
Konuralp Journal of Mathematics, 10 (1) (2022) 34-39

Konuralp Journal of Mathematics
Research Paper

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath
e-ISSN: 2147-625X

The Foundations of Homotopic Fuzzy Sets
Mustafa Burç Kandemir1
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Abstract

Fuzzy sets are determined by membership functions. Many methods have been developed when determining the membership function of
a fuzzy set. However, a fuzzy set can be specified with more than one membership function. Therefore, the membership function fitting
problem is a well-known problem in fuzzy set theory. In this article, we have introduced the concepts of topologically continuous fuzzy set
and homotopic fuzzy set whose membership functions are topologically continuous and homotopic, using the basic concepts of topology to
overcome this problem. We have studied its basic structural properties. Finally, we proposed a solution method to the membership function
fitting problem in fuzzy set theory using the homotopic fuzzy set concept.
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1. Introduction

In the classic paper [21], Zadeh introduced the notion of fuzzy sets and fuzzy set operations. A fuzzy set A in X is characterized by a
membership function µA which associates with each point x ∈ X its “grade of membership” µA(x)∈ I where I = [0,1] is a unit interval. Many
scientists have worked its theory in this area for modeling uncertainties. However, there has been an existing problem since the establishment
of the fuzzy set theory. This problem is that the membership functions that characterize a fuzzy set is not unique. For instance, we can

describe a fuzzy set A on the real number set R as “real numbers close to 0”. A membership function of it can be defined by µA(x) =
1

1+ x2 .

But we can also define another membership function for given the fuzzy set A as µA(x) =
1

1+ x4 . More generally, µA(x) =
1

1+ x2n for each

n ∈ N. This means that we can express a fuzzy set defined on the set of real numbers R with infinitely different functions. This, in fact,
is one of the biggest problems in fuzzy set theory. For this reason, it is not interested in the membership function of the fuzzy set which
model the problem. So in theory, it has been studied with fuzzy sets whose membership functions are determined. Of course, some special
membership functions have been devised for fuzzy sets, especially on the set of real numbers such as triangular, trapezoidal, bell curvilinear,
Gaussian, sigmoidal etc. Properties of related fuzzy sets have been examined with these functions. However, these types of membership
functions still represent the same fuzzy set.
Many scientists have developed various membership function fitting methods to model fuzzy situations in practice. In [1, 2, 5, 7, 8, 20], they
demonstrated the experimental construction of membership functions according to the relevant problem. Methods of creating membership
degrees with various ways have been given in [6, 10, 12, 13, 14, 17, 18, 19]. Triangular and trapezoidal membership functions which are
special membership functions are examined in detail in [16]. Measurement theory is often used to relate problems to the real environment, to
model fuzzy situations and to make up a membership function. Examples of this situation can be given as [12, 13, 14]. In [3], the author gave
an overview of the different kinds of mathematical forms of the membership functions, it is extracted the different demands and determined
the rational class of the membership functions. In [23], emphasizing that there are many speculations about determining the membership
function in fuzzy set theory, experimental method of determining membership function is given. When the literature is analyzed in general
terms, it is clear that many scientists use an experimental method to adapt the membership function, and of course, the uniqueness of the
membership function remains a major problem.
We will try to overcome the problem mentioned above using topology in this paper. We know that topology is the major mathematical area
which study properties of spaces that are preserved under deformations, twistings, and stretching objects. We do these with homotopy in
topology. The concept of homotopy is defined as two mathematical objects can be continuously deformed with each other.
In this work, we will first give the definition of a continuous fuzzy set in the topological sense, and study their basic properties. We will
then give the concept of homotopicity of the two fuzzy sets defined on the topological universe. Hence, we shall state that the membership
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function of a continuous fuzzy set defined on topological space is topologically unique. It is important to note that the given definitions are
not to bring a new definition to the known fuzzy set definition, but to define specific fuzzy sets on a topological space.

2. Preliminaries

2.1. Basic Concepts in Fuzzy Sets

Let X be a set and I be the unit interval [0,1]. A fuzzy set defined as follows;

Definition 2.1.1. [21] A fuzzy set A in X is defined by a membership function µA : X → I whose membership value µA(x) specifies the
degree to which x ∈ X belongs to the fuzzy set A, for x ∈ X.

The family of all fuzzy sets in X will denote by F (X). If A,B ∈F (X) then some basic fuzzy set operations are given componentwise
proposed by Zadeh [21] as follows:

1) A⊆ B⇔ µA(x)≤ µB(x), for all x ∈ X .
2) A = B⇔ µA(x) = µB(x), for all x ∈ X .
3) C = A∪B⇔ µC(x) = max{µA(x),µB(x)}, for all x ∈ X .
4) D = A∩B⇔ µD(x) = min{µA(x),µB(x)}, for all x ∈ X .
5) E = Ac⇔ µE(x) = 1−µA(x), for all x ∈ X .

More generally, for a family of fuzzy sets A = {A j | j ∈ J}, the union, C =
⋃

j∈J A j, and the intersection, D =
⋂

j∈J A j , are defined by

µC(x) = max
j∈J

µA j (x)

and
µD(x) = min

j∈J
µA j (x)

for all x ∈ X , respectively [21, 22].
A fuzzy set A ∈F (X) is called null fuzzy set if µA(x) = 0 for all x ∈ X , and denoted by ∅̃. A fuzzy set B is called universal fuzzy set if
µB(x) = 1 for all x ∈ X , and denoted by X̃ [21, 22].
Let X and Y be sets, and let f : X → Y be a function. For a fuzzy set A in Y , the inverse image of A under f is the fuzzy set f−1[A] in X by
the rule

µ f−1[A](x) = µA( f (x)) (2.1)

for all x ∈ X , i.e. µ f−1[A] = µA ◦ f .
For a fuzzy set A in X , the image of A under f is the fuzzy set f [A] in Y , and its membership function is defined by

µ f [A](y) =
{

maxx∈ f−1[{y}] µA(x) , if f−1[{y}] 6=∅
0 , if f−1[{y}] =∅

(2.2)

in [4, 21, 22].
Let A ∈ F (X). For α ∈ [0,1], we call that αA is an α-layer of A which is a fuzzy set on X such that its membership function is
µαA(x) = α ∧µA(x) for each x ∈ X [9].
The Cartesian product of two fuzzy sets A and B on any given set X is denoted by A⊗B and its membership function is defined by
µA⊗B(x,y) = min{µA(x),µB(y)} for each (x,y) ∈ X×X [4, 22].

2.2. Basic Topological Concepts

The concept of topology is considered as a generalization of the structure of Euclidean space and the continuous functions between these
spaces. The definition of topology is given as follows:
Let X be a set, P(X) be the power set of X and T be a subfamily of P(X). If T satisfies the following conditions, T is called topology
on X .

(1) ∅ and X are in T .
(2) If U and V are in T , then their intersection U ∩V is in T .
(3) If T ′ is any subfamily of T , then

⋃
T ′ is in T .

If T is a topology on X , then we call that the pair (X ,T ) is topological space. Each element of T is called an open set, and the subset
K ⊆ X is called closed set, if its complement is open [11, 15].
As is known, in topology, two continuous functions from one topological space to another are called homotopic if one can be “continuously
deformed” into the other, such a deformation being called a homotopy between the two functions. Formal definitions of continuity and
homotopy is as follows.

Definition 2.2.1. [15, 11] Let (X ,T ) and (Y,T ′) be topological spaces. A function f : X → Y is continuous at a point a in X provided that
for each neighborhood V of f (a) there is neighborhood U of a such that f (U)⊆V . A function f from X to Y is continuous provided it is
continuous at each point of X.

Note that, f is continuous if and only if V ∈T ′⇒ f−1(V ) ∈T .
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Definition 2.2.2. [15, 11] Let X be set, Λ be an index set, (Yi,Ti) be a indexed family of topological spaces and fi : X → Yi be an indexed
family of functions indexed by Λ. We call that the topology T generated by the family

S = { f−1
i (U) | i ∈ Λ,U ∈Ti} ⊆P(X)

is initial topology on X with respect to { fi}i∈Λ.

Definition 2.2.3. [15, 11] Let (X ,T ) and (Y,T ′) be topological spaces and let f ,g : X → Y be continuous functions. Then f is homotopic
to g, denoted by f ' g, if there is a continuous function H : X × I → Y such that H(x,0) = f (x) and H(x,1) = g(x) for all x ∈ X. The
function H is called a homotopy between f and g.

Definition 2.2.4. [15, 11] A continuous function f : X → Y between topological spaces is said to be null-homotopic if it is homotopic to
constant function from X to Y .

We know that, ' is an equivalence relation on C(X ,Y ) which is the collection of continuous functions that map X into Y .

3. Results

In this section, firstly we will define a continuous fuzzy set in the object space (X ,T ) in topological sense. Then we will try to explain
homotopic fuzzy sets. From now on this paper X denotes (X ,T ) topological space, I denotes the relative topology for [0,1] of usual topology
of R.

3.1. Topologically Continuous Fuzzy Sets

Definition 3.1.1. Let A be a fuzzy set in X. Then A is called topologically continuous fuzzy set (or breifly c-fuzzy set) if and only if its
membership function µA is continuous from X to I, i.e. µ

−1
A (O) ∈T for all open set O in I.

Example 3.1.2. Let X = R and T be usual topology on R. Let A be a fuzzy set in R and its membership function µA : R→ I defined as

µA(x) =
|x|
|x|+1

for all x ∈ R. Since µA is continuous, then A is a c-fuzzy set on R.

Since all type of membership functions on R such as triangular, trapezoidal, bell curvilinear, Gaussian, sigmoidal are continuous, related
fuzzy sets are c-fuzzy set on R.

Example 3.1.3. Let X = {a,b,c} and T = {∅,X ,{a},{b,c}} be topology on X. Let A be a fuzzy set on X such that µA(a) = 0.4, µA(b) = 1
and µA(c) = 1. Since

µ
−1
A [(α,β )] =


∅ ,0≤ α < β ≤ 0.4
{a} ,α < 0.4 < β < 1
∅ ,0.4 < α < β < 1
{b,c} ,0.4 < α,β = 1

∈T

for arbitrary open basic set (α,β ) in I, A is a c-fuzzy set on X.

Theorem 3.1.4. Null and universal fuzzy sets on an topological space are c-fuzzy sets.

Proof. Since the memberships functions of null and universal fuzzy sets are constant function, and constant functions are continuous, then
null and universal fuzzy sets are c-fuzzy sets.

Theorem 3.1.5. Let A and B be c-fuzzy sets and {Ai}i∈I be family of c-fuzzy sets in X. Then A∪B, A∩B and Ac are also c-fuzzy sets in X.

Proof. If A and B c-fuzzy sets, then µA,µB : X → I are continuous functions. At that case, for any open set O in I, we obtain that

µ
−1
A∪B[O] = {x ∈ X | µA∪B(x) ∈ O}

= {x ∈ X | max{µA(x),µB(x)} ∈ O}.

Since I is a total ordered set, either µA(x)≤ µB(x) or µB(x)≤ µA(x). Therefore, if we assume that µA(x)≤ µB(x), then µ
−1
A∪B[O] = µ

−1
B [O]

is open set in X . It is also valid for µB(x)≤ µA(x), i.e. we have µ
−1
A∪B[O] = µ

−1
A [O]. Thus µA∪B is continuous, hence A∪B is a c-fuzzy set

on X .
In addition to this, assume that A is a c-fuzzy set in X . Let (α,β ) be an open basic set in I. We know that α,β ∈ I and α < β implies
1−β ≤ 1−α . Then, we have

µ
−1
Ac [(α,β )] = {x ∈ X | µAc(x) ∈ (α,β )}

= {x ∈ X | 1−µA(x) ∈ (α,β )}
= {x ∈ X | µA(x) ∈ (1−β ,1−α)}
= µ

−1
A [(1−β ,1−α)] ∈T .

So Ac is a c-fuzzy set.
Proof of other expressions is made in a similar way.

Theorem 3.1.6. If A be a c-fuzzy set, then its α-layer αA is also c-fuzzy set for α ∈ [0,1].

Proof. It is straightforward.
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Theorem 3.1.7. Let B be a c-fuzzy set in Y and f be a continuous function from X to Y . f−1[B] is a c-fuzzy set on X.

Proof. Let B be a c-fuzzy set in Y . For all x ∈ X , we have that µ f−1[B](x) = (µB ◦ f )(x) from Equation (2.1). Assume that O be an open set
in I. Since µB and f are continuous function, then we obtain that

µ
−1
f−1[B][O] = (µB ◦ f )−1[O] ∈T .

Hence f−1[B] is a c-fuzzy set in X .

Theorem 3.1.8. If A and B are c-fuzzy set on X, then A×B is a c-fuzzy set on X×X.

Proof. Similar to proof of Theorem 3.1.5.

Theorem 3.1.9. If A is a c-fuzzy set in the topological space X, then s(A) is an open set in the space X.

Proof. Assume that A is a c-fuzzy set. Then the membership function µA : X → I is continuous. We know that (0,1] is an open set in the
space I. So, the inverse image of (0,1] under µA is

µ
−1
A [(0,1]] = {x ∈ X | µA(x) ∈ (0,1]}= {x ∈ X | µA(x)> 0}= s(A).

Since µA is continuous, then s(A) is an open set in X .

Similar to Theorem 3.1.9, for each α ∈ [0,1), if A is a c-fuzzy set then its strong level sets

A>α = {x ∈ X | µA(x)> α}

and
A<α = {x ∈ X | µA(x)< α}

are open sets in the topological space X .
Let X be a non-empty set and A be a fuzzy set on X . We can construct a topology on X by using the membership function of A and the
relative topology of [0,1]. Using the concept of initial topology from Definition 2.2.2, we obtain a topology on X that the membership
function is continuous from X to [0,1]. Thus, each fuzzy set on X can be made continuous by this method.

Example 3.1.10. Let X = {a,b,c} be a set, A be a fuzzy set on X such that µA(a) = 0.2, µA(b) = 0.7 and µA(c) = 0.7. B =
{[0,α),(α,β ),(α,1] | 0 < α < β < 1} is a basis for relative topology on [0,1] with respect to usual topology on R. For arbitrary
basis element (α,β ) ∈B,

µ
−1
A [(α,β )] =


∅ ,0≤ α < β ≤ 0.2
{a} ,α < 0.2 < β < 0.7
∅ ,0.2 < α < β < 0.7
{b,c} ,0.2 < α < 0.7 < β ≤ 1

We obtain the family S = {∅,{a},{b,c}}, and the topology

T = {∅,X ,{a},{b,c}}

is generated by S which µA is made continuous.

The coarsest topology which all fuzzy sets are c-fuzzy sets can be found in this way from Definition 2.2.2. Thus, we can give following
result.

Corollary 3.1.11. All fuzzy sets on X can be made c-fuzzy sets.

3.2. Homotopic Fuzzy Sets

Definition 3.2.1. Let A and B be continuous fuzzy set over X. It is called that A and B are homotopic fuzzy sets if there exist a homotopy
function H : X× I→ I such that H(x,0) = µA(x) and H(x,1) = µB(x) for all x ∈ X, and denoted by A∼= B.

Also, we call that the fuzzy sets A and B are topologically same to each other if A∼= B. Since ∼= is an equivalence relation on C (X) which is
the collection of c-fuzzy sets, the equivalence class of homotopic fuzzy sets to A is denoted by [A]. Family of all classes of homotopic fuzzy
sets on the space X is denoted by H (X). Obviously, H (X) = C (X)/∼= quotient set.

Example 3.2.2. Let R be a usual topological space, define the fuzzy set A as A =”real numbers near to 0”. Its membership function can be

defined as µA(x) =
1

1+ x2 . Besides, the membership function µ
′
A(x) =

1
1+ x4 is also modelled the fuzzy set A. µA and µ ′A are continuous

functions from R to [0,1]. If we define the function H : R× I→ I such that H(x, t) = tµA(x)+(1− t)µ ′A(x) which is called linear homotopy,

then we obtain that µA is homotopic to µ ′A. More generally, µA(x) =
1

1+ xn for each n ∈ N defines the fuzzy set A. For each n,m ∈ N and

n 6= m, we can define same linear homotopy between µA(x) =
1

1+ xn and µA(x) =
1

1+ xm , then we can say that membership function of the

fuzzy set A is unique under homotopy.

Theorem 3.2.3. The membership function of c-fuzzy set A defined on R is unique in topological sense.
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Proof of this theorem is straightforward. We can use linear homotopy between all membership functions for the fuzzy set A.
As a result of this theorem, all type of membership function on R such as triangular, trapezoidal, bell curvilinear, Gaussian, sigmoidal are
homotopic each other.
Obviously, we obtain following theorem.

Theorem 3.2.4. Null and universal fuzzy sets are homotopic.

Theorem 3.2.5. A∼= Ac and A∼= αA.

Proof. It is obvious.

A space is said to be contractible if the identity map iX : X → X is a null-homotopic which defines in Definition 2.2.4. Let I be a space and
iI : I→ I be an identity map and 0 : I→ I be constant map such that 0(x) = 0 for all x ∈ I. Define the linear homotopy function H : I× I→ I
such that H(x, t) = (1− t)iX (x)+ t0(x). Hence I is contractible [11].
Since [0,1] is contractible space, then [X , I] has a single element. Then we obtain following theorem.

Theorem 3.2.6. Membership function of all c-fuzzy sets on any given topological space X is unique.

As a result of the above theorem, if A and B are c-fuzzy set on X , then A∼= B, A∩B∼= A∪B, etc.

Theorem 3.2.7. Let X and Y topological spaces, f : X → Y be a homeomorphism and A and B be c-fuzzy set on Y . If A ∼= B, then
f−1[A]∼= f−1[B].

Proof. If A is a c-fuzzy set on Y , then f−1[A] is a c-fuzzy set on X from Theorem 3.1.7. Assume that A∼= B. Then there exist a homotopy
H : Y × I→ I such that H(y,0) = µA(y) and H(y,1) = µB(y). Since f is a bijection, then y = f (x)⇔ x = f−1(y) for each x ∈ X , y ∈ Y .
Define the function H ′ : X× I→ I such that H ′(x,0) = H( f (x),0) and H ′(x,1) = H( f (x),1) then H ′ is continuous and we have

H ′(x,0) = H( f (x),0) = µA( f (x)) = µ f−1[A](x)

and

H ′(x,1) = H( f (x),1) = µB( f (x)) = µ f−1[B](x).

Hence, f−1[A]∼= f−1[B].

Theorem 3.2.8. Let X be a topological space, A,B,C and D be c-fuzzy sets on X. If A∼= B and C ∼= D, then A⊗C ∼= B⊗D.

Proof. From Theorem 3.1.8, A⊗C and B⊗D are c-fuzzy sets on X ×X with respect to product topology. Since A∼= B and C ∼= D, there
exist homotopies H1 : X × I → I such that H1(x,0) = µA(x) and H1(x,1) = µB(x), and H2 : X × I → I such that H2(y,0) = µC(y) and
H2(y,1) = µD(y) for all x,y ∈ X . We define the function H : (X×X)× I→ I such that

H((x,y),0) = min{H1(x,0),H2(y,0)}

and

H(x,y),1) = min{H1(x,1),H2(y,1)}.

Since H1 and H2 is continuous then H is continuous. From definition of H, we obtain that

H((x,y),0) = min{H1(x,0),H2(y,0)}= min{µA(x),µC(y)}= µA⊗C(x,y)

and

H(x,y),1) = min{H1(x,1),H2(y,1)}= min{µB(x),µD(y)}= µB⊗D(x,y).

Thus A⊗C ∼= B⊗D.

4. Conclusion

Fitting membership function problem is one of the most problem in fuzzy set theory. As we mentioned in the introduction, the membership
function that defines a fuzzy set may not be unique. In this article, we have shown that the membership function of the fuzzy set defined on a
topological universe is topologically unique up to the concept of homotopy. We also say that each fuzzy set can be continuous fuzzy set,
since we can establish a topology that is called initial topology on the given universe using the membership function of the fuzzy set defined
on it. With this method, we can uniquely identify fuzzy sets on the given universe in topological sense.
In future, it can be studied that how homotopic fuzzy sets affect decision-making.
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