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Abstract
The widespread use of fructose in processed foods is accepted to cause an increase in metabolic syndrome characterized 
by insulin resistance, abdominal obesity, hypertriglyceridemia, and hypertension. Fructose-induced metabolic syndrome is 
also associated with various diseases such as type 2 diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease 
(NAFLD). The renin-angiotensin system (RAS) has essential roles in blood pressure regulation, fluid-electrolyte homeostasis, 
cell growth, and glucose homeostasis. Angiotensin I (Agt I) and angiotensin II (Agt II), which are derived from angiotensinogen 
by renin and angiotensin-converting enzyme (ACE), respectively, are essential players of RAS. Experimental and clinical 
studies showed that excessive fructose consumption causes activation in RAS. Increased Agt II in fructose-induced metabolic 
syndrome initiates insulin resistance by disrupting the insulin signaling pathway and thus predisposes to type 2 diabetes, 
hypertension and NAFLD. Angiotensin 1-7 (Agt 1-7), which is formed from Agt II by angiotensin-converting enzyme 2 (ACE2) 
has contra-balancing effects to Agt II as well as regulatory effects on insulin resistance and hepatic fat accumulation. 
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Öz
Fruktozun işlenmiş gıdalarda yaygın olarak kullanılması insülin direnci, abdominal obezite, hipertrigliseridemi ve hipertansiyon 
ile karakterize olan metabolik sendromun artmasına neden olmaktadır. Fruktozla oluşturulan metabolik sendrom tip 
2 diyabet, kardiyovasküler hastalıklar ve alkole bağlı olmayan yağlı karaciğer hastalığı (NAFLD) gibi çeşitli hastalıklara 
zemin hazırlamaktadır. Renin-anjiyotensin sistemi (RAS), kan basıncının düzenlenmesi, sıvı-elektrolit homeostazı, hücre 
büyümesi ve glikoz homeostazı üzerinde önemli rollere sahiptir.  Renin ve anjiyotensin dönüştürücü enzim (ACE) tarafından 
anjiyotensinojenden türetilen anjiyotensin I (Agt I) ve anjiyotensin II (Agt II), RAS'ın temel bileşenleridir. Deneysel ve klinik 
çalışmalar, aşırı fruktoz tüketiminin RAS aktivasyonunu artırdığını göstermiştir. Fruktozla oluşturulan metabolik sendromda 
artan Agt II, insülin sinyal yolunu bozarak insülin direncini başlatmakta ve böylece tip 2 diyabet, hipertansiyon ve NAFLD'e 
zemin hazırlamaktadır. Anjiyotensin dönüştürücü enzim 2 (ACE2) tarafından Agt II'den oluşturulan anjiyotensin 1-7 (Agt 1-7), 
insülin direnci ve hepatik yağ birikimi üzerinde düzenleyici etkilerin yanı sıra Agt II'ye karşı dengeleyici etkilere sahiptir.
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Introduction 

Metabolic syndrome, which is characterized by 
hyperinsulinemia, hyperlipidemia, abdominal obesity, and 
hypertension, is becoming a worldwide health problem 
[1,2,3]. This syndrome affects more than thirty percent of the 
population in various regions of the world [4-6]. The presence 
of this syndrom predisposes to the development of many 
diseases such as type 2 diabetes [7] cardiovascular [7], and 
non-alcoholic fatty liver disease (NAFLD) [8]. Many factors 
including high carbohydrate intake, and low physical activity 
play a role in the development of metabolic syndrome. Insulin 
resistance, hypertriglyceridemia and abdominal obesity 
are major indicators in the progression of this syndrome [9]. 
Insulin released from beta cells of the pancreas activates the 
insulin receptors and affects glucose and lipid metabolism 
by phosphorylating proteins involved in the insulin signaling 
pathway such as insulin receptor substrates (IRS-1 and IRS-
2) [10]. Insulin resistance may be mainly attributable to the 
disruption of this signaling pathway. The changes in the 
expression of IRS-1 and IRS-2 in metabolic diseases such as 
type 2 diabetes demonstrated that insulin resistance is one of 
the most critical factors in developing these diseases [11,12]. 
Similarly, abdominal obesity or visceral fat accumulation is 
one of the underlying causes of metabolic syndrome [13]. The 
adipose tissue distribution is crucial in metabolic syndrome 
[14]. Particularly, the increase in abdominal fat mass is a risk 
factor for metabolic and cardiovascular diseases [15,16,17].

Changing dietary habit is one of the responsible factors for 
developing metabolic syndrome [18]. In today's diets, the 
consumption of sugars containing fructose has become quite 
common [19]. High-fructose intake in the diet suppresses the 
insulin signaling pathway and causes insulin resistance [20-
24]. Fructose metabolism, unlike glucose, is not suppressed by 
the feedback mechanism, and de novo lipogenesis is directly 
stimulated by the monosaccharide [25,26]. Therefore, fructose 
induces lipogenesis and leads to worse results in metabolic 
syndrome compared to other sugars [25-27]. The observation 
of an increase in visceral adipose tissue with the consumption 
of fructose-sweetened beverages, has proven that fructose is 
closely associated with metabolic syndrome and abdominal 
adiposity [27-29]. Therefore, high fructose administration 
has become a common dietary method for conducting an 
experimental metabolic syndrome model in animals [30].

The renin-angiotensin system (RAS) plays a vital role in 
regulating blood pressure and fluid-electrolyte balance [31]. 

Angiotensinogen, which is produced in the liver as a precursor 
compound of this system, is converted to angiotensin I (Agt 
I) by the renin enzyme released from the kidney. Then, the 
angiotensin-converting enzyme (ACE) in the lung converts 
Agt I to Agt II [31,32]. Agt II exerts the well-known effects 
such as vasoconstriction, promotion of cell growth and 
inflammation by activating the angiotensin II type 1 receptor 
(AT1R). Angiotensin II type 2 receptors (AT2R) has opposite 
effects to Agt II on AT1R [33]. Angiotensin 1-7 (Agt 1-7), 
another critical RAS component, is formed from Agt II by the 
angiotensin-converting enzyme 2 (ACE2). This component has 
a contra-balancing effect to Agt II via Mas receptor (MasR) [31]. 
In addition to being systemically expressed, RAS components 
are locally presented in various tissues such as adipose, heart, 
kidney, pancreas, and brain [33-35]. Increased local RAS 
activity contributes to systemic RAS action and accelerate the 
effects of this system. High-fructose consumption activates 
local and systemic RAS components [36]. In fructose-induced 
metabolic syndrome, increased RAS activity is one of the 
fundamental causes of exacerbation of insulin resistance 
[26], cardiovascular side effects [26,37], and NAFLD [38]. 
Here, we presented preclinical and clinical evidence showing 
the effects of systemic and tissue components of RAS in the 
progression of fructose-induced metabolic syndrome and its 
complications.

1.The effect of the renin-angiotensin system on 
insulin resistance in fructose-induced metabolic 
syndrome
Insulin is an important hormone synthesized in the β cells of 
the pancreas and stimulates glucose utilization in peripheral 
tissues [39,40]. This hormone initiates the intracellular 
insulin signaling pathway by phosphorylating IRS-1 and 
IRS-2 after binding to the insulin receptor.  Phosphorylated 
IRS-1 and IRS-2 activate phosphoinositide-3-kinase and 
convert phosphoinositol diphosphate to phosphoinositol 
triphosphate. Phosphoinositol triphosphate activates 
protein kinase B (Akt). Akt translocates GLUT4 to the plasma 
membrane and promotes glucose transportation, regulating 
glycogen synthesis and gluconeogenesis [10,12,40,41]. In 
metabolic syndrome, this signaling pathway of the insulin 
hormone is suppressed and the glucose utilization in the 
target tissue is not as much as in the physiological state. This 
situation is determineted as insulin resistance [42]. Studies 
have demostrated that high-fructose diet causes insulin 
resistance by reducing the expression of proteins in the insulin 
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signaling pathway such as IRS-1 [22-24], IRS-2 [23], and Akt [22] 
in various tissues.  The increase in RAS activation by fructose 
consumption is one of the factors that play an important role 
in the occurrence of these effects. Supportingly, the fact that 
high-fructose intake induces the gene expression of various 
RAS components such as angiotensinogen, Agt II, ACE, AT1R 
in various studies [43,44]. RAS is involved in the etiology 
of insulin resistance, which is an important determinant of 
metabolic syndrome. In particular, Agt II, which is increased 
by RAS activation, decreases phosphoinositide-3-kinase 
sensitivity by increasing serine phosphorylation and 
decreasing tyrosine phosphorylation of IRS-1. This condition 
reduces Akt formation, as well as the transport of glucose 
transporters to the membrane and glucose entry into the cell 
[36,45]. At the same time, increased level of vasoconstrictor 
Agt II decreases glucose uptake by decreasing blood flow to 
insulin-sensitive tissues [30]. Based on this information, Rabie 
and colleagues have indicated that in a rat model of metabolic 
syndrome induced by a 60% high-fructose diet for twelve 
weeks, blocking the RAS at renin and Agt II receptor levels 
by aliskiren and telmisartan improved plasma glucose levels 
and insulin sensitivity. In addition, it has been shown that the 
gene expression levels of peroxisome proliferator-activated 
receptor-α (PPAR-α) and peroxisome proliferator-activated 
receptor-γ (PPAR-γ), which are important transcription factors 
in insulin sensitivity, were increased in rats treated with aliskiren 
and telmisartan [46]. Similarly, in an in vivo study, a 60% high-
fructose diet for eight weeks was used to induce a rat model 
of metabolic syndrome for evaluating the effects of aliskiren, 
a direct renin inhibitor, on insulin sensitivity. The preventive 
and treatment effects of renin inhibition were assessed by 
administering aliskiren at the first day of the experiment or 
the fourth week of the experiment. The results show that renin 
inhibition increases insulin sensitivity by lowering glucose 
as well as insulin levels measured on 56. days in aliskiren-
administered groups [47]. In another study evaluating acute 
and chronic losartan (angiotensin receptor antagonists) 
treatment, rats were administered a 60% fructose diet for two 
weeks. The findings of study indicated that chronic losartan 
treatment reduced hyperinsulinemia in fructose-fed rats [48]. 
Similarly, the effects of delapril (an ACE inhibitor) and TCV-116 
(angiotensin receptor antagonists) were studied in rats fed a 
66% fructose diet and in essential hypertensives individuals. 
Both ACEI (angiotensin-converting enzyme inhibitor) and 
ARB (angiotensin receptor antagonists) treatments improved 
insulin resistance as assessed by the steady-state glucose 

level in fructose-fed rats or by the glucose-clamp method in 
individuals with essential hypertensives [49]. These studies 
demonstrate that inhibition of Agt II formation or receptor 
interaction improves insulin sensitivity in fructose-dependent 
metabolic syndrome.

Agt 1-7 is another important RAS component formed from Agt 
II by the ACE2 enzyme. This component improves metabolic 
parameters such as glucose homestasis and insulin sensitivity 
by balancing the effects of Agt II through Mas receptors. An 
animal study evaluated whether Agt 1-7 improves metabolic 
parameters in 10% fructose-fed rats. After six weeks diet of 
10% fructose, the authors measured systolic blood pressure 
and the levels of insulin, triglyceride, and glucose, they also 
evaluated the insulin signaling pathway at the level of IR/
IRS-1/PI3K/Akt.  Fructose-fed rats displayed hypertension, 
hyperinsulinemia, and hypertriglyceridemia as well as 
decreased insulin signaling through the IR/IRS-1/PI3K/Akt 
pathway. However, six weeks of Agt 1-7 treatment normalized 
all alterations, including insulin resistance, via a mechanism 
that could cover the modulation of insulin signaling [50]. In 
a study examining the effects of chronic Agt 1-7 treatment, 
the rats were fed a high fructose/low magnesium diet for 
24 weeks. After six months, improved glucose tolerance, 
better insulin sensitivity, and lower serum triglycerides were 
observed in Agt 1-7-treated rats compared to control groups. 
Similar effects were observed in rats exposed to a high 
fructose diet for five months followed by short-term (4 weeks) 
treatment with Agt 1-7 [51]. In another study examining the 
effect of Agt 1-7 in a metabolic syndrome model, the rats were 
fed a 10% fructose diet for 6 weeks. During the last 2 weeks 
of the high fructose feeding period, rats were treated with 
Agt 1-7 and Mas receptor antagonist A-779. The results of the 
study showed that Agt 1-7 treatment reduces systolic blood 
pressure, plasma insulin and triglyceride levels, which are 
increased by high-fructose diet. Furthermore, it was observed 
that Agt 1-7 treatment increased the phosphorylation of 
insulin signaling pathway components such as Akt, and AS160 
(Akt substrate) and GSK-3β (glycogen synthase kinase-3β) 
which is responsible for glycogen synthase in skeletal muscle, 
adipose tissue, and liver. Also, the reversing effects of Mas 
receptor antagonist A-779 suggests that Agt 1-7 ameliorates 
the metabolic effects through the Mas receptor [52].

On the other hand, Agt II activates nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase, which leads to 
increased production of reactive oxygen species (ROS) by 
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AT1R effects [45,46,53,54]. This activates the Nf-kB pathway, 

which consequently increases the transcription of cytokines 

such as TNF-α [46] (Figure 1). These cytokines further inhibit 

insulin signaling by increasing the cytokine signal 3 expression 

[53].  In a study in rats fed a 60% fructose diet for eight weeks, 

it was investigated whether fructose consumption induces 

the NADPH oxidase enzyme, which increases intracellular ROS 

levels, by RAS activation. In the study, it was determined that 

plasma insulin, Agt II, triglyceride and vascular NADPH enzyme 

levels have increased in fructose-fed rats, which reversed by 

losartan treatment. In AT1a knock out rats, it was observed 

that the levels of p22phox, gp91phox and p67phox subunits 

of NADPH oxidase enzyme have decreased in fructose-fed 

rats. These results suggest that the increased NADPH enzyme 

activation with fructose consumption is mediated by RAS 

[54]. In the comparison of the effects of renin inhibition 

and angiotensinogen receptor blockade, both aliskiren and 

telmisartan improved blood glucose, plasma insulin, HOMA-

IR, insulin sensitivity, dyslipidemia, hypertension, oxidative 

stress, and inflammatory parameters such as Nf-kB and TNF-α 

leves in the fructose-fed rats [46]. These findings suggest that 

inhibition of any component of the RAS pathway alleviates 

insulin resistance of fructose-fed rats through improving of 

insulin signaling and inflammation and oxidative stress. 

Figure 1. Schematic representation of the effects of Agt II, which 

increases with fructose consumption, on insulin resistance. Agt 

II: Angiotensin II, Agt 1-7: Angiotensin 1-7, IRS-1: Insulin receptor 

substrate-1, IRS-2: Insulin receptor substrate-2, PI3K: Phosphoinositide-

3-kinase, PIP2: Phosphoinositol diphosphate, PIP3: Phosphoinositol 

triphosphate, Akt: Protein kinase B. NADPH: Nicotinamide adenine 

dinucleotide phosphate, ROS: Reactive oxygen species

2. Relationship between the renin-angiotensin 
system and abdominal obesity in fructose-
induced metabolic syndrome 

The distribution of adipose tissue is more important than 
the amount of adipose tissue in metabolic diseases [55]. 
Determining the fat distribution is highly important although 
body mass index (BMI) is seen as a primary tool in evaluating 
the risk possibilities of metabolic syndrome [16]. In particular, 
quantitative analysis of visceral fat distribution has been found 
to be crucial for the assessment of obesity-related metabolic 
and cardiovascular risks [56]. Abdominal obesity, a dangerous 
fat accumulation, is associated with an increased risk of multiple 
chronic diseases, including diabetes, coronary hearth disease, 
hypertension and stroke [57]. It has been shown in various studies 
that high-fructose consumption increases the accumulation 
of abdominal fat [58,59]. In a study in which female rats were 
fed isocalorically with fructose or glucose solutions for seven 
months, it was found that fructose feeding produced an increase 
in body weight due to hyperleptinemia and white adipose 
tissue hypertrophy [29]. In assessement of subcutaneous and 
visceral adipose tissue changes in a fructose-induced metabolic 
syndrome model of adult rats, it was shown that a high-fructose 
diet increased non-esterified fatty acids, lipid peroxidation, 
epididymal and mesenteric white adipose tissue volumes.  
Although mean adipocyte volume in subcutaneous adipose 
tissue was lower, adipocyte volume in intraabdominal adipose 
tissue was higher in rats fed a high-fructose diet compared to 
control rats. Also, the high-fructose diet decreased the ratio of 
p-Akt/Akt in rats. These data suggest that a high-fructose diet is 
a severe risk factor for metabolic diseases [60]. It is also known 
that high-fructose consumption increases the expression of 
RAS components such as angiotensinogen, Agt II, ACE, AT1R in 
adipose tissue [44]. For instance, it was determined that rats fed 
a 66% fructose diet for 14 days had increases in blood pressure 
and adipose tissue AT1R mRNA levels [61]. Molecular studies, 
showed that angiotensinogen, ACE, and AT1R gene expressions 
were increased in the adipose tissue of rats fed a 60% fructose 
diet for eight weeks [44]. In addition, a 10% fructose diet for nine 
weeks increased AT1R but decreased AT2R expressions [62]. The 
results of these studies show that RAS mediators in adipose 
tissue are involved in fructose-induced metabolic syndrome.

Activated RAS components promote adipocyte differentiation 
by reducing adipocyte number but increasing adipocyte size. 
RAS blockade was suggested to improve differentiation of 
adipocytes [63]. A study tested the effect of RAS blockade 
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on insulin sensitivity and adipocyte size in fructose-fed rats. 
Fructose-fed rats had a lower insulin sensitivity, which was 
recovered by the treatments with temocapril and olmesartan, 
an angiotensin-converting enzyme inhibitor, and Agt II type 
1 receptor blocker, respectively. Also, adipocyte sizes showed 
negative correlations with the insulin sensitivity [64]. Aliskiren-
mediated renin inhibition significantly decreased Agt II level in 
visceral fat and adipocytes of fructose-fed rats [65]. Similarly, the 
administration of captopril significantly reduced abdominal fat 
accumulation in rats fed a 60% fructose diet for 20 weeks [66]. 

3. Development of hypertension in fructose-
induced metabolic syndrome 

Hypertension is one of the characteristic features of the 

metabolic syndrome. It is known that systolic hypertension 

occurs in metabolic syndrome induced by high-fructose 

diet [67,68]. Numerous studies have shown that fructose 

feeding in rodents increases arterial blood pressure [69-73]. 

A relationship between fructose -sweetened beverages and 

hypertension has also been established in various clinical 

studies [74-77]. A study investigating the effects of 60 grams 

of fructose or glucose on blood pressure in healthy young 

adults showed that fructose significantly increased blood 

pressure, heart rate, and cardiac output compared to glucose 

[76]. Similarly, another study reported that consuming 200 

grams of fructose daily for two weeks increased systolic and 

diastolic blood pressure in 74 healthy men [77]. RAS is one of 

the essential mediators in regulating blood pressure [31]. Agt 

II, the main component of the RAS, plays an essential role in 

the pathogenesis of hypertension associated with fructose-

induced metabolic syndrome [78]. Agt II via binding to AT1R 

produced a vasoconstriction in fructose-fed hypertensive rats 

[79]. Studies have shown that both Agt II [78] and AT1R [80] 

receptors are upregulated in fructose-fed rats, suggesting that 

the functional interactions of Agt II and AT1R increase systolic 

blood pressure in fructose-induced metabolic syndrome [79]. 

At the molecular level, a 60% fructose diet inducing changes in 

AT1R mRNA levels in rat aorta and heart tissue has been found 

to cause hypertension. Moreover, ACE inhibitor captopril 

reversed this event by decreasing aortic AT1R mRNA level [81]. 

In a study investigating Agt II produced by chymase, fructose-

fed rats were shown to have increased systolic, diastolic 

and mean blood pressures [82]. Another study examining 

fructose-dependent variations of cardiac and aortic RAS 

components indicated that administrating 10% fructose 

solution for nine weeks increases blood pressure and ACE and 

AT1R expressions, but decreases ACE2 and AT2R expressions in 

male rats [83]. A 66% fructose diet in rats for 14 days increased 

cardiac hypertrophy, and blood pressure. Angiotensin 

receptor bloker treatment decreased the hypertrophy, and 

blood pressure suggesting a central role for Agt II signaling 

in fructose consumption [84]. In the other study, it has been 

also shown that a 60% fructose diet for eight weeks led to left 

ventricular hypertrophy in rats with severe aortic regurgitation 

possibly through the hypertrigliseridemia [85]. The acute and 

chronic losartan treatments reduced the cardiac hypertrophy 

observed in fructose-fed rats suggested that Agt II mediates 

mitogenic effects in this dietary intervention [48]. In addition, 

fructose appears to increase salt and Agt II sensitivities by 

modulating the Na/H channel activity in the proximal tubule 

thereby causing hypertension [86]. All together, these studies 

revealed that RAS is essential in hypertension observed in 

fructose-induced metabolic syndrome.

4. NAFLD in fructose-induced metabolic syndrome 

NAFLD, which is considered the liver component of the 

metabolic syndrome, includes a wide range of pathological 

conditions from simple steatosis to nonalcoholic 

steatohepatitis, fibrosis and cirrhosis [87]. The global 

prevalence of this disease is estimated to be around 32% 

[88]. The primary manifestation of the disease is accumulated 

triglyceride droplets (>5%) in the cytoplasm of hepatocytes 

[89,90]. Triglyceride accumulation in the liver is directly 

affected by carbohydrate metabolism [91]. In particular, 

increased fructose intake has been heavily implicated in 

NAFLD [92]. Studies have shown that high-fructose flow to the 

liver accelerates the development of the disease by disrupting 

normal hepatic carbohydrate metabolism and causing de novo 

triglyceride synthesis [93,94]. At the same time, the role of RAS 

is very important in the development of NAFLD. While insulin 

resistance and de novo lipid synthesis occur in the first stage 

of this disease, inflammation plays a major role in the second 

step. Increased Agt II expression causes the development of 

the disease by increasing both insulin resistance and de novo 

lipid synthesis as well as inflammation [95] (Figure 2). There 

are various studies showing increased RAS system activity in 

the presence of NAFDL [38,96]. In a study 15% fructose diet 

for 21 weeks it was reported an inrease in hepatic steatosis 
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and liver weight as well as serum triglyceride, insulin, ACE, 

and Agt II levels. Moreover, at the molecular level, the fructose 

diet affects transcription factors such as sterol regulatory 

element-binding proteins 1 and 2 (SREBP-1c, SREBP-2), PPARα 

and fatty acid synthase (FAS) levels. All these showed that 

fructose consumption increases RAS components' levels 

and insulin resistance and thus leads to the development of 

NAFLD [38]. In addition, the ACE2/Agt 1-7/Mas axis is thought 

to have regulatory effects on NAFLD formation by inhibiting 

hepatic insulin resistance and liver lipogenesis [96]. A rodent 

study indicates that a rat model of NAFLD, created by a 20% 

fructose diet for eight weeks, appears to have a high ratio of 

liver weight/body weight and increased serum and hepatic 

triglyceride levels and fat droplet numbers in the liver. In line 

with this, Attia et al. suggest that the fructose diet enhances 

the Agt II protein level and reduces the protein levels of ACE2 

and Agt (1-7) and Mas receptors. While fat accumulation 

in the liver is considered the first step in the development 

of NAFLD, as it has been mentioned above, inflammatory 

cytokines and oxidative stress are also important players in 

the pathogenesis of NAFLD. Abnormal cytokine production 

and decreased antiinflammatory RAS components such as 

Agt 1-7 may also contribute to NAFLD progression [96], which 

is supporting with treatment studies’ findings of ACEI or ARB 

on hepatic fibrosis and steatosis [97-99]. In a mechanistic 

study investigating the interactions between the RAS and the 

NAFLD, it was determined that ACEIs or ARBs administrations 

reduce liver stiffness in the patients with NAFLD compared to 

the control group [97]. Moreover, RAS inhibition may prevent 

fibrosis progression in the livers of patients with type 2 diabetes 

[98]. In a experimental study, telmisartan administration 

decreased triglyceride and HOMA-IR levels and attenuated 

cytoplasmic degeneration in a rat model of 10% fructose-

induced NAFLD [99]. The efficacies of amlodipine, a calcium 

channel blocker, captopril, an ACE inhibitor, and bezafibrate, 

an antihyperlipidemic, on hepatic triglyceride levels were 

compared in a 60% fructose diet-induced NAFLD model. 

Amlodipine treatment showed no significant effect on hepatic 

triglyceride and macrovesicular steatosis levels. However, 

the effects of captopril and bezafibrate on macrovesicular 

steatosis appeared to be correlated with decreased hepatic 

triglyceride levels [100]. These findings suggest that fructose-

induced NAFLD is involved in abnormal RAS activity. 

Figure 2. Schematic representation of the development of fatty 

liver disease due to increased RAS activity with high-fructose 

consumption. RAS: Renin angiotensin system, Agt II: Angiotensin II, 

ACE: Angiotensin- converting enzyme 

Conclusion
High-fructose consumption may contribute to a significant 

increase in the prevalence of metabolic syndrome. The activity 

of systemic and local RAS components has increased in fructose-

induced metabolic syndrome. Overexpression of Agt II and 

AT1R provokes insulin resistance, hypertension, and lipogenesis, 

leading to the emergence of cardiometabolic complications and 

NAFLD in fructose-induced metabolic syndrome. Conversely, the 

reduction in compensatory RAS components including ACE2, 

Agt 1-7, and AT2R, with fructose consumption exacerbates the 

complications of the metabolic disorder.
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