

**Konuralp Journal of Mathematics** 

**Research Paper** Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X



# On the Topology of $\delta_{\omega}$ -Open Sets and Related Topics

Pınar Şaşmaz<sup>1</sup> and Murad Özkoç<sup>2\*</sup>

<sup>1</sup>Muğla Sıtkı Koçman University, Graduate School of Natural and Applied Sciences, Mathematics, 48000 Menteşe-Muğla, Turkey <sup>2</sup>Muğla Sıtkı Koçman University, Faculty of Science, Department of Mathematics, 48000 Menteşe-Muğla, Turkey \*Corresponding author

#### Abstract

The main purpose of this paper is to study the notion of the  $\delta_{\omega}$ -open sets defined by Al-Jarrah et al via  $\delta_{\omega}$ -closure operator in [4]. We give various properties of the notions of  $\delta_{\omega}$ -closure operator and  $\delta_{\omega}$ -open set. Also, we introduce the notions of  $\delta_{\omega}$ -continuity,  $\omega$ - $\delta$ -continuity and weakly  $\delta_{\omega}$ -continuity by means of  $\delta_{\omega}$ -open sets [4]. Furthermore, we obtain several relationships, examples and counter-examples related to new classes of functions.

**Keywords:**  $\delta_{\omega}$ -open;  $\delta_{\omega}$ -continuity;  $\omega$ - $\delta$ -continuity; weakly  $\delta_{\omega}$ -continuity. **2010** Mathematics Subject Classification: 54C08, 54C10

## 1. Introduction

The forms of weak and strong of the notion of open set in topological spaces have been defined and studied by many authors. For instance, in 1982, Hdeib [9] introduced the concept of  $\omega$ -open set which is weaker than the concept of open set in topological spaces. Also, they proved that the family of all  $\omega$ -open sets in a space X is a topology which is weaker than the old one. Recently, Al-Zoubi and Al-Nashef [5] have advanced and studied the notion of  $\omega$ -open set. In 2017, Al Ghour [2], defined the concept of  $\theta_{\omega}$ -open set which is stronger than the concept of open set. They studied some of its basic properties and obtained characterizations. Moreover, they showed that the family of all  $\theta_{\omega}$ -open sets in a space X is a topology which is stronger than the old one.

In this paper, we study various properties of the notion of  $\delta_{\omega}$ -open set defined by Al-Jarrah et al [4]. Although this notion is weaker than the notion of  $\delta$ -open set defined by Velićko [15], it is stronger than the notion of open set. Also, we define and study the notion of  $\delta_{\omega}$ -continuous which is weaker than  $\theta_{\omega}$ -continuous defined by Al Ghour [2]. Furthermore, we obtain several characterizations of  $\delta_{\omega}$ -continuous functions and investigate their some fundamental properties. Finally, we investigate the relationships among the notions of weakly  $\delta_{\omega}$ -continuous,  $\omega$ - $\delta$ -continuous and separation axioms.

# 2. Preliminaries

Throughout this present paper,  $(X, \tau)$  and  $(Y, \sigma)$  (briefly *X* and *Y*) represent topological spaces. For a subset *A* of a space *X*, cl(A) and int(A) denote the closure of *A* and the interior of *A*, respectively. The family of all closed (resp. open, clopen) sets of  $(X, \tau)$  is denoted C(X) (resp. O(X) or  $\tau$ , CO(X)) and the family of all closed (resp. open) sets of *X* containing a point *x* of *X* is denoted by C(X,x) (resp. O(X,x)). The cocountable topology on *X*,  $\tau_{coc}$ ; the topology whose open sets are the empty set and complements of subsets of *X* which are at most countable. The cofinite topology on *X*,  $\tau_{cof}$ ; the topology whose open sets are the empty set and complements of subsets of *X* which are at most finite. The indiscrete topology on *X*,  $\tau_{ind}$ ; the usual topology on  $\mathbb{R}$ ,  $\tau_u$ . We recall the following definitions which will be used throughout this paper.

#### **Definition 2.1.** A subset A of a space X is called:

(a) regular open [14] if A = int(cl(A)). The complement of a regular open set is called regular closed. The family of all regular open sets is denoted by RO(X). A point  $x \in X$  is said to be the  $\delta$ -cluster point [14] of A if  $int(cl(U)) \cap A \neq \emptyset$  for each open neighbourhood U of x. The set of all  $\delta$ -cluster points of A is called the  $\delta$ -closure of A and is denoted by  $\delta$ -cl(A). If  $A = \delta$ -cl(A), then A is called  $\delta$ -closed [14]. The complement of a  $\delta$ -closed set is called  $\delta$ -open. The set  $\{x | (\exists U \in O(X, x))(int(cl(U)) \subseteq A)\}$  is called the  $\delta$ -interior of A and is denoted by  $\delta$ -int(A). The family of all  $\delta$ -open sets of  $(X, \tau)$  is a topology on X and is denoted by  $\tau_{\delta}$ .

(b)  $\omega$ -open [9] if for every  $x \in A$  there exists an open set U containing x such that  $U \setminus A$  is countable. The complement of an  $\omega$ -open set is said to be  $\omega$ -closed [9]. The intersection of all  $\omega$ -closed sets containing A is called the  $\omega$ -closure of A and is denoted by  $\omega$ -cl(A). The family of all  $\omega$ -open (resp.  $\omega$ -closed) sets in  $(X, \tau)$  is a topology on X and is denoted by  $\tau_{\omega}$  (resp.  $\omega$ C(X)).

**Definition 2.2.** A point  $x \in X$  is said to be the  $\theta$ -cluster point [15] of A if  $cl(U) \cap A \neq \emptyset$  for each open neighbourhood U of x. The set of all  $\theta$ -cluster points of A is called the  $\theta$ -closure of A and is denoted by  $\theta$ -cl(A). If  $A = \theta$ -cl(A), then A is called  $\theta$ -closed [15]. The complement of a  $\theta$ -closed set is called  $\theta$ -open. The set  $\{x | (\exists U \in O(X, x))(cl(U) \subseteq A)\}$  is called the  $\theta$ -interior of A and is denoted by  $\theta$ -int(A). The family of all  $\theta$ -open sets of  $(X, \tau)$  is a topology on X and is denoted by  $\tau_{\theta}$ .

**Lemma 2.3.** [5] A subset A of a space X is  $\omega$ -open iff for each  $x \in A$  there exists  $U \in \tau$  such that  $x \in U$  and  $U \setminus A$  is countable.

**Corollary 2.4.** [5] A subset A of a space X is  $\omega$ -open iff for each  $x \in A$  there exists  $U \in \tau$  and a countable set C such that  $x \in U \setminus C \subseteq A$ .

**Corollary 2.5.** [5] If X is a countable set then in the space X every subset is  $\omega$ -open.

**Definition 2.6.** Let  $(X, \tau)$  be a topological space. Then the space X is called:

(a) Locally indiscrete [10] if  $\tau = RO(X)$ .

(b) Locally countable [13] if for each  $x \in X$ , there exists  $U \in \tau$  such that  $x \in U$  and U is countable.

(c) Anti-locally countable [13] if for each  $U \in \tau \setminus \{\emptyset\}$  is uncountable.

(d)  $\omega$ -regular [1] if for each closed set  $F \subseteq X$  and  $x \in X \setminus F$ , there exist  $U \in \tau$  and  $V \in \tau_{\omega}$  such that  $x \in U$ ,  $F \subseteq V$  and  $U \cap V = \emptyset$ .

(e)  $\omega$ -locally indiscrete [2] if for every open set in X is  $\omega$ -closed.

**Lemma 2.7.** (a) [2] Every locally indiscrete topological space is  $\omega$ -locally indiscrete.

(b) [3] Every locally countable topological space is  $\omega$ -locally indiscrete.

(c) [1] If X is anti-locally countable space, then for all  $A \in \tau_{\omega}$ ,  $\omega$ -cl(A) = cl(A).

(d) [1] A topological space X is  $\omega$ -regular iff for each  $U \in \tau$  and each  $x \in U$  there is  $V \in \tau$  such that  $x \in V \subseteq \omega$ -cl $(V) \subseteq U$ .

(e) [2] A topological space X is locally indiscrete iff every open set in X is closed.

**Definition 2.8.** Let A be a subset of a topological space  $(X, \tau)$ .

(a) A point  $x \in X$  is in the  $\theta_{\omega}$ -closure [2] of A ( $x \in \theta_{\omega}$ -cl(A)) iff  $\omega$ -cl(U)  $\cap A \neq \emptyset$  for any  $U \in \tau$  with  $x \in U$ . (b) A set A is called  $\theta_{\omega}$ -closed [2] iff  $\theta_{\omega}$ -cl(A) = A. A set A is called  $\theta_{\omega}$ -open [2] iff its complement is  $\theta_{\omega}$ -closed. Also, the family of all  $\theta_{\omega}$ -open (resp.  $\theta_{\omega}$ -closed) sets in ( $X, \tau$ ) is denoted by  $\tau_{\theta_{\omega}}$  (resp.  $\theta_{\omega}C(X)$ ).

**Definition 2.9.** Let A be a subset of a topological space  $(X, \tau)$ .

(a) A point  $x \in X$  is in the  $\delta_{\omega}$ -closure [4] of A ( $x \in \delta_{\omega}$ -cl(A)) if  $int(\omega$ -cl(U))  $\cap A \neq \emptyset$  for any  $U \in \tau$  with  $x \in U$ .

(b) A set A is called  $\delta_{\omega}$ -closed [4] iff  $\delta_{\omega}$ -cl(A) = A. A set A is called  $\delta_{\omega}$ -open iff its complement is  $\delta_{\omega}$ -closed. Also, the family of all  $\delta_{\omega}$ -open (resp.  $\delta_{\omega}$ -closed) sets in  $(X, \tau)$  is denoted by  $\tau_{\delta_{\omega}}$  (resp.  $\delta_{\omega}C(X)$ ).

**Lemma 2.10.** [4] Let A be a subset of a topological space X. Then the following hold.  $cl(A) \subseteq \delta_{\omega}$ - $cl(A) \subseteq \delta$ -cl(A).

**Corollary 2.11.** [4] Let  $(X, \tau)$  be a topological space. Then  $\tau_{\delta} \subseteq \tau_{\delta_{\infty}} \subseteq \tau$ .

**Lemma 2.12.** [4] Let A be a subset of a topological space  $(X, \tau)$ . Then the following hold. (a)  $cl(A) = \delta_{\omega} - cl(A)$  for each  $A \in \tau_{\omega}$ . (b)  $cl(A) = \delta_{\omega} - cl(A) = \delta - cl(A)$  for each  $A \in \tau$ .

**Lemma 2.13.** [4] Let  $(X, \tau)$  be a topological space. Then  $\tau_{\delta_m}$  is a topology on X.

**Theorem 2.14.** [4] Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ . Then  $A \in \tau_{\delta_{\omega}}$  if and only if for each  $x \in A$ , there exists  $U \in \tau$  such that  $x \in U \subseteq int(\omega - cl(U)) \subseteq A$ .

#### **3.** On $\delta_{\omega}$ -closure operator and $\delta_{\omega}$ -open sets

**Theorem 3.1.** Let A be a subset of a topological space X. Then the following hold. (a)  $cl(A) \subseteq \delta_{\omega} - cl(A) \subseteq \theta_{\omega} - cl(A)$ , (b) If A is  $\delta$ -closed, then A is  $\delta_{\omega}$ -closed, (c) If A is  $\delta_{\omega}$ -closed, then A is closed. Proof. (a) Let  $x \in \delta_{\omega}$ -cl(A).  $x \in \delta_{\omega}$ -cl(A)  $\Rightarrow (\forall U \in O(X, x))(int(\omega - cl(U)) \cap A \neq \emptyset) \Rightarrow (\forall U \in O(X, x))(\omega - cl(U)) \cap A \neq \emptyset)$ 

 $\begin{aligned} & x \in \delta_{\omega} - cl(A) \Rightarrow (\forall U \in O(X, x))(int(\omega - cl(U)) \cap A \neq \emptyset) \Rightarrow (\forall U \in O(X, x))(\omega - cl(U) \cap A \neq \emptyset) \Rightarrow x \in \theta_{\omega} - cl(A). \\ & (b) \text{ Let } A \in \delta C(X). \\ & A \in \delta C(X) \Rightarrow A = \delta - cl(A) \overset{\text{Lemma 2.10}}{\Rightarrow} A = \delta_{\omega} - cl(A) \Rightarrow A \in \delta_{\omega} C(X). \\ & (c) \text{ Let } A \in \delta_{\omega} C(X). \\ & A \in \delta_{\omega} C(X) \Rightarrow A = \delta_{\omega} - cl(A) \overset{\text{Lemma 2.10}}{\Rightarrow} A = cl(A) \Rightarrow A \in C(X). \end{aligned}$ 

**Theorem 3.2.** Let X be an  $\omega$ -locally indiscrete topological space and  $A \subseteq X$ . Then the following hold. (a)  $cl(A) = \delta_{\omega} - cl(A)$ ,

(b) If A is closed in X, then A is  $\delta_{\omega}$ -closed in X.

 $\begin{array}{l} Proof. \ (a) \text{ Let } x \in \delta_{\omega} - cl(A). \\ x \in \delta_{\omega} - cl(A) \Rightarrow (\forall U \in O(X, x))(int(\omega - cl(U)) \cap A \neq \emptyset) \Rightarrow (\forall U \in O(X, x))(\omega - cl(U) \cap A \neq \emptyset) \\ X \text{ is } \omega \text{-locally indiscrete} \end{array} \right\} \Rightarrow (\forall U \in O(X, x))(U \cap A \neq \emptyset)$ 

 $\Rightarrow x \in cl(A).$ Therefore  $cl(A) = \delta_{\omega} - cl(A)$ . (b) Let  $A \in C(X)$ .  $A \in C(X) \Rightarrow A = cl(A) \stackrel{(a)}{\Rightarrow} A = \delta_{\omega} - cl(A) \Rightarrow A \in \delta_{\omega} C(X).$ **Corollary 3.3.** *Let X be locally indiscrete and*  $A \subseteq X$ *. Then the following hold.* (a)  $cl(A) = \delta_{\omega} - cl(A)$ , (b) If A is closed in X, then A is  $\delta_{\omega}$ -closed in X. **Corollary 3.4.** *Let X be locally countable and*  $A \subseteq X$ *. Then the following hold.* (a)  $cl(A) = \delta_{\omega} - cl(A)$ , (b) If A is closed in X, then A is  $\delta_{\omega}$ -closed in X. **Theorem 3.5.** Let *X* be anti-locally countable and  $A \subseteq X$ . Then the following hold. (a)  $\delta$ -cl(A) =  $\delta_{\omega}$ -cl(A), (b) If A is  $\delta_{\omega}$ -closed in X, then A is  $\delta$ -closed in X. *Proof.* (*a*) Let  $x \in \delta$ -*cl*(*A*).  $x \in \delta - cl(A) \Rightarrow (\forall U \in O(X, x))(int(cl(U)) \cap A \neq \emptyset) \xrightarrow{\text{Hypothesis}} (\forall U \in O(X, x))(int(\omega - cl(U)) \cap A \neq \emptyset) \Rightarrow x \in \delta_{\omega} - cl(A)$ Then  $\delta$ - $cl(A) \subseteq \delta_{\omega}$ -cl(A). Thus  $\delta$ - $cl(A) = \delta_{\omega}$ -cl(A). (*b*) Let  $A \in \delta_{\omega}C(X)$ .  $A \in \delta_{\omega}C(X) \Rightarrow A = \delta_{\omega} - cl(A) \stackrel{(a)}{\Rightarrow} A = \delta - cl(A) \Rightarrow A \in \delta C(X).$ **Theorem 3.6.** Let X be a topological space. Then the following hold. (a) If  $A \subseteq B \subseteq X$ , then  $\delta_{\omega}$ -cl $(A) \subseteq \delta_{\omega}$ -cl(B). (b)  $\delta_{\omega}$ -cl( $A \cup B$ ) =  $\delta_{\omega}$ -cl(A)  $\cup \delta_{\omega}$ -cl(B) for each subsets  $A, B \subseteq X$ . (c)  $\delta_{\omega}$ -cl(A) is closed in X for each subset  $A \subseteq X$ . *Proof.* (*a*) Let  $x \in \delta_{\omega}$ -*cl*(*A*) and  $A \subseteq B$ .  $x \in \delta_{\omega} - cl(A) \Rightarrow (\forall U \in O(X, x))(int(\omega - cl(U)) \cap A \neq \emptyset) \\ A \subseteq B \end{cases} \Rightarrow (\forall U \in O(X, x))(int(\omega - cl(U)) \cap B \neq \emptyset) \Rightarrow x \in \delta_{\omega} - cl(B).$ (*b*) Let *A* and *B* be subsets of *X*.  $\left. \begin{array}{l} A \subseteq A \cup B \stackrel{(a)}{\Rightarrow} \delta_{\omega} - cl(A) \subseteq \delta_{\omega} - cl(A \cup B) \\ B \subseteq A \cup B \stackrel{(a)}{\Rightarrow} \delta_{\omega} - cl(B) \subseteq \delta_{\omega} - cl(A \cup B) \end{array} \right\} \Rightarrow \delta_{\omega} - cl(A) \cup \delta_{\omega} - cl(B) \subseteq \delta_{\omega} - cl(A \cup B) \dots (1)$ Let  $x \notin \delta_{\omega}$ - $cl(A) \cup \delta_{\omega}$ -cl(B).  $x \notin \delta_{\omega} - cl(A) \cup \delta_{\omega} - cl(B) \Rightarrow (x \notin \delta_{\omega} - cl(A))(x \notin \delta_{\omega} - cl(B))$  $\Rightarrow (\exists U \in O(X,x))(int(\omega - cl(U)) \cap A = \emptyset)(\exists V \in O(X,x))(int(\omega - cl(V)) \cap B = \emptyset)$  $W = U \cap V$  $\Rightarrow (W \in O(X, x))(int(\omega - cl(W)) \cap A = \emptyset)(int(\omega - cl(W)) \cap B = \emptyset)$  $\Rightarrow (W \in O(X, x))(int(\omega - cl(W)) \cap (A \cup B) = \emptyset)$  $\Rightarrow x \notin \delta_{\omega}$ - $cl(A \cup B)$ It means that  $\delta_{\omega}$ - $cl(A \cup B) \subseteq \delta_{\omega}$ - $cl(A) \cup \delta_{\omega}$ - $cl(B) \dots (2)$  $(1), (2) \Rightarrow \delta_{\omega} - cl(A \cup B) = \delta_{\omega} - cl(A) \cup \delta_{\omega} - cl(B).$ (*c*) Suppose that  $x \notin \delta_{\omega}$ -*cl*(*A*).  $x \notin \delta_{\omega} - cl(A) \Rightarrow (\exists U \in O(X, x))(int(\omega - cl(U)) \cap A = \emptyset)$  $\Rightarrow \quad (\exists U \in O(X, x))(U \cap A = \emptyset)$  $\Rightarrow \quad (\exists U \in O(X, x))(U \cap \delta_{\omega} - cl(A) = \emptyset \lor U \cap \delta_{\omega} - cl(A) \neq \emptyset)$  $\Rightarrow \quad (\exists U \in O(X, x))(U \cap \delta_{\omega} - cl(A) = \emptyset) \lor (\exists U \in O(X, x))(U \cap \delta_{\omega} - cl(A) \neq \emptyset)$ False  $(\exists U \in O(X, x))(U \cap \delta_{\omega} - cl(A) = \emptyset)$  $x \notin cl(\delta_{\omega} - cl(A))$ Therefore  $\delta_{\omega}$ - $cl(A) = cl(\delta_{\omega}$ -cl(A)) which means that  $\delta_{\omega}$ - $cl(A) \in C(X)$ . **Corollary 3.7.** Every open  $\omega$ -closed set in a topological space is  $\delta_{\omega}$ -open.

 $\begin{array}{l} Proof. \ \text{Let} A \in O(X) \cap \omega C(X) \text{ and } x \in A. \\ x \in A \in O(X) \cap \omega C(X) \Rightarrow (A \in O(X, x))(A \in \omega C(X)) \\ \Rightarrow \omega \text{-}cl(A) = A \in O(X, x) \Rightarrow x \in A = int(A) = int(\omega \text{-}cl(A)) \\ U = A \end{array} \right\} \Rightarrow (U \in O(X, x))(int(\omega \text{-}cl(U)) \subseteq A). \end{array}$ 

**Corollary 3.8.** Every countable open set in a topological space is  $\delta_{\omega}$ -open.

 $\begin{array}{l} Proof. \ \text{Let } U \in O(X) \ \text{and } |U| \leqslant \aleph_0. \\ |U| \leqslant \aleph_0 \Rightarrow U \in \omega C(X) \\ U \in O(X) \end{array} \right\} \stackrel{\text{Corollary 3.7}}{\Rightarrow} U \in \delta_\omega O(X).$ 

**Lemma 3.9.** [6] Let  $(X, \tau)$  and  $(Y, \sigma)$  be two topological spaces. (a)  $(\tau \times \sigma)_{\omega} \subseteq \tau_{\omega} \times \sigma_{\omega}$ , (b) If  $A \subseteq X$  and  $B \subseteq Y$ , then  $\omega$ -cl $(A) \times \omega$ -cl $(B) \subseteq \omega$ -cl $(A \times B)$ .

**Theorem 3.10.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be two topological spaces. If  $G \in (\tau \times \sigma)_{\delta_{\omega}}$ , then  $\pi_X(G) \in \tau_{\delta_{\omega}}$  and  $\pi_Y(G) \in \sigma_{\delta_{\omega}}$ .

 $\begin{array}{l} Proof. \ \operatorname{Let} x \in \pi_X(G) \ \operatorname{and} \ (x,y) \in G. \\ (x,y) \in G \in (\tau \times \sigma)_{\delta_\omega} \stackrel{\text{Theorem 2.14}}{\Rightarrow} (\exists H \in O(X \times Y, (x,y)))(H \subseteq int(\omega \text{-}cl(H)) \subseteq G) \\ \Rightarrow (\exists U \in O(X,x))(\exists V \in O(Y,y))(U \times V \subseteq H \subseteq int(\omega \text{-}cl(H)) \subseteq G) \\ \stackrel{\text{Lemma 3.9}}{\Rightarrow} (U \in O(X,x))(V \in O(Y,y))(U \times V \quad \subseteq \quad int(\omega \text{-}cl(U)) \times int(\omega \text{-}cl(V)) \\ \quad = \quad int(\omega \text{-}cl(U) \times \omega \text{-}cl(V)) \\ \subseteq \quad int(\omega \text{-}cl(U \times V)) \\ \subseteq \quad int(\omega \text{-}cl(H)) \subseteq G) \\ \Rightarrow (U \in O(X,x))(U \subseteq int(\omega \text{-}cl(U)) \subseteq \pi_X(G)). \end{array}$ 

Then we have  $\pi_X(G) \in \tau_{\delta_\omega}$ . Similarly  $\pi_Y(G) \in \sigma_{\delta_\omega}$ .

**Definition 3.11.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called contra open [7] if f[U] is closed in Y for each open subset U in X.

**Theorem 3.12.** Let  $f: (X, \tau) \to (Y, \sigma)$  be a function. If  $f: (X, \tau) \to (Y, \sigma)$  is open and  $f: (X, \tau) \to (Y, \sigma_{\omega})$  is contra open, then  $f: (X, \tau_{\delta}) \to (Y, \sigma_{\delta_{\omega}})$  is open.

*Proof.* Let  $A \in \tau_{\delta}$  and  $y \in f[A]$ .

$$\begin{array}{c} y \in f[A] \Rightarrow (\exists x \in A)(y = f(x)) \\ A \in \tau_{\delta} \subseteq \tau \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(U \subseteq A) \\ f \text{ is } (\tau \cdot \sigma) \text{ open } \end{array} \right\} \Rightarrow (f[U] \in O(Y, f(x)) = O(Y, y))(f[U] \subseteq f[A]) \\ f \text{ is } (\tau \cdot \sigma_{\omega}) \text{ contra open } \end{array} \right\} \Rightarrow \\ \Rightarrow (f[U] \in O(Y, y))(f[U] = int(\omega \cdot cl(f[U])) \subseteq f[A]).$$

**Theorem 3.13.** Let  $f: (X, \tau) \to (Y, \sigma)$  be a function. If  $f: (X, \tau) \to (Y, \sigma)$  is open and  $f: (X, \tau_{\omega}) \to (Y, \sigma_{\omega})$  is contra open, then  $f: (X, \tau_{\delta_{\omega}}) \to (Y, \sigma_{\delta_{\omega}})$  is open.

*Proof.* Let  $A \in \tau_{\delta_{\omega}}$  and  $y \in f[A]$ .

$$\begin{array}{l} y \in f[A] \Rightarrow (\exists x \in A)(y = f(x)) \\ A \in \tau_{\delta_{\omega}} \end{array} \} \Rightarrow (\exists U \in O(X, x))(U \subseteq int(\omega - cl(U)) \subseteq A) \\ f \text{ is } (\tau - \sigma) \text{ open} \end{array} \} \Rightarrow \\ \Rightarrow (f[U] \in O(Y, y))(f[U] \subseteq f[int(\omega - cl(U))] \subseteq f[A]) \\ f \text{ is } (\tau_{\omega} - \sigma_{\omega}) \text{ contra open} \end{array} \} \Rightarrow (f[U] \in O(Y, y))(f[U] = int(\omega - cl(f[U])) \subseteq f[int(\omega - cl(U))]) \subseteq f[A]) \\ V = f[U] \end{array} \} \Rightarrow \\ \Rightarrow (V \in O(Y, y))(V = int(\omega - cl(V)) \subseteq f[A]). \qquad \Box$$

**Definition 3.14.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called contra continuous [8] if  $f^{-1}[V]$  is closed in X for each open subset V in Y.

**Theorem 3.15.** Let  $f: (X, \tau) \to (Y, \sigma)$  be a function. If  $f: (X, \tau) \to (Y, \sigma)$  is continuous and  $f: (X, \tau_{\omega}) \to (Y, \sigma_{\omega})$  is contra continuous, then  $f: (X, \tau_{\delta_{\omega}}) \to (Y, \sigma_{\delta_{\omega}})$  is continuous.

*Proof.* Let 
$$B \in \tau_{\delta_{\infty}}$$
 and  $x \in f^{-1}[B]$ .

$$\begin{split} x &\in f^{-1}[B] \Rightarrow f(x) \in B \\ B &\in \tau_{\delta_{\omega}} \end{split} \} \Rightarrow (\exists V \in O(Y, f(x)))(V \subseteq int(\omega - cl(V)) \subseteq B) \\ f & \text{ is } (\tau - \sigma) \text{ continuous} \end{aligned} \} \Rightarrow \\ \Rightarrow (f^{-1}[V] \in O(X, x))(f^{-1}[V] \subseteq f^{-1}[int(\omega - cl(V))] \subseteq f^{-1}[B] \\ f & \text{ is } (\tau_{\omega} - \sigma_{\omega}) \text{ contra continuous} \end{aligned} \} \Rightarrow \\ \Rightarrow (f^{-1}[V] \in O(X, x))(f^{-1}[V] = int(\omega - cl(f^{-1}[V])) \subseteq f^{-1}[int(\omega - cl(V))] \subseteq f^{-1}[B]) \\ U = f^{-1}[V] \end{aligned} \} \Rightarrow \\ \Rightarrow (U \in O(X, x))(U = int(\omega - cl(U)) \subseteq f^{-1}[B]). \end{split}$$

**Definition 3.16.** A topological space  $(X, \tau)$  is said to be  $\omega$ - $T_2$  [2] if for any pair (x, y) of distinct points in X, there exist  $U \in \tau$ ,  $V \in \tau_{\omega}$  such that  $x \in U$ ,  $y \in V$  and  $U \cap V = \emptyset$ .

**Theorem 3.17.** Let  $(X, \tau)$  be a  $\omega$ -locally indiscrete space. Then  $(X, \tau)$  is  $\omega$ - $T_2$  space if and only if  $\delta_{\omega}$ - $cl(\{x\}) = \{x\}$  for each  $x \in X$ .

 $\begin{array}{l} Proof. \ (\Rightarrow): \operatorname{Let} \ (X, \tau) \text{ be an } \omega \text{-}T_2 \text{ space. Suppose that } x \in X \text{ and } \delta_{\omega}\text{-}cl(\{x\}) \neq \{x\}.\\ \delta_{\omega}\text{-}cl(\{x\}) \neq \{x\} \Rightarrow (\exists y \in X)(y \in \delta_{\omega}\text{-}cl(\{x\}) \setminus \{x\}) \Rightarrow (y \in \delta_{\omega}\text{-}cl(\{x\}))(y \neq x)\\ (X, \tau) \text{ is } \omega\text{-}T_2 \text{ space} \end{array} \right\} \Rightarrow\\ \Rightarrow (y \in \delta_{\omega}\text{-}cl(\{x\}))(\exists U \in \omega O(X, x))(\exists V \in O(Y, y))(U \cap V = \emptyset)\\ \Rightarrow (int(\omega\text{-}cl(V)) \cap \{x\} \neq \emptyset)(U \in \omega O(X, x))(V \subseteq \setminus U)\\ \Rightarrow (x \in int(\omega\text{-}cl(V)))(U \in \omega O(X, x))(int(\omega\text{-}cl(V)) \subseteq int(\omega\text{-}cl(X \setminus U)) = int(X \setminus U) \subseteq X \setminus U)\\ \Rightarrow (x \in int(\omega\text{-}cl(V)))(U \in \omega O(X, x))(int(\omega\text{-}cl(V)) \cap U = \emptyset)\\ \Rightarrow (int(\omega\text{-}cl(V))) \cap U \neq \emptyset)(int(\omega\text{-}cl(V)) \cap U = \emptyset)\\ \text{This is a contradiction.} \end{array}$ 

206

 $(\Leftarrow)$ : Let  $x, y \in X$  and  $x \neq y$ .

$$\begin{array}{l} (x, y \in X)(x \neq y) \\ \text{Hypothesis} \end{array} \right\} \Rightarrow x \notin \delta_{\omega} - cl(\{y\}) \Rightarrow (\exists U \in O(X, x))(int(\omega - cl(U)) \cap \{y\} = \emptyset) \\ (X, \tau) \text{ is } \omega \text{-locally indiscrete} \end{array} \right\} \Rightarrow \\ \Rightarrow (\exists U \in O(X, x))(int(\omega - cl(U)) \in \omega C(X))(int(\omega - cl(U)) \cap \{y\} = \emptyset) \\ V = X \setminus int(\omega - cl(U)) \end{array} \right\} \Rightarrow (U \in O(X, x))(V \in \omega O(X, y))(U \cap V = \emptyset).$$

## 4. On $\delta_{\omega}$ -continuity

**Definition 4.1.** A function  $f: X \to Y$  is said to be  $\delta$ -continuous [12] if for every  $x \in X$  and every open neighborhood V of f(x), there exists an open neighborhood U of x such that  $f[int(cl(U))] \subseteq int(cl(V))$ .

**Definition 4.2.** A function  $f: X \to Y$  is said to be  $\delta_{\omega}$ -continuous if for every  $x \in X$  and every open neighborhood V of f(x), there exists an open neighborhood U of x such that  $f[int(cl(U))] \subseteq int(\omega - cl(V))$ .

**Theorem 4.3.** Let  $f: X \to Y$  be a function. If f is  $\delta_{\omega}$ -continuous, then it is  $\delta$ -continuous.

Proof. Straightforward.

**Remark 4.4.** Every  $\delta$ -continuous function need not be  $\delta_{\omega}$ -continuous as shown by the following example.

**Example 4.5.** Consider the function  $f : (\mathbb{N}, \tau_{ind}) \to (\mathbb{N}, \tau_{cof})$ , where  $\mathbb{N}$  is the set of all natural numbers, defined as f(x) = x. The function f is  $\delta$ -continuous but not  $\delta_{\omega}$ -continuous.

**Theorem 4.6.** If  $f: X \to Y$  is  $\delta$ -continuous and Y is an anti-locally countable space, then f is  $\delta_{\omega}$ -continuous.

*Proof.* Let  $x \in X$  and let V be any open subset of Y containing f(x).

$$\begin{array}{c} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is } \delta \text{-continuous} \end{array} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[int(cl(U))] \subseteq int(cl(V))) \\ Y \text{ is anti-locally countable} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[int(cl(U))] \subseteq int(\omega - cl(V))) \\ \Box$$

The following two examples show that the notions of continuity and  $\delta_{\omega}$ -continuity are independent.

**Example 4.7.** Consider the function  $f : (\mathbb{R}, \tau_{ind}) \to (\mathbb{R}, \tau_{cof})$  defined as f(x) = x. It is obvious that f is  $\delta_{\omega}$ -continuous but not continuous.

**Example 4.8.** Consider the function  $f : (\mathbb{N}, \tau) \to (\mathbb{N}, \tau)$  where  $\tau = \{\mathbb{N}, \emptyset, \{1\}\}$  and f(x) = x. It is not difficult to see that f is continuous but not  $\delta_{\omega}$ -continuous.

**Theorem 4.9.** Let  $f: X \to Y$  be a function. If f is  $\delta_{\omega}$ -continuous and Y is  $\omega$ -regular, then f is continuous.

*Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

$$\begin{array}{l} V \in O(Y, f(x)) \\ Y \text{ is } \omega \text{-regular} \end{array} \right\} \Rightarrow (\exists H \in O(Y, f(x)))(H \subseteq \omega \text{-}cl(H) \subseteq V) \\ f \text{ is } \delta_{\omega} \text{-continuous} \end{array} \right\} \Rightarrow \\ \Rightarrow (\exists U \in O(X, x))(f[U] \subseteq f[int(cl(U))] \subseteq int(\omega \text{-}cl(H)) \subseteq int(V) = V). \end{array}$$

**Definition 4.10.** A function  $f: X \to Y$  is said to be weakly continuous [11] if for every  $x \in X$  and every open set V of Y containing f(x), there exists an open subset U in X containing x such that  $f[U] \subseteq cl(V)$ .

**Definition 4.11.** A function  $f : X \to Y$  is said to be  $\omega$ - $\delta$ -continuous if for every  $x \in X$  and every open set V of Y containing f(x), there exists an open subset U in X containing x such that  $f[int(\omega - cl(U))] \subseteq cl(V)$ .

**Theorem 4.12.** Let  $f: X \to Y$  be a function. If f is  $\omega$ - $\delta$ -continuous function, then it is weakly continuous.

Proof. Straightforward.

**Theorem 4.13.** Let  $f: X \to Y$  be a function. If f is weakly continuous and X is  $\omega$ -locally indiscrete, then f is  $\omega$ - $\delta$ -continuous.

*Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

$$\begin{array}{c} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is weakly continuous } \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[U] \subseteq cl(V)) \\ X \text{ is } \boldsymbol{\omega} \text{-locally indiscrete } \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[U] = f[int(\boldsymbol{\omega} \text{-}cl(U))] \subseteq cl(V)). \quad \Box$$

**Corollary 4.14.** If  $f: X \to Y$  is weakly continuous and X is locally indiscrete, then f is  $\omega$ - $\delta$ -continuous.

Proof. By Lemma 2.7 and Theorem 4.13.

**Corollary 4.15.** If  $f: X \to Y$  is weakly continuous and X is locally countable, then f is  $\omega$ - $\delta$ -continuous.

Proof. By Lemma 2.7 and Theorem 4.13.

**Theorem 4.16.** Let  $f: X \to Y$  be a function. If f is weakly continuous and X is  $\omega$ -regular, then f is  $\omega$ - $\delta$ -continuous.

*Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

 $\begin{array}{l} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is weakly continuous } \end{array} \right\} \Rightarrow (\exists H \in O(X, x))(f[H] \subseteq cl(V)) \\ X \text{ is } \boldsymbol{\omega}\text{-regular } \end{array} \} \Rightarrow \\ \Rightarrow (\exists U \in O(X, x))(f[int(\boldsymbol{\omega}\text{-}cl(U))] \subseteq f[\boldsymbol{\omega}\text{-}cl(U)] \subseteq f[H] \subseteq cl(V)). \end{array}$ 

**Theorem 4.17.** Let  $f: X \to Y$  be a function. If f is  $\delta$ -continuous, then it is  $\omega$ - $\delta$ -continuous.

 $\begin{array}{l} Proof. \ \text{Let } x \in X \ \text{and } V \in O(Y, f(x)). \\ (x \in X)(V \in O(Y, f(x))) \\ f \ \text{is } \delta \text{-continuous} \end{array} \right\} \Rightarrow \ (\exists U \in O(X, x))(f[int(cl(U))] \subseteq int(cl(V))) \\ \Rightarrow (\exists U \in O(X, x))(f[int(\omega \text{-}cl(U))] \subseteq f[int(cl(U))] \subseteq int(cl(V)) \subseteq cl(V)). \end{array}$ 

**Remark 4.18.** Every  $\omega$ - $\delta$ -continuous function need not be  $\delta$ -continuous as shown by the following example.

**Example 4.19.** Let  $X = \{a, b, c\}$ ,  $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$  and  $\sigma = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$ . Let  $f : (X, \tau) \to (X, \sigma)$  be identity function. Then f is  $\omega$ - $\delta$ -continuous. On the other hand, it is proved in [[12] Example 4.5] that f is not  $\delta$ -continuous.

**Theorem 4.20.** Let  $f: X \to Y$  be a function. If f is open  $\omega$ - $\delta$ -continuous and X is anti-locally countable, then f is  $\delta$ -continuous.

*Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

$$\begin{array}{c} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is } \omega \text{-}\delta \text{-continuous} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[int(\omega \text{-}cl(U))] \subseteq cl(V)) \\ X \text{ is anti-locally countable} \end{array} \right\} \Rightarrow \\ \Rightarrow (\exists U \in O(X, x))(f[int(\omega \text{-}cl(U))] = f[int(cl(U))] \subseteq cl(V)) \\ f \text{ is open} \end{array} \right\} \Rightarrow \\ \Rightarrow (\exists U \in O(X, x))(int(f[int(\omega \text{-}cl(U))]) = f[int(cl(U))] \subseteq int(cl(V))).$$

**Definition 4.21.** A function  $f : X \to Y$  is said to be weakly  $\delta_{\omega}$ -continuous if for every  $x \in X$  and every open set V of Y containing f(x), there exists an open subset U in X containing x such that  $f[U] \subseteq int(\omega - cl(V))$ .

**Theorem 4.22.** Let  $f: X \to Y$  be a function. If f is weakly  $\delta_{\omega}$ -continuous, then it is weakly continuous.

Proof. Straightforward.

**Remark 4.23.** Every weakly continuous function need not be  $\delta_{\omega}$ -weakly continuous as shown by the following example.

**Example 4.24.** Consider the identity function  $f : (\mathbb{N}, \tau) \to (\mathbb{N}, \sigma)$  where  $\tau = \{\emptyset, \mathbb{N}\}$  and  $\sigma = \{\emptyset, \mathbb{N}, \{1\}\}$ . Then f is weakly continuous but not weakly  $\delta_{\omega}$ -continuous.

**Theorem 4.25.** Let  $f: X \to Y$  be a function. If f is open weakly continuous and Y is anti-locally countable, then f is weakly  $\delta_{\omega}$ -continuous. *Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

$$\begin{array}{l} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is weakly continuous} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[U] \subseteq cl(V)) \\ Y \text{ is anti-locally countable} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[U] \subseteq cl(V) = \boldsymbol{\omega} - cl(V)) \\ f \text{ is open} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(int(f[U]) = f[U] \subseteq int(\boldsymbol{\omega} - cl(V))).$$

**Theorem 4.26.** Let  $f: X \to Y$  be a function. If f is continuous, then it is weakly  $\delta_{\omega}$ -continuous.

Proof. Straightforward.

**Remark 4.27.** Every weakly  $\delta_{\omega}$ -continuous function need not be continuous as shown by the following example.

**Example 4.28.** Consider the identity function  $f : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_{coc})$ . Then f is weakly  $\delta_{\omega}$ -continuous but not continuous.

**Theorem 4.29.** Let  $f: X \to Y$  be a function. If f is weakly  $\delta_{\omega}$ -continuous and Y is  $\omega$ -locally indiscrete, then f is continuous.

*Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

 $\begin{cases} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is weakly } \delta_{\omega} \text{-continuous} \end{cases} \Rightarrow (\exists U \in O(X, x))(f[U] \subseteq int(\omega \text{-}cl(V))) \\ Y \text{ is } \omega \text{-locally indiscrete} \end{cases} \Rightarrow$ 

 $\Rightarrow (\exists U \in O(X, x))(f[U] \subseteq int(\omega - cl(V)) = int(V) = V).$ 

**Corollary 4.30.** If  $f: X \to Y$  is weakly  $\delta_{\omega}$ -continuous and Y is locally indiscrete, then f is continuous.

*Proof.* By Lemma 2.7 and Theorem 4.29.

**Corollary 4.31.** If  $f: X \to Y$  is weakly  $\delta_{\omega}$ -continuous and Y is locally countable, then f is continuous.

Proof. By Lemma 2.7 and Theorem 4.29.

**Theorem 4.32.** Let  $f: X \to Y$  be a function. If f is  $\delta_{\omega}$ -continuous, then it is weakly  $\delta_{\omega}$ -continuous.

*Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

 $\begin{cases} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is } \delta_{\omega} \text{-continuous} \end{cases} \Rightarrow (\exists U \in O(X, x))(f[int(cl(U))] \subseteq int(\omega \text{-}cl(V))) \end{cases}$  $\Rightarrow (\exists U \in O(X, x))(f[U] = f[int(U)] \subseteq f[int(cl(U))] \subseteq int(\omega - cl(V))).$ 

**Remark 4.33.** Every weakly  $\delta_{\omega}$ -continuous need not be  $\delta_{\omega}$ -continuous as shown by the following example.

**Example 4.34.** Consider by Example 4.8,  $f: (\mathbb{N}, \tau) \to (\mathbb{N}, \tau)$  where  $\tau = \{\mathbb{N}, \emptyset, \{1\}\}$  and f(x) = x. It is clear that f is continuous. Also, fis weakly  $\delta_{\omega}$ -continuous from Theorem 4.27. However, f is not  $\delta_{\omega}$ -continuous as shown in Example 4.8.

**Theorem 4.35.** Let  $f: X \to Y$  be a function. If f is weakly  $\delta_{\omega}$ -continuous and X is locally indiscrete, then f is  $\delta_{\omega}$ -continuous.

*Proof.* Let  $x \in X$  and  $V \in O(Y, f(x))$ .

 $\begin{array}{c} (x \in X)(V \in O(Y, f(x))) \\ f \text{ is weakly } \delta_{\omega} \text{-continuous} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[U] \subseteq int(\omega \text{-}cl(V))) \\ X \text{ is locally indiscrete} \end{array} \right\} \Rightarrow (\exists U \in O(X, x))(f[int(cl(U))] \subseteq int(\omega \text{-}cl(V))). \quad \Box$ 

Corollary 4.36. We have the following diagram from definitions and results obtained above.

 $\rightarrow$  weakly  $\delta_{\omega}$ -continuous continuous weakly continuous  $\rightarrow$  $\nearrow$  $\nearrow$ 1  $\delta$ -continuous  $\delta_{\omega}$ -continuous  $\omega$ - $\delta$ -continuous

#### Acknowledgement

We would like to thank the anonymous reviewers for their careful reading of our manuscript and their insightful comments and suggestions.

#### References

- S. Al Ghour, Certain covering properties related to paracompactness, Ph.D. thesis, University of Jordan, Amman, Jordan, (1999).
   S. Al Ghour and B. Irshedat, The topology of θ<sub>ω</sub>-open sets, Filomat 31 (16) (2017), 5369-5377.
   S. Al Ghour and B. Irshedat, On θ<sub>ω</sub>-continuity, Heliyon, 6 (2) (2020).

- [4] H.H. Al-Jarrah, A. Al-Rawshdeh, E.M. Al-Saleh, K.Y. Al-Zoubi, Characterizations of  $R_{\omega}O(X)$  sets by using  $\delta_{\omega}$ -cluster points, Novi. Sad. J. Math., 2 (2019), 109-122.
- [5] K.Y. Al-Zoubi and B. Al-Nashef, The topology of  $\omega$ -open subsets, Al-Manarah Journal, 9 (2003), 169-179.
- [6] K.Y. Al-Zoubi, On generalized *ω*-open sets, Int. J. Math. Math. Sci., 13 (2005), 2011-2021.
  [7] C.W. Baker, Contra-open functions and contra-closed functions, Math. Today, 15 (1997), 19-24.
- [8] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Sci., 19 (1996), 303-310.
   [9] H.Z. Hdeib, ω-closed mappings, Rev. Colombiana Mat., 16 (1982), 65-78.
- [10] D.S. Jankovic, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles Ser. I, 97 (1983), 59-72.
- [11] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly. 68 (1961), 44-46.
- [12] T. Noiri, On  $\delta$ -continuous Functions, J. Korean Math. Soc. 16 (2) (1979), 161-166.
- [13] C.M. Pareek, Hereditarily Lindelöf and hereditarily almost Lindelöf spaces, Math. Japon. 30 (1985), 635-639
- [14] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-381.
- [15] N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2) (1968), 103-118.