1ξ1 − u1(A1ξ1)ξ1 − u2(A1ξ1)ξ2 = PA1Pξ1.

Using equality (3.28), we get

(2 − P)A1ξ1 + (P − 1)aA1ξ1 + (P − 1)bA1ξ2 = h1(ξ1, ξ1)ξ1 + h1(ξ1, ξ2)ξ2. (3.34)

Now,
P(A1ξ2) + A1ξ2 − u1(A1ξ2)ξ1 − u2(A1ξ2)ξ2 = PA1Pξ2.

Using (3.29), we obtain

A1ξ2 − A1bξ1 − A1aξ2 + A1ξ2 − PA1(ξ2 − bξ1 − aξ2) = h1(ξ1, ξ2)ξ1 + h1(ξ2, ξ2)ξ2. (3.35)

We replace X → PX in the equality (3.25), so

PA1PX = A1P2X.

Using equality (3.27) and if we put X = ξ1 and X = ξ2 respectively, we get

PA1Pξ1 = A1Pξ1 + A1ξ1 − u1(ξ1)A1ξ1 − u2(ξ1)A1ξ2.

Using (3.28), we obtain

PA1(ξ1 − aξ1 − bξ2) = A1(ξ1 − aξ1 − bξ2) + A1ξ1 − u1(ξ1)A1ξ1 − u2(ξ1)A1ξ2,

(P − 2 + σ)A1ξ1 + (2 − P)aA1ξ1 + (2 − P)bA1ξ2 = 0 (3.36)
and

PA1PAξ2 = A1Pξ2 + A1ξ2 − u1(ξ2)A1ξ1 − u2(ξ2)A1ξ2.

Using (3.29), we obtain

PA1((1 − a)ξ2 − bξ1) = A1((1 − a)ξ2 − bξ1) + A1ξ2 − bA1ξ1 − (a + σ)A1ξ2,

(P − 2 + σ)A1ξ2 + (2 − P)A1aξ2 + (2 − P)bA1ξ1 = 0. (3.37)
Adding the relations (3.34) and (3.36), we obtain (3.30).
Adding (3.35) and ( 3.37), we obtain (3.31).
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Applying P in the equality (3.26), it follows that

P2A2X = PA2PX

for any X ∈ χ(M) and using in (3.27) and for X = ξ1 and X = ξ2 respectively we obtain

(2 − P)A2ξ1 + (P − 1)aA2ξ1 + (P − 1)bA2ξ2 = h2(ξ1, ξ1)ξ1 + h2(ξ1, ξ2)ξ2 (3.38)

and
(2 − P)A2ξ2 + (P − 1)bA2ξ1 + (p − 1)aA2ξ2 = h2(ξ1, ξ2) + h2(ξ2, ξ2)ξ2.

We replace X → PX in the equality (3.26), so

PA2PX = A2P2X (3.39)

and using equality (3.27) and if we put X = ξ1 and X = ξ2 we obtain

(P − 2 + σ)A2ξ1 + (2 − P)aA2ξ1 + (2 − P)bA2ξ2 = 0 (3.40)

and
(P − 2 + σ)A2ξ2 + (2 − P)aA2ξ2 + (2 − P)bA2ξ1 = 0. (3.41)

Adding (3.38) and (3.40), we obtain (3.32).
Adding the relation (3.39) and (3.41), we obtain (3.33). �

Theorem 3.18. Let M be a submanifold of a golden Riemannian manifold M and structure J is parallel to Levi-Civita
connection ∇ defined on M (i.e ∇J = 0). If ξα (α = 1, 2, 3, , , , r) are linearly independent, Tr(P) = constant and M is
totally umbilical, then M is totally geodesic.

Proof. Since
∇X(aαβ) = −uα(AβX) − uβ(AαX) +

∑
γ

[lαγ(X)aγβ + lβγ(X)aαγ].

Putting α = β, we have
∇X(aαα) = −2uα(AαX) +

∑
γ

[lαγ(X)aγα + lαγ(X)aαγ].

Since aαβ is symmetric and lαβ is skew-symmetric in α, β, then
∑
αγ aαγlαγ(X) = 0.

Since, Tr(P) = constant, we have
∑
α aαα = constant.

Hence, ∑
α

uα(AαX) = 0∑
α

g(X, Aαξα) = 0∑
α

Aαξα = 0.

Since, ξα is linearly independent, then
Aα = 0.

Hence M are totally geodesic. �

Theorem 3.19. Let M be a submanifold of a golden Riemannian manifold M and J is parallel to Levi-Civita connection
∇ (i.e ∇J = 0). If ξα (α = 1, 2, .., r) are linearly independent,

∑
j(∇e j P)e j = 0 and Tr(P) = constant, then M is minimal.

Proof. Since,
(∇XP)(Y) =

∑
α

[g(AαX,Y)ξα + uα(Y)AαX].

Putting X = Y = e j, we obtain∑
j

(∇e j P)(e j) =
∑
α

[Aα

∑
j

uα(e j)e j +
∑

j

hα(e j, e j)ξα].
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Using (3.8), we obtain ∑
j

(∇e j P)(e j) =
∑
α

[Aαξα +
∑

j

hα(e j, e j)ξα].

Since,
Tr(P) = constant,

then from Theorem 3.18, we have ∑
α

hα(X, ξα) = 0.

Therefore, ∑
α

g(AαX, ξα) = 0

then ∑
α

Aαξα = 0.

Thus, ∑
α

∑
j

hα(e j, e j)0ξα = 0.

Since, ξα are linearly independent, then
hα(e j, e j) = 0.

Hence, M is minimal. �

Lemma 3.20. Let M be a submanifold of a golden Riemannian manifold M. If ξα (α = 1, 2, ..., r) are linearly indepen-
dent, then we have

Tr(P) = −Tr(aαβ),

where (r = n).

Lemma 3.21. Let M be a submanifold of a golden Riemannian manifold M. If ξα (α = 1, 2, ..., r) are linearly indepen-
dent and ∇XP = 0, then Tr(aαβ) = constant.

Proof. Let {e1, e2, ..., en} be an orthogonal basis of TP and extended e j ( j = 1, 2, ..n) to local vector field E j which are
covariantly constant at p ∈ M.

Then at p ∈ M,

∇XTr(P) = ∇X

∑
j

g(Pe j, e j)

∇XTr(P) = {
∑

j

g(∇X(PE j, E j))}P

∇XTr(P) =
∑

j

[g((∇XP)E j + P∇XE j, E j) + g(PE j,∇XE j)]

∇XTr(P) =
∑

j

((∇XP)E j, E j) +
∑

j

g(∇XE j, PE j) +
∑

j

g(∇XE j, PE j)

∇XTr(P) = 0.

Then,
Tr(P) = constant.

From Lemma 3.13, we have
Tr(aαβ) = constant.

�



M. Ahmad, M.A. Qayyoom, Turk. J. Math. Comput. Sci., 11(1)(2019), 8–23 21

Example 3.22. We consider that ambient space is a (2a + b)− dimensional Euclidean space E2a+b (a, b ∈ N). Let
J : E2a+b → E2a+b be an (1, 1) tensor field defined by

J(x1, .., xa, y1, .., yb, z1, .., zb) = (φx1, .., φxa, φy1, .., φyb, .., (1 − φ)z1, .., (1 − φ)zb)

for every point (x1, .., xa, y1, .., ya, z1, .., zb) ∈ E2a+b,where φ = 1+
√

5
2 and 1−φ = 1−

√
5

2 are roots of the equation x2 = x+1.
On the other hand, for (x1, .., xa, y1, .., ya, z1, .., zb) ∈ E2a+b, we have

J2(x1, .., xa, y1, .., ya, z1, .., zb) = (φ2x1, φ2x2, .., φ2xa, φ2y1, .., φ2ya, (1 − φ)2z1, .., (1 − φ)2zb)

J2(x1, .., xa, y1, .., ya, z1, .., zb)

= (x1, .., xa, y1, .., ya, z1, .., zb) + (φx1, .., φxa, φy1, .., φya, (1 − φ)z1, .., (1 − φ)zb)

J2 = J + I.

For (x1, .., xa, y1, .., ya, z1, .., zb), (p1, .., pa, q1, .., qa, r1, .., rb) ∈ E2a+b, we have

〈J(x1, .., xa, y1, .., ya, z1, .., zb), (p1, .., pa, q1, .., qa, r1, .., rb)〉

= 〈((x1, .., xa, y1, .., ya, z1, .., zb), J(p1, .., pa, q1, .., qa, r1, .., rb)〉

for every (x1, .., xa, y1, .., ya, z1, .., zb), (p1, .., pa, q1, .., qa, r1, .., rb) ∈ E2a+b.
So, the product 〈〉 on E2a+b is J−compatible.
Therefore, J is a golden structure defined on (E2a+b, 〈〉) and (E2a+b, 〈〉, J) is a golden Riemannian manifold.
In the following issue, we identify iX with X (where X ∈ χ(E2a+b)). It is obvious that E2a+b = Ea × Ea × Eb and in

each of spaces Ea, Ea and Eb respectively, we can get a hypersphere

S a−1(r1) = {(x1, ..., xa},

a∑
i=1

(xi)2 = r2
1},

S a−1(r2) = {(y1, ..., ya),
a∑

i=1

(yi)2 = r2
2},

S b−1(r3) = {(z1, ..., zb},

a∑
i=1

(z j)2 = r2
3

respectively, where r2
1 + r2

2 + r2
3 = R2.

We construct the product manifold S a−1(r1)× S a−1(r2)× S b−1(r3). Every point of S a−1(r1)× S a−1(r2)× S b−1(r3) has
the coordinate (x1, .., xa, y1, .., ya, z1, .., zb) = (xi, yi, z j) (i ∈ {1, .., a}, jε{1, .., b}) such that:

a∑
i=1

(xi)2 +

a∑
i=1

(yi)2 +

b∑
j=1

(z j)2 = R2.

Thus, S a−1(r1) × S a−1(r2) × S b−1(r3) is a submanifold of codimension 3 in E2a+b and S a−1(r1) × S a−1(r2) × S b−1(r3)
is a submanifold of codimension 2 in S 2a+b−1(R) and S a−1(r1) × S a−1(r2) × S b−1(r3) is a hypersurface in S 2a+b−1(R).
Therefore, we have

S a−1(r1) × S a−1(r2) × S b−1(r3) ↪→ S 2a+b−2(r) ↪→ S 2a+b−1(R) ↪→ E2a+b

The tangent space in a point (x1, .., xa, y1, .., ya, z1, .., zb) = (xi, yi, z j) at the product of spheres S a−1(r1) × S a−1(r2) ×
S b−1(r3) is

T(x1, .., xa, 0, .., 0, 0, .., 0)S a−1(r1)
⊕

T(0, .., 0, y1, .., ya, 0, .., 0)S a−1(r2)⊕
T(0, .., 0, 0, .., 0, z1, .., zb)S b−1(r3).

A vector (X1, .., Xa) from T(x1,..,xa)Ea is tangent to S a−1(r1) if and only if we have
a∑

i=1

xiXi = 0

and it can be identified by (X1, .., Xa, 0, .., 0, 0, .., 0) from E2a+b.
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A vector (Y1, ..,Ya) from T(y1,..,ya)Ea is tangent to S a−1(r2) if and only if we have
a∑

i=1

yiY i = 0

and it can be identified by (0, ..,Y1, ..,Ya, 0, .., 0) from E2a+b.
A vector (Z1, ..,Zb) from T(z1,..,zb)Eb is tangent to S b−1(r3) if and only if we have

b∑
i=1

ziZi = 0

and it can be identified by (0, .., 0, 0, .., 0,Z1, ..,Zb) from E2a+b. Consequently, for every point (xi, yi, z j) ∈ S a−1(r1) ×
S a−1(r2) × S b−1(r3), we have
(X1, .., Xa,Y1, ..,Ya,Z1, ..,Zb) = (Xi,Y i,Z j) ∈ T(x1, .., xa, y1, .., ya, z1, .., zb)(S a−1(r1) × S a−1(r2) × S b−1(r3)).

If the above relations are satisfied, we remark that (Xi,Y i,Z j) is a tangent vector field at S 2a+b−1 and from this it
follows that

T(xi,yi,z j)(S a−1(r1) × S a−1(r2) × S b−1(r3)) ⊂ T(xi,yi,z j)S 2a+b(r)

for every point (xi, yi, z j) ∈ S a−1(r1) × S a−1(r2) × S b−1(r3). We consider a local orthonormal basis (N1,N2,N3) of
T⊥(xi,yi,z j)(S

a−1(r1) × S a−1(r2) × S b−1(r3)) in every point (xi, yi, z j) ε S a−1(r1) × S a−1(r2) × S b−1(r3) given by

N1 =
1
R

(xi, yi, z j),

N2 =
1
R

(xi, yi,−z j),

N3 =
1
r3

(
r2

r1
xi,
−r1

r2
yi, 0).

From decomposition of J(Nα) (α ∈ {1, 2, 3}) in tangential and normal components at S a−1(r1) × S a−1(r2) × S b−1(r3),
we obtain

J(Nα) = ξα + aα1N1 + aα2N2 + aα3N3,

where α ε {1, 2, 3}.
(i) From aαβ = 〈J(Nα),Nβ〉 (α, β ε {1, 2, 3}), we obtain

a11 = a22 =
1

R2 (φr2
1 + φr2

2 + (1 − φ)r2
3),

a12 = a21 =
1

R2 (φr2
1 + φr2

2 − (1 − φ)r2
3),

a13 = a23 = 0 = a31 = a32,

a33 =
φr2

2 + φr2
1

r2
3

.

Thus, the matrix A = (aαβ)3 is given by
1

R2 (φr2
1 + φr2

2 + (1 − φ)r2
3) 1

R2 (φr2
1 + φr2

2 − (1 − φ)r2
3) 0

1
R2 (φr2

1 + φr2
2 − (1 − φ)r2

3) 1
R2 (φr2

1 + φr2
2 + (1 − φ)r2

3) 0

0 0 φr2
2+φr2

1
r2

3

 . (3.42)

(ii)

ξ1 =
(R − 2r3)

R3 (φxi, φyi, (1 − φ)z j), (3.43)

ξ2 =
(R − 2r3)

R3 (φxi, φyi,−(1 − φ)z j), (3.44)

ξ3 = (
r2φ(1 − φ)

r1r3
xi,
−r1φ(1 − φ)

r2r3
yi, 0). (3.45)
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(iii) From uα(X) = u(Xi,Y i,Z j) = 〈(Xi,Y i,Z j), ξα〉, we obtain

u1 =
1
R

(φXixi + φY iyi + (1 − φ)Z jz j), (3.46)

u2 =
1
R

(φXixi + φY iyi − (1 − φ)Z jz j), (3.47)

u3(X) =
1
r3

(
r2

r1
φXixi −

r1

r2
φY iyi + Z j). (3.48)

(iv)

P(X) = (φXi − [
2φ
R2 (Xixi + Y iyi) −

r2

r1r2
3

(
r2

r1
φXixi −

r1

r2
φY iyi + z j)]xi, φY i

−[
2φ
R2 (Xixi + Y iyi) +

r1

r2r3
(
r2

r1
φXixi −

r1

r2
φY iyi + z j)]yi, (1 − φ)Z j − [

2(1 − φ)
R2 Z jz j]z j). (3.49)

Thus, we have J(T(xi,y j)(S a−1(r1) × S a−1(r2) × S b−1(r3))) ⊆ (T(xi,y j)(S a−1(r1) × S a−1(r2) × S b−1(r3)) and we obtain
(P, ξα, uα, (aαβ)) induced structure on (S a−1(r1) × S a−1(r2) × S b−1(r3)) by the golden Riemannian structure (J, 〈〉) on
E2a+b, which is effectively determined by the relations (3.41), (3.43), (3.44), (3.45), (3.46), (3.47), (3.48) and (3.49).
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