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The research investigates the solution of the inverse problem of a linear Euler-Bernoulli equation. While 
finding the solution, Volterra integral equation theory was used. For this purpose, the existence of this 
problem, its uniqueness, and its constant dependence on the data are demonstrated using the Fourier 
methods. 
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The Euler-Bernoulli problem is common. This problem has been used for many physics and 
engineering problems. The investigation of various problems concerning 4th order homogeneous, linear, 
and quasi-linear equations has been one of the most attractive areas for mathematicians and engineers due 
to their importance in the solution of several engineering problems. Examples of scientists working on 
this subject can be given [1-4].  
The Euler-Bernoulli problem was first developed by Daniel Bernoulli and Leonard Euler. T(t,x) is the 
displacement at time t and at position x, o(x)  is the bending stiffness, and k(x)>0 is the linear mass. The 
transverse motion of an unloaded thin beam is represented by the following fourth-order partial 
differential equation (PDE): 

4 4k(x)( ²T)/( t²)+o(x)( T)/( x )=0,t>0,0<x<L.∂ ∂ ∂ ∂  
The vibration, buckling, and dynamic behavior of various building elements widely used in 
nanotechnology (nanotube, nanofillers for nanomotors, nanobearings, and nanosprings) and population 
dynamics, thermoelasticity, medical science, electrochemistry, engineering, wide scope, chemical 
engineering are represented by the Euler-Bernoulli equations [5-6]. 
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In this problem, the periodic [7] and integral conditions were used [8]. The periodic boundary conditions 
are highly challenging. The periodic boundary conditions arise from many important applications in heat 
transfer, and life sciences [8].  
The paper is organized as follows. In Section 2, the existence, and the uniqueness of the solution of the 
problem are proved by using the Fourier method and iteration method. In Section 3, the stability of the 
method for the solution is shown.   
 

 
 

 The Fourier Method is a successive approximation method to solve the problem. The Fourier 
method is one of the very common but highly difficult methods to apply. It is used in all partial type 
differential equations. Volterra theorem is very difficult to satisfy theory. However, they are very 
successful methods in analytical solutions. Many scientists have used these methods [3-4]. 
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the periodic boundary conditions 
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By applying the Fourier Method, the ensuing model is as follows  
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Definition 3.1.  { }( , ), ( )T t j tχ is called the solution of the inverse problem (1)-(4).  
Theorem 3.2. Let below the assumptions be provided 
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then the solution of above the  problem (1)-(4)  has solutions. 
 

Proof. Let the assumptions is verified: 
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Since our series (5) is absolutely convergent, it is also uniformly convergent. Naturally, 
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According to (5) and (A1) to get:  
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The equation given below is the second type of Volterra integral equation: 
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Let show F(t) and the kernel K(t,τ) are continuous in [0,T] and [0,T]x[0,T] respectively,  
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According to (A1)-(A2) and the Weierstrass M test, the kernels F(t) and K(t,τ) are continuous at [0,T] and 
[0,T]x[0T]. According to Volterra's Theorem, the inverse (1)-(4) problem has only unique solution on 
[0,T]. 

 
 
Theorem 4.1. If the data (A1)-(A4)  is provided, the solution is constantly dependent on the initial data. 
  
 Proof.   Let us denote   

{ }
{ }

, , , ,

, , , ,

f

f

ϕ ψ κ

ϕ ψ κ

∆ =

∆ =
 

( )fκ ϕ ψ∆ = + + + . 

( )

( )

2

1

0

2

1

0

( ) ( ) cos(2 )
( ) ( )

( , )

cos(2 )

( , )

cm cm
m

cm cm
m

t t m t
F t F t

f t d

m t

f t d

π

π

δ δ π ϕ ϕ

χ χ χ

π ψ ψ

χ χ χ

∞

=

∞

=

 ′′ ′′ ′′ ′′− + − 
 − =

′ ′−
+

∑

∫

∑

∫

 

Taking maximum 

 
( )

1
2

2 ( ) ( )
( ) ( )

cm cm cm cm
m

t t
F t F t

M

δ δ π ϕ ϕ ψ ψ

π

∞

=

 ′′ ′′ ′′ ′′ ′ ′− + − + − 
 − ≤

∑
                                          (9) 

4. STABILITY FOR THE PROBLEM 
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Using same estimations,we get 

,j j F F T K j j j K K− ≤ − + − + −  

From (9)-(10) 

( )

( ) ( )( )

2
1

2

2 2
1

2
(1 )

2 2

(1 ) (1 )

cm cm cm cm
m

cm cm
m

j j
M T K

T j T j
f f f f

M T K M T K χ χ

δ δ π ϕ ϕ ψ ψ
π

π π

∞

=

∞

=

 ′ ′ ′′ ′′ ′ ′− ≤ − + − + − −  

+ − + −
− −

∑

∑
 

The difference from the (5) 

( ) ( ) ( )

( ) ( )
( )

( )

( )

( ) ( )
( )

( )

0 0 0 0 0 0
0

2 2
2

=1

2
2

1 0

2 2
2

=1

1 2= ( ) ( )
2

cos 2 sin 2 cos 2
(2 )

2 ( ) sin(2 ) ( ) cos 2
(2 )

cos 2 sin 2
(2 )

t

cm cm
cm cm

m

t

cm cm
m

sm sm
sm sm

m

T T t t j f f d

m t m t m
m

j f f m t d m
m

m t m t
m

ϕ ϕ ψ ψ τ τ τ
π

ψ ψ
ϕ ϕ χ

π

τ τ τ χ
π

ψ ψ
ϕ ϕ

π

∞

∞

=

∞

 
− − + − + − − 

 
 −
 + − +
 
 
 

+ − − 
 
 −
+ − +



∫

∑

∑ ∫

∑

( ) 2
2

1 0

sin 2

2 ( ) sin(2 ) ( ) sin 2
(2 )

t

sm sm
m

m

j f f m t d m
m

χ

τ τ τ χ
π

∞

=






 
+ − − 

 
∑ ∫

 

 
Taking maximum 

 



 Natural & Applied Sciences Journal Vol. 6 (2) 2023 7 
 

( )

( )

0 0 0 0

2
=1

2
1

2
=1

2
1

1 1
2 2

1
(2 )

1 ( )
(2 )

1
(2 )

1 ( )
(2 )

cm cm cm cm
m

cm cm sm sm
m

sm sm sm sm
m

cm sm
m

T T T

m

f f T j f f T j
m

m

f T j j f T j j
m

ϕ ϕ ψ ψ

ϕ ϕ ψ ψ

ϕ ϕ ψ ψ

∞

∞

=

∞

∞

=

− ≤ − + −

+ − + −

+ − + −

+ − + −

+ − + −

∑

∑

∑

∑

 

 
Applying Hölder inequality, 
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The solution of the inverse coefficient for the linear Euler equation which involves periodic and integral 
boundary conditions was examined. Although the problem is ill-posed, the results obtained are quite 
suitable. This article specifically examines periodic boundary conditions, which are more challenging than 
local boundary conditions in inverse coefficient problems. In this study, results were obtained using the 
Fourier method.  As a result, the applied methods revealed the analytical solution to this problem. 
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