
Konuralp Journal of Mathematics, 10 (1) (2022) 112-117

Konuralp Journal of Mathematics
Research Paper

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath
e-ISSN: 2147-625X

Characterizations of a Bertrand Curve According to Darboux
Vector
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Abstract

In this paper, we first take a Bertrand curve pair and then we use Darboux vector instead of mean curvature vector to give characterizations of
Bertrand partner curve by means of the Bertrand curve. By making use of the relations between the Frenet frames of the Bertrand curve pair
we give the differential equations and sufficient conditions of harmonicity(biharmonic curve or 1-type of harmonic curve) for the Bertrand
partner curve in terms of the Darboux vector of the Bertrand curve. We get some new results and finally we write an example to demonstrate
how our assumptions come true.
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1. Introduction and Preliminaries

In geometry one of the most commonly used fact is that we can constitute a relations between the invariants and general features of a curve.
As one of the widely known exemplification revealing this relation is the Bertrand curve pair. We show that all characterizations of the
Bertrand partner curve can be given in terms of the Darboux vector of Bertrand curve. In this way we give the harmonicity conditions
of Bertrand partner curve by means of the Darboux vector of Bertrand curve. Referring this formula we also give differential equations
representing the Bertrand partner curve through the main curve. By this method, we obtain ordinary differential equations. Also this method
made it easier for us to interpret the harmonicity of the Bertrand partner curve. Now we may cite some remarkable works drawing our
attention. We may make classification of biharmonic curves [1]. By this paper we recognize that some curves may be called as biharmonic
curve while some of them are 1-type of harmonic. Among so many works we apply as a tool only some of them: Senyurt and Cakir [2]
point out a method to classify a given curve by means of an another curve.Kocayigit et al.[3] study 1-type of harmonic curves by using
the Darboux vector of the curve itself. Senyurt and Cakir [4] study biharmonic curves whose mean curvature vector field is the kernel of
Laplacian. Also they give the differential equations of a curve according to unit Darboux vector of the given curve [5]. Now we may review
some basic concepts of differential geometry. We can give the Frenet formulas as, [7]

T ′ = ϑκN, N′ =−ϑκT +ϑτB, B′ =−ϑτN. (1.1)

Every Frenet frame moves along an axis which is called a Darboux vector and it is given by, [6]

W = τT +κB. (1.2)

Given that α is a differentiable curve with the principal normal N and γ is another differentiable curve. If α and γ have the common principal
normal at their corresponding points then α is called a Bertrand curve and γ is called the Bertrand partner of α. In this way (α,γ) is called
the Bertrand curve pair. It is obvious from this statement, [7]

γ(t) = α(t)+λ (t)N(t), λ (t) ∈ R. (1.3)

The ordered pair (α,γ) forms a Bertrand couple if and only if λκ +µτ = 1 where λ , µ ∈ R. The relation between the Frenet frames of α

and γ is

Tγ = cosθT + sinθB, Nγ = N, Bγ =−sinθT + cosθB (1.4)
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provided cosθ =< Tγ ,T >. The relationship between the curvatures of α and γ is

κγ (t) =
λκ− sin2θ

λ (1−λκ)
, τγ (t) =

1
λ 2τ

sin2
θ · (1.5)

When we take the eq.(1.2) and eq.(1.4) into consideration, we have another relation between the Darboux vectors of α and γ as follows, [8]

Wγ =
1

τ
√

λ 2 +µ2
W (1.6)

provided that θγ = arctan( 1
µκ−λτ

), shown in Fig.1.

Figure 1.1: (α ,γ) Bertrand curve pairs with Darboux vectors

Laplace operator can be defined as the following mapping, [3]

∆ : χ
⊥(α(I))→ χ(α(I)) such that ∆H =−D2

T H (1.7)

where H is the mean curvature vector and D is Levi-Civita connection along a curve.

Theorem 1.1. [3] Let α be a regular curve with the Darboux vector W. We have the following propositions.

i)If ∆W = 0 then α is called a biharmonic curve.

ii)If ∆W = λW then α is called a 1-type of harmonic curve, λ ∈ R.

Theorem 1.2. [9] Let (α,β ) be a Bertrand curve pair. Then the covariants derivatives of α with respect to B is given as in

DBT =
(1− cosθ

sinθ

)
κN,

DBN = −
(1− cosθ

sinθ

)
κT +

(1− cosθ

sinθ

)
τB, (1.8)

DBB = −
(1− cosθ

sinθ

)
τN.

2. Discussions and Result

Throughout the present paper we use the set {T, N, B, κ, τ,W} to express the Frenet apparatus of the Bertrand curve α and also the set {Tγ , Nγ , Bγ , κγ , τγ ,Wγ}
for the Frenet elements of the Bertrand partner curve γ with the norm ϑ =‖ γ ′(s) ‖.

Theorem 2.1. Let (α,γ) be a Bertrand curve pair and γ be the partner curve with Darboux vector Wγ . Differential equation characterizing the curve γ with
respect to connection is given by

cγ1D3
Tγ

Wγ + cγ2D2
Tγ

Wγ + cγ3DTγ
Wγ + cγ4Wγ = 0

with the coefficients cγ1, cγ2, cγ3 and cγ4 as

cγ1 = ϑ

(
κγ τ

′
γ −κ

′
γ τγ

)2
,

cγ2 =
(

ϑκ
′′
γ τγ −ϑκγ τ

′′
γ −

(
ϑκγ τ

′
γ −ϑκ

′
γ τγ

)′)(
κγ τ

′
γ −κ

′
γ τγ

)
,

cγ3 =
(

κ
′′′
γ τγ −κγ τ

′′′
γ +ϑ

2(
κγ τ

′
γ −κ

′
γ τγ

)(
κ

2
γ + τ

2
γ

))(
ϑκγ τ

′
γ −ϑκ

′
γ τγ

)
+
(

ϑκ
′′
γ τγ −ϑκγ τ

′′
γ −

(
ϑκγ τ

′
γ −ϑκ

′
γ τγ

)′)(
κ
′′
γ τγ −κγ τ

′′
γ

)
,

cγ4 =
(

κ
′
γ τ
′′′
γ −κ

′′′
γ τ
′
γ −ϑ

2(
κγ κ

′
γ + τγ τ

′
γ

)(
κγ τ

′
γ −κ

′
γ τγ

))(
ϑκγ τ

′
γ −ϑκ

′
γ τγ

)
+
(

ϑκ
′′
γ τγ −ϑκγ τ

′′
γ −

(
ϑκγ τ

′
γ −ϑκ

′
γ τγ

)′(
κ
′
γ τ
′′
γ −κ

′′
γ τ
′
γ

))
.
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Proof. From the definition of Darboux vector we have

Wγ = τγ Tγ +κγ Bγ . (2.1)

Covariant derivatives of this vector with respect to Tγ are

DTγ
Wγ = τ

′
γ Tγ +κ

′
γ Bγ , (2.2)

D2
Tγ

Wγ = τ
′′
γ Tγ +

(
ϑκγ τ

′
γ −ϑκ

′
γ τγ

)
Nγ +κ

′′
γ Bγ , (2.3)

D3
Tγ

Wγ =
(

τ
′′′
γ −ϑ

2
κγ

(
κγ τ

′
γ −κ

′
γ τγ

))
Tγ +

(
ϑκγ τ

′′
γ −ϑκ

′′
γ τγ +

(
ϑκγ τ

′
γ −ϑκ

′
γ τγ

)′)Nγ +
(

ϑ
2
τγ

(
κγ τ

′
γ −κ

′
γ τγ

)
+κ

′′′
γ

)
Bγ . (2.4)

From eq.(2.1) and eq.(2.2) we write Tγ and Bγ as follows

Tγ =
κγ

κγ τ ′γ −κ ′γ τγ

DTγ
Wγ −

κ ′γ
κγ τ ′γ −κ ′γ τγ

Wγ and Bγ =
−τγ

κγ τ ′γ −κ ′γ τγ

DTγ
Wγ +

τ ′γ
κγ τ ′γ −κ ′γ τγ

Wγ .

Setting these vectors into eq.(2.3) we get Nγ as

Nγ =
1

ϑ
(
κγ τ ′γ −κ ′γ τγ

)D2
Tγ

Wγ +
κ ′′γ τγ −κγ τ ′′γ

ϑ
(
κγ τ ′γ −κ ′γ τγ

)2 DTγ
Wγ +

κ ′γ τ ′′γ −κ ′′γ τ ′γ

ϑ
(
κγ τ ′γ −κ ′γ τγ

)2 Wγ .

Putting the equivalents of Tγ , Nγ and Bγ into eq.(2.4) we obtain

D3
Tγ

Wγ =
((

ϑκγ τ
′′
γ −ϑκ

′′
γ τγ +(ϑκγ τ

′
γ −ϑκ

′
γ τγ )

′) 1
ϑκγ τ ′γ −ϑκ ′γ τγ

)
D2

Tγ
Wγ +

((
κγ τ

′′′
γ −κ

′′′
γ τγ −ϑ

2(κγ τ
′
γ −κ

′
γ τγ )(κ

2
γ + τ

2
γ )
) 1

κγ τ ′γ −κ ′γ τγ

+
(
ϑκγ τ

′′
γ −ϑκ

′′
γ τγ +(ϑκγ τ

′
γ −ϑκ

′
γ τγ )

′) κ ′′γ τγ −κγ τ ′′γ
ϑ(κγ τ ′γ −κ ′γ τγ )2

)
DTγ

Wγ +
((

κ
′′′
γ τ
′
γ −κ

′
γ τ
′′′
γ +ϑ

2(κγ κ
′
γ + τγ τ

′
γ )(κγ τ

′
γ −κ

′
γ τγ )

) 1
κγ τ ′γ −κ ′γ τγ

+
(
ϑκγ τ

′′
γ −ϑκ

′′
γ τγ +(ϑκγ τ

′
γ −ϑκ

′
γ τγ )

′) κ ′γ τ ′′γ −κ ′′γ τ ′γ
ϑ(κγ τ ′γ −κ ′γ τγ )2

)
Wγ .

Finally we arrange the linear union of D3
Tγ

Wγ , D2
Tγ

Wγ , DTγ
Wγ , Wγ with the coefficients cγ1, cγ2, cγ3, cγ4 and this completes the proof.

Theorem 2.2. Let (α,γ) be a Bertrand curve pair. Then the differential equation characterizing the curve γ in terms of α with respect to connection can be
given

ω1D3
BW +ω2D2

BW +ω3DBW +ω4W = 0

with the coefficients ω1, ω2, ω3, ω4 as

ω1 = c1
sin2θ

(
cosθ + sinθ

)
τ
√

λ 2 +µ2
,

ω2 = c1
3sin2θ

(
cosθ + sinθ

)√
λ 2 +µ2

( 1
τ

)′
+ c2

sinθ(cosθ + sinθ)

τ
√

λ 2 +µ2
+

ρ3cosθ

(1− sinθ)(κτ ′−κ ′τ)
,

ω3 = ρ1 +
ρ2κ−ρ4τ

κτ ′−κ ′τ
+

ρ3(κτ ′′−κ ′′τ)cosθ

(sinθ −1)(κτ ′−κ ′τ)2 ,

ω4 =
ρ4τ ′−ρ2κ ′

κτ ′−κ ′τ
+

ρ3(κ
′′τ ′−κ ′τ ′′)cosθ

(sinθ −1)(κτ ′−κ ′τ)2 ,

ρ1 = c1
sinθ

(
2sin2θ +2sin2θ +1

)√
λ 2 +µ2

( 1
τ

)′′
+ c2

2sinθ(cosθ + sinθ)√
λ 2 +µ2

(
1
τ
)′+ c3

cosθ + sinθ

τ
√

λ 2 +µ2
,
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ρ2 = c1
sinθ

(
1+ sin2θ

)
τ√

λ 2 +µ2

( 1
τ

)′′′
+ c2

(cosθ + sinθ)2τ√
λ 2 +µ2

(
1
τ
)′′− c3

cosθ + sinθ√
λ 2 +µ2

(
τ ′

τ
)

+c1
( cosθ + sinθ√

λ 2 +µ2

)(( τ ′′

τ

)′sinθcosθ + cosθ
(
cosθ −1

)(
κτ
′−κ

′
τ
)(κτ +κ

τ

)
−
(
(

τ ′

τ
)2)′sin2θ + cosθ

(
cosθ + sinθ

)(
(

1
τ
)′′τ
)′
+ cosθ

(
cosθ + sinθ

)( τ ′′τ−2(τ ′)2

τ2

)′
−
(κ

τ

)
cos2

θ
(
κτ
′−κ

′
τ
))

+ c2
cosθ(cosθ + sinθ)

τ2
√

λ 2 +µ2

(
τ
′′
τ−2(τ ′)2)+ c4√

λ 2 +µ2
,

ρ3 = c1
( cosθ + sinθ√

λ 2 +µ2

)((κτ ′′

τ

)
cosθsinθ + cosθ

(
1− cosθ

)((
κτ
′−κ

′
τ
)′

+
( κ

τ2

)(
τ
′′
τ−2(τ ′)2)+ 2κ ′τ ′−κ ′′τ

τ

)
+
(κ ′τ ′

τ

)
sin2θ −

(
κ
′′
τ
)
cosθsinθ

−κ
( τ ′

τ

)2sin2θ +
( κ

τ2

)(
τ
′′
τ−2(τ ′)2)cos2

θ

+cosθ
(
cosθ + sinθ

)(κτ ′−κ ′τ

τ

)′− cos2
θ
(κ ′′τ−2κ ′τ ′

τ

))
+ c2

cosθ(cosθ + sinθ)

τ
√

λ 2 +µ2

(
κτ
′−κ

′
τ
)
,

ρ4 = c1
sinθ

(
1+ sin2θ

)
κ√

λ 2 +µ2

( 1
τ

)′′′
+ c2

(cosθ + sinθ)2κ√
λ 2 +µ2

(
1
τ
)′′− c3

cosθ + sinθ√
λ 2 +µ2

(
κτ ′

τ2 )

+
κc4

τ
√

λ 2 +µ2
+ c1

( cosθ + sinθ√
λ 2 +µ2

)((
κτ
′−κ

′
τ
)(

cosθ + τ(cosθ − cos2
θ)
)

+κ
′′′sinθcosθ −

(κ ′τ ′

τ2

)′sin2θ + cosθ
(
cosθ + sinθ

)((
(

1
τ
)′′κ
)′
+
(κ ′′τ−2κ ′τ ′

τ2

)′))
+c2

cosθ(cosθ + sinθ)

τ2
√

λ 2 +µ2

(
κ
′′
τ−2κ

′
τ
′)

and c1, c2, c3, c4

c1 = τ

√
λ 2 +µ2

( sin2θ

λ 2τ

)2
(

λκ− sin2θ

λ µ

( 1
τ

)′− (λκ− sin2θ

λ µτ

)′)2

,

c2 =

(√
λ 2 +µ2

λ 2 sin2
θ

((λκ− sin2θ

λ µτ

)′′− (λκ− sin2θ

λ µ

)( 1
τ

)′′)−(√λ 2 +µ2

λ 2 sin2
θ
(λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′)′)

(( sin2θ

λ 2τ

)((λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′))
,

c3 =

(( sin2θ

λ 2τ

)((λκ− sin2θ

λ µτ

)′′′− (λκ− sin2θ

λ µ

)( 1
τ

)′′′)
+ τ
(
λ

2 +µ
2)( sin2θ

λ 2

)

((λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′)((λκ− sin2θ

λ µτ

)2
+
( sin2θ

λ 2τ

)2
))

(√
λ 2 +µ2

λ 2 sin2
θ

((λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′))
+

(√
λ 2 +µ2

λ 2 sin2
θ

((λκ− sin2θ

λ µτ

)′′− (λκ− sin2θ

λ µ

)( 1
τ

)′′)

−
(√

λ 2 +µ2

λ 2 sin2
θ
((λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′))′)(( sin2θ

λ 2τ

)((λκ− sin2θ

λ µτ

)′′− (λκ− sin2θ

λ µ

)( 1
τ

)′′))
,
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c4 =

(( sin2θ

λ 2

)((λκ− sin2θ

λ µτ

)′( 1
τ

)′′′− (λκ− sin2θ

λ µτ

)′′′( 1
τ

)′)− (λ 2 +µ
2)((λκ− sin2θ

λ µ

)(λκ− sin2θ

λ µτ

)′
+
( sin2θ

λ 2

)2( 1
τ

)′)

( sin2θ

λ 2

)((λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′))(√λ 2 +µ2

λ 2 sin2
θ

((λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′))

+

(√
λ 2 +µ2

λ 2 sin2
θ

((λκ− sin2θ

λ µτ

)′′− (λκ− sin2θ

λ µ

)( 1
τ

)′′)−(√λ 2 +µ2

λ 2 sin2
θ

((λκ− sin2θ

λ µ

)( 1
τ

)′− (λκ− sin2θ

λ µτ

)′))′

sin2θ

λ 2

((λκ− sin2θ

λ µτ

)′( 1
τ

)′′− (λκ− sin2θ

λ µτ

)′′( 1
τ

)′))
.

Proof. By making use of eq.(1.6), we can write the vector Wγ of eq.(2.1) in terms of the Bertrand curve α as

Wγ =
1

τ
√

λ 2 +µ2
W.

Applying the eq.(1.8) we evaluate the first derivative of this vector with respect to Tγ

DTγ
Wγ = D(

cosθT+sinθB
)( 1

τ
√

λ 2 +µ2
W
)

= cosθDT
( 1

τ
√

λ 2 +µ2
W
)
+ sinθDB

( 1

τ
√

λ 2 +µ2
W
)

=
( cosθ + sinθ

τ
√

λ 2 +µ2

)
DBW +

( cosθ + sinθ√
λ 2 +µ2

(
1
τ
)′
)

W

and the second derivative of Wγ as

D2
Tγ

Wγ =
sinθ(cosθ + sinθ)

τ
√

λ 2 +µ2
D2

BW +
2sinθ(cosθ + sinθ)√

λ 2 +µ2
(

1
τ
)′DBW +

(cosθ + sinθ)2√
λ 2 +µ2

(
1
τ
)′′W +

cosθ(cosθ + sinθ)

τ2
√

λ 2 +µ2

(
τ
′′
τ−2(τ ′)2)T

+
cosθ(cosθ + sinθ)

τ
√

λ 2 +µ2

(
κτ
′−κ

′
τ
)
N +

cosθ(cosθ + sinθ)

τ2
√

λ 2 +µ2

(
κ
′′
τ−2κ

′
τ
′)B.

(2.5)

By the similar method we obtain the third derivative of Wγ as follows

D3
Tγ

Wγ =
sin2θ

(
cosθ + sinθ

)
τ
√

λ 2 +µ2
D3

BW +
3sin2θ

(
cosθ + sinθ

)√
λ 2 +µ2

( 1
τ

)′D2
BW +

sinθ
(
2sin2θ +2sin2θ +1

)√
λ 2 +µ2

( 1
τ

)′′DBW +
sinθ

(
1+ sin2θ

)√
λ 2 +µ2

( 1
τ

)′′′W

+
( cosθ + sinθ√

λ 2 +µ2

)(( τ ′′

τ

)′sinθcosθ + cosθ
(
cosθ −1

)(
κτ
′−κ

′
τ
)(κτ +κ

τ

)
−
(
(

τ ′

τ
)2)′sin2θ + cosθ

(
cosθ + sinθ

)(
(

1
τ
)′′τ
)′

+cosθ
(
cosθ + sinθ

)( τ ′′τ−2(τ ′)2

τ2

)′− (κ

τ

)
cos2

θ
(
κτ
′−κ

′
τ
))

T +
( cosθ + sinθ√

λ 2 +µ2

)((κτ ′′

τ

)
cosθsinθ + cosθ

(
1− cosθ

)((
κτ
′−κ

′
τ
)′

+
( κ

τ2

)(
τ
′′
τ−2(τ ′)2)+ 2κ ′τ ′−κ ′′τ

τ

)
+
(κ ′τ ′

τ

)
sin2θ −

(
κ
′′
τ
)
cosθsinθ −κ

( τ ′

τ

)2sin2θ +
( κ

τ2

)(
τ
′′
τ−2(τ ′)2)cos2

θ

+cosθ
(
cosθ + sinθ

)(κτ ′−κ ′τ

τ

)′− cos2
θ
(κ ′′τ−2κ ′τ ′

τ

))
N +

( cosθ + sinθ√
λ 2 +µ2

)((
κτ
′−κ

′
τ
)(

cosθ + τ(cosθ − cos2
θ)
)
+κ

′′′sinθcosθ

−
(κ ′τ ′

τ2

)′sin2θ + cosθ
(
cosθ + sinθ

)((
(

1
τ
)′′κ
)′
+
(κ ′′τ−2κ ′τ ′

τ2

)′))B.

Now we may express the Frenet vectors T, N, B of the covariant derivatives DTγ
Wγ D2

Tγ
Wγ and D3

Tγ
Wγ in terms of W. In order to do this we use Frenet

formulae given in eq.(1.8). From the equalities

W = τT +κB and DBW = τ
′T +κ

′B

we can write the vectors T and B as

T =
(

κ

κτ ′−κ ′τ

)
DBW −

(
κ ′

κτ ′−κ ′τ

)
W and B =

( −τ

κτ ′−κ ′τ

)
DBW +

(
τ ′

κτ ′−κ ′τ

)
W.
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Putting these vectors into the second derivative of W given above, we write the vector N as follows

N =
( cosθ

(1− sinθ)(κτ ′−κ ′τ)

)
D2

BW +
( cosθ(κτ ′′−κ ′′τ)

(sinθ −1)(κτ ′−κ ′τ)2

)
DBW +

( cosθ(κ ′′τ ′−κ ′τ ′′)

(sinθ −1)(κτ ′−κ ′τ)2

)
W.

It remains only to find out the counterparts of the coefficients cγ1, cγ2, cγ3, cγ4 of the eq.(2.1). Applying the eq.(1.5) we can write the equivalent of these
coefficients c1, c2, c3, c4 as given above.
Finally we rearrange the linear combination of derivatives D3

Tγ
Wγ , D2

Tγ
Wγ , DTγ

Wγ and then put their coefficients computed above gives us the desired
differential equation.

Corollary 2.3. Suppose that (α,γ) be a Bertrand curve pair with the angle θ between the vectors Tγ and T . According to Levi-Civita connection, Bertrand
partner curve γ is biharmonic curve if and only if tanθ =−1.

Proof. From eq.(1.7), Laplace image of the vector Wγ is ∆Wγ =−D2
Tγ

W
γ

and from eq.(2.5) we get

∆Wγ = − sinθ(cosθ + sinθ)

τ
√

λ 2 +µ2
D2

BW − 2sinθ(cosθ + sinθ)√
λ 2 +µ2

(
1
τ
)′DBW − (cosθ + sinθ)2√

λ 2 +µ2
(

1
τ
)′′W − cosθ(cosθ + sinθ)

τ2
√

λ 2 +µ2

(
τ
′′
τ−2(τ ′)2)T

− cosθ(cosθ + sinθ)

τ
√

λ 2 +µ2

(
κτ
′−κ

′
τ
)
N− cosθ(cosθ + sinθ)

τ2
√

λ 2 +µ2

(
κ
′′
τ−2κ

′
τ
′)B.

Considering the case ∆Wγ = 0 of the Theorem 1.1, we obtain that cosθ + sinθ = 0, that is, tanθ =−1.

Example 2.4. Given that (α,γ) be a Bertrand curve pair and suppose that the Bertrand curve α with the curvatures κ and τ is satisfying the condition

λ =
( τ

κ
)′

( κ2+τ2

τ
)′

and µ =
( κ2+τ2

τ
)′− ( κ

τ
)′κ

( κ2+τ2

τ
)′τ

.

Then the differential equations of γ can be evaluated as

1. According to Theorem 2.1:

ϑ

((
κγ

)′′
τγ −κγ

(
τγ

)′′)2
DTγ

Wγ +ϑ

((
κγ

)′′
τγ −κγ

(
τγ

)′′)Wγ = 0.

2. According to Theorem 2.2: (( µκ−λτ

τ
√

λ 2 +µ2

)′′ 1

τ
√

λ 2 +µ2
− µκ−λτ

τ
√

λ 2 +µ2

( 1

τ
√

λ 2 +µ2

)′′)2( cosθ + sinθ√
λ 2 +µ2

)
DBW

+

((( µκ−λτ

τ
√

λ 2 +µ2

)′′ 1

τ
√

λ 2 +µ2
− µκ−λτ

τ
√

λ 2 +µ2

( 1

τ
√

λ 2 +µ2

)′′)2( cosθ + sinθ√
λ 2 +µ2

)
(
−τ ′

τ
)

+
(( µκ−λτ

τ
√

λ 2 +µ2

)′′ 1
τ(λ 2 +µ2)3/2 −

µκ−λτ

τ(λ 2 +µ2)3/2

( 1

τ
√

λ 2 +µ2

)′′))W = 0.

Conclusion: By making use of Darboux vector instead of mean curvature vector we give all characterizations of Bertrand partner curve in terms of the
Bertrand curve. Thanks to this method we get elementary differential equations and also this method made it easier for us to comment the harmonicity of the
Bertrand partner curve. We hope that this paper inspire the geometers to make similar scientific studies in non-Euclidean spaces.
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[8] S. enyurt S., Kılıçoĝlu Ş., An examination on helix as involute, Bertrand mate and Mannheim partner of any curve α in E3, Bulletin of Mathematical

Analysis and Applications, 9(2) (2017), p. 24–29.
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