Iterated Bicrossed Product of Groups

Esra Kırmızı Çetinalp ${ }^{1}$
${ }^{1}$ Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey

Abstract

In this paper, we study iterated bicrossed product looking from the viewpoint of Combinatorial Group Theory and describe a new version of iterated bicrossed product of groups. Also, we investigate that the group property of this new product is provided. Then, by considering finite cyclic groups, we give an example for iterated bicrossed product of groups.

Keywords: Bicrossed product, group, semidirect product.
2010 Mathematics Subject Classification: 16S15, 20M15, 20 L05.

1. Introduction and Preliminaries

The classification of groups has taken so much interest for ages and the classification problem originates in group theory. In this work, we will pursue to a new classification idea. That is, we will construct a new group structure. This would give have the edge over achieving some new groups in the meaning of products of groups. Also, It is used when new groups are constructed that to come into some properties of initial groups and it is used for some complicated groups are reduced to some simple groups. One turning point in studying the classification for groups was the bicrossed product construction.
The bicrossed product construction was introduced by Zappa [13]. Later on the construction appeared in a paper of Takeuchi [11]. Different names to this product used in literature were knit product [10] and Zappa-Szep product [13]. Bicrossed product constructions were presented and studied for other constructions, like that: algebras, Lie algebras, Hopf algebras, groupoids, lie groups, locally quantum groups. Firstly, in [1], Agore et al. were studied the bicrosssed product for finite groups. The main ingredients in constructing the bicrossed product are the so called matched pairs of groups. The bicrossed product structure generalizes the semidirect product construction for the case when neither factor is required to be normal : a group E is the internal bicrossed product of its subgroups U_{1} and U_{2} if $H G=E$ and their overlap is trivial. This construction is essential to the quantum double construction.
Iteration of the algebraic structures (direct, semidirect, crossed) has been studied in recent years. Firstly, authors investigated iterated semidirect product of free groups ([3]). Then, in [8], the author conduct a research on iterated crossed product from the point of algebraic constructions. In that paper, the author's objective was the so-called quasi-Hopf two-sided smash product on algebras. After that, in [5], Çetinalp and Karpuz studied iterated crossed product contruction from the point of Combinatorial Group Theory. In this paper, as a continuation of this works, we define an iterative version of bicrossed product. We call this product as iterated bicrossed product of groups. This product is more noteworthiness than known group structures since it includes direct product, semidirect products [2], bicrossed product of groups.
Now, we give the basic definitions that will be used throughout the paper. For detailed information on this subject, we can referenced in [1, 4, 5, 6, 7, 9, 12].
Definition 1.1. Let U_{1} and U_{2} be two groups and $\alpha: U_{2} \times U_{1} \rightarrow U_{1}$ and $\beta: U_{2} \times U_{1} \rightarrow U_{2}$ two maps. We use the notation

$$
\alpha\left(u_{2}, u_{1}\right)=u_{2} \triangleright u_{1} \quad \text { and } \quad \beta\left(u_{2}, u_{1}\right)=u_{2} \triangleleft u_{1}
$$

for all $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$. If $\alpha: U_{2} \times U_{1} \rightarrow U_{1}$ is an action of U_{2} on U_{1} as group automorphisms we represent by $U_{1} \rtimes_{\alpha} U_{2}$ the semidirect product of U_{1} on $U_{2}: U_{1} \rtimes_{\alpha} U_{2}=U_{1} \times U_{2}$ as a set with the multiplication given by

$$
\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)=\left(u_{1}\left(u_{2} \triangleright v_{1}\right), u_{2} v_{2}\right)
$$

for all $u_{1}, v_{1} \in U_{1}$ and $u_{2}, v_{2} \in U_{2}$.
Definition 1.2. A matched pair of groups is a quadruple (U_{1}, U_{2}, α, f) where U_{1} and U_{2} are groups, $\alpha: U_{2} \times U_{1} \rightarrow U_{1}$ is a left action of the group U_{2} on the set $U_{1}, \beta: U_{2} \times U_{1} \rightarrow U_{2}$ is a right action of the group U_{1} on the set U_{2} such that the following compatibility conditions hold:

$$
\begin{gather*}
u_{2} \triangleright\left(u_{1} v_{1}\right)=\left(u_{2} \triangleright u_{1}\right)\left(\left(u_{2} \triangleleft u_{1}\right) \triangleright v_{1}\right), \\
\left(u_{2} v_{2}\right) \triangleright u_{1}=u_{2} \triangleright\left(v_{2} \triangleright u_{1}\right), \\
\left.\left(u_{2} v_{2}\right) \triangleleft u_{1}=\left(u_{2} \triangleleft v_{2} \triangleright u_{1}\right)\right)\left(v_{2} \triangleleft u_{1}\right), \tag{1.1}\\
u_{2} \triangleleft u_{1} v_{1}=u_{2} \triangleleft\left(u_{1} \triangleleft v_{1}\right),
\end{gather*}
$$

for all $u_{1}, v_{1} \in U_{1}$ and $u_{2}, v_{2} \in U_{2}$ and. The quadruple $\left(U_{1}, U_{2}, \alpha, f\right)$ is called matched pair if $u_{2} \triangleright 1=1$ and $1 \triangleleft u_{1}=1$ for all $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$.
Let U_{1} and U_{2} be groups and $\alpha: U_{2} \times U_{1} \rightarrow U_{1}$ and $\beta: U_{2} \times U_{1} \rightarrow U_{2}$ two maps. The bicrossed product of U_{1} and U_{2}, denoted by $U_{1} \bowtie_{\beta} U_{2}=U_{1} \bowtie U_{2}$, is the set $U_{1} \times U_{2}$ with the multiplication

$$
\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)=\left(u_{1}\left(u_{2} \triangleright v_{1}\right),\left(u_{2} \triangleleft v_{1}\right) v_{2}\right),
$$

for all $u_{1}, v_{1} \in U_{1}$ and $u_{2}, v_{2} \in U_{2}$. Bicrossed product $U_{1} \bowtie U_{2}$ is a group with the inverse element $\left(u_{2}^{-1} \triangleright u_{1}^{-1},\left(u_{2} \triangleleft\left(u_{2}^{-1} \triangleright u_{1}^{-1}\right)\right)^{-1}\right)$ if and only if (U_{1}, U_{2}, α, f) is a matched pair (cf. [1]).

2. Main Results

2.1. A new group construction

In this section, we obtain algebraic structure by defining binary operations on the defined groups. Then, we give a theorem that necessary conditions for this algebraic structures to be group.
Definition 2.1. Let $U_{1}, U_{2}, \cdots, U_{2 n-1}$ and $U_{2 n}$ be any groups. A matched pair of these groups is a quadruple $\left(U_{i}, U_{i+1}, \alpha_{i}, \beta_{i}\right)(1 \leq i \leq 2 n-1)$, where

$$
\alpha_{i}: U_{i+1} \times U_{i} \rightarrow U_{i} \quad \text { and } \quad \beta_{i}: U_{i+1} \times U_{i} \rightarrow U_{i+1}
$$

are maps. We use the notation $\alpha_{i}\left(u_{i+1}, u_{i}\right)=u_{i+1} \triangleright u_{i}$ and $\beta_{i}\left(u_{i+1}, u_{i}\right)=u_{i+1} \triangleleft u_{i}$ for all $u_{i} \in U_{i}$ and $u_{i+1} \in U_{i+1}$.
The iterated bicrossed product of groups $U_{1}, U_{2}, \cdots, U_{2 n}$ associated to the matched pair with respect to the actions given above is the set $U_{1} \times U_{2} \times \cdots \times U_{2 n}$ with the multiplication

$$
\left(u_{1}, u_{2}, \cdots, u_{2 n}\right)\left(v_{1}, v_{2}, \cdots, v_{2 n}\right)=\left(u_{1}\left(u_{2} \triangleright v_{1}\right),\left(u_{2} \triangleleft v_{1}\right) v_{2}, u_{3}\left(u_{4} \triangleright v_{3}\right),\left(u_{4} \triangleleft v_{3}\right) v_{4}, \cdots, u_{2 n-1}\left(u_{2 n} \triangleright v_{2 n-1}\right),\left(u_{2 n} \triangleleft v_{2 n-1}\right) v_{2 n}\right)
$$

and the following compatability conditions hold:

$$
\left.\begin{array}{c}
u_{i+1} \triangleright\left(u_{i} u_{i}^{\prime}\right)=\left(u_{i+1} \triangleright u_{i}\right)\left(\left(u_{i+1} \triangleleft u_{i}\right) \triangleright u_{i}^{\prime}\right), \\
\left(u_{i+1} u_{i+1}^{\prime}\right) \triangleright u_{i}=u_{i+1} \triangleright\left(u_{i+1}^{\prime} \triangleright u_{i}\right), \tag{2.1}\\
\left(u_{i+1} u_{i+1}^{\prime}\right) \triangleleft u_{i}=\left(u_{i+1} \triangleleft\left(u_{i+1}^{\prime} \triangleright u_{i}\right)\right)\left(u_{i+1}^{\prime} \triangleleft u_{i}\right), \\
u_{i+1} \triangleleft u_{i} u_{i}^{\prime}=u_{i+1} \triangleleft\left(u_{i} \triangleleft u_{i}^{\prime}\right),
\end{array}\right\}
$$

for all $u_{i}, u_{i}^{\prime} \in U_{i}(1 \leq i \leq 2 n-1)$ and $u_{i+1}, u_{i+1}^{\prime} \in U_{i+1}(1 \leq i \leq 2 n-1)$. We denote this product by $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$.
The following first main result of this paper unitize when this new product describes a group.
Theorem 2.2. Let $U_{1}, U_{2}, \cdots, U_{2 n}$ be groups. For all $u_{i} \in U_{i}(1 \leq i \leq 2 n)$, let us consider the actions given in (2.1). Then the iterated bicrossed product $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$ defines a group.

Proof. We verify the group properties for $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$. Firstly, we show the associative property. To do that, for any $u_{i}, v_{i}, w_{i} \in$ $U_{i}(1 \leq i \leq 2 n)$, let $\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n}\right),\left(v_{1}, v_{2}, v_{3}, \cdots, v_{2 n}\right),\left(w_{1}, w_{2}, w_{3}, \cdots, w_{2 n}\right) \in U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$. So, we have

$$
\begin{aligned}
{\left[\left(u_{1},\right.\right.} & \left.\left.u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right)\left(v_{1}, v_{2}, v_{3}, \cdots, v_{2 n-1}, v_{2 n}\right)\right]\left(w_{1}, w_{2}, w_{3}, \cdots, w_{2 n-1}, w_{2 n}\right) \\
= & \left(u_{1}\left(u_{2} \triangleright v_{1}\right),\left(u_{2} \triangleleft v_{1}\right) v_{2}, u_{3}\left(u_{4} \triangleright v_{3}\right), \cdots, u_{2 n-1}\left(u_{2 n} \triangleright v_{2 n-1}\right),\left(u_{2 n} \triangleleft v_{2 n-1}\right) v_{2 n}\right)\left(w_{1}, w_{2}, w_{3}, \cdots, w_{2 n-1}, w_{2 n}\right) \\
= & \left(u_{1}\left(u_{2} \triangleright v_{1}\right)\left(\left(u_{2} \triangleleft v_{1}\right) v_{2} \triangleright w_{1}\right),\left(\left(u_{2} \triangleleft v_{1}\right) v_{2} \triangleleft w_{1}\right) w_{2}, u_{3}\left(u_{4} \triangleright v_{3}\right)\left(\left(u_{4} \triangleleft v_{3}\right) v_{4} \triangleright w_{3}\right), \cdots,\right. \\
& \left.u_{2 n-1}\left(u_{2 n} \triangleright v_{2 n-1}\right)\left(\left(u_{2 n} \triangleleft v_{2 n-1}\right) v_{2 n} \triangleright w_{2 n-1}\right),\left(\left(u_{2 n} \triangleleft v_{2 n-1}\right) v_{2 n} \triangleleft w_{2 n-1}\right) w_{2 n}\right) \\
= & \left(u_{1}\left(u_{2} \triangleright v_{1}\right)\left(\left(u_{2} \triangleleft v_{1}\right) \triangleright v_{2} \triangleright w_{1}\right), u_{2} \triangleleft\left(v_{1} \triangleleft\left(v_{2} \triangleleft w_{1}\right)\right)\left(v_{2} \triangleleft w_{1}\right) w_{2}, u_{3}\left(u_{4} \triangleright v_{3}\right)\left(\left(u_{4} \triangleleft v_{3}\right) \triangleright v_{4} \triangleright w_{3}\right), \cdots,\right. \\
& \left.u_{2 n-1}\left(u_{2 n} \triangleright v_{2 n-1}\right)\left(\left(u_{2 n} \triangleleft v_{2 n-1}\right) \triangleright v_{2 n} \triangleright w_{2 n-1}\right), u_{2 n} \triangleleft\left(v_{2 n-1} \triangleleft\left(v_{2 n} \triangleleft w_{2 n-1}\right)\right)\left(v_{2 n} \triangleleft w_{2 n-1}\right) w_{2 n}\right)
\end{aligned}
$$

and

```
\(\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right)\left[\left(v_{1}, v_{2}, v_{3}, \cdots, v_{2 n-1}, v_{2 n}\right)\left(w_{1}, w_{2}, w_{3}, \cdots, w_{2 n-1}, w_{2 n}\right)\right]\)
    \(=\left(u_{1}, u_{2}, u_{3}, \cdots u_{2 n-1}, u_{2 n}\right)\left(v_{1}\left(v_{2} \triangleright w_{1}\right),\left(v_{2} \triangleleft w_{1}\right) w_{2}, v_{3}\left(v_{4} \triangleright w_{3}\right), \cdots, v_{2 n-1}\left(v_{2 n} \triangleright w_{2 n-1}\right),\left(v_{2 n} \triangleleft w_{2 n-1}\right) w_{2 n}\right)\)
    \(=\left(u_{1}\left(u_{2} \triangleright\left(v_{1}\left(v_{2} \triangleright w_{1}\right)\right)\right),\left(u_{2} \triangleleft\left(v_{1}\left(v_{2} \triangleright w_{1}\right)\right)\right)\left(v_{2} \triangleleft w_{1}\right) w_{2}, u_{3}\left(u_{4} \triangleright\left(v_{3}\left(v_{4} \triangleright w_{3}\right)\right)\right), \cdots\right.\),
    \(\left.u_{2 n-1}\left(u_{2 n} \triangleright\left(v_{2 n-1}\left(v_{2 n} \triangleright w_{2 n-1}\right)\right)\right),\left(u_{2 n} \triangleleft\left(v_{2 n-1}\left(v_{2 n} \triangleright w_{2 n-1}\right)\right)\right)\left(v_{2 n} \triangleleft w_{2 n-1}\right) w_{2 n}\right)\)
    \(=\left(u_{1}\left(u_{2} \triangleright v_{1}\right)\left(\left(u_{2} \triangleleft v_{1}\right) \triangleright v_{2} \triangleright w_{1}\right), u_{2} \triangleleft\left(v_{1} \triangleleft\left(v_{2} \triangleleft w_{1}\right)\right)\left(v_{2} \triangleleft w_{1}\right) w_{2}, u_{3}\left(u_{4} \triangleright v_{3}\right)\left(\left(u_{4} \triangleleft v_{3}\right) \triangleright v_{4} \triangleright w_{3}\right), \cdots\right.\),
        \(\left.u_{2 n-1}\left(u_{2 n} \triangleright v_{2 n-1}\right)\left(\left(u_{2 n} \triangleleft v_{2 n-1}\right) \triangleright v_{2 n} \triangleright w_{2 n-1}\right), u_{2 n} \triangleleft\left(v_{2 n-1} \triangleleft\left(v_{2 n} \triangleleft w_{2 n-1}\right)\right)\left(v_{2 n} \triangleleft w_{2 n-1}\right) w_{2 n}\right)\).
```

Let $1_{U_{1}}, 1_{U_{2}}, \cdots, 1_{U_{2 n}}$ be the identity elements of groups $U_{1}, U_{2}, \cdots, U_{2 n}$, respectively. We have

$$
\begin{aligned}
& \left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right)\left(1_{U_{1}}, 1_{U_{2}}, 1_{U_{3}}, \cdots, 1_{U_{n-1}}, 1_{U_{2 n}}\right) \\
& \quad=\left(u_{1}\left(u_{2} \triangleright 1_{u_{1}}\right),\left(u_{2} \triangleleft 1_{U_{1}}\right) 1_{U_{2}}, u_{3}\left(u_{4} \triangleright 1_{U_{3}}\right), \cdots, u_{2 n-1}\left(u_{2 n} \triangleright 1_{U_{2 n-1}}\right),\left(u_{2 n} \triangleleft 1_{U_{2 n-1}}\right) 1_{U_{2 n}}\right) \\
& \quad=\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(1_{U_{1}}, 1_{U_{2}}, 1_{U_{3}}, \cdots, 1_{U_{n-1}}, 1_{U_{2 n}}\right)\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right) \\
& \quad=\left(1_{U_{1}}\left(1_{U_{2}} \triangleright u_{1}\right),\left(1_{U_{2}} \triangleleft u_{1}\right) u_{2}, 1_{U_{3}}\left(1_{U_{4}} \triangleright u_{3}\right), \cdots, 1_{U_{2 n-1}}\left(1_{U_{2 n}} \triangleright u_{2 n-1}\right),\left(1_{U_{2 n}} \triangleleft u_{2 n-1}\right) u_{2 n}\right) \\
& \quad=\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right) .
\end{aligned}
$$

Finally, let us find inverse element of $\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right) \in U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$.
$\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right)\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \cdots, u_{2 n-1}^{\prime}, u_{2 n}^{\prime}\right)=\left(1_{U_{1}}, 1_{U_{2}}, 1_{U_{3}}, \cdots, 1_{U_{n-1}}, 1_{U_{2 n}}\right)$
$\Rightarrow\left(u_{1}\left(u_{2} \triangleright u_{1}^{\prime}\right),\left(u_{2} \triangleleft u_{1}^{\prime}\right) u_{2}^{\prime}, u_{3}\left(u_{4} \triangleright u_{3}^{\prime}\right), \cdots, u_{2 n-1}\left(u_{2 n} \triangleright u_{2 n-1}^{\prime}\right),\left(u_{2 n} \triangleleft u_{2 n-1}^{\prime}\right) u_{2 n}^{\prime}\right)=\left(1_{U_{1}}, 1_{U_{2}}, 1_{U_{3}}, \cdots, 1_{U_{2 n-1}}, 1_{U_{2 n}}\right)$
and
$\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \cdots, u_{2 n-1}^{\prime}, u_{2 n}^{\prime}\right)\left(u_{1}, u_{2}, u_{3}, \cdots, u_{2 n-1}, u_{2 n}\right)=\left(1_{U_{1}}, 1_{U_{2}}, 1_{U_{3}}, \cdots, 1_{U_{n-1}}, 1_{U_{2 n}}\right)$
$\Rightarrow\left(u_{1}^{\prime}\left(u_{2}^{\prime} \triangleright u_{1}\right),\left(u_{2}^{\prime} \triangleleft u_{1}\right) u_{2}, u_{3}^{\prime}\left(u_{4}^{\prime} \triangleright u_{3}\right), \cdots, u_{2 n-1}^{\prime}\left(u_{2 n}^{\prime} \triangleright u_{2 n-1}\right),\left(u_{2 n}^{\prime} \triangleleft u_{2 n-1}\right) u_{2 n}\right)=\left(1_{U_{1}}, 1_{U_{2}}, 1_{U_{3}}, \cdots, 1_{U_{n-1}}, 1_{U_{2 n}}\right)$.

Therefore, we obtain $u_{2 i-1}^{\prime}=u_{2 i}^{-1} \triangleright u_{2 i-1}^{-1}(1 \leq i \leq n)$ and $u_{2 i}^{\prime}=\left(u_{2 i} \triangleleft\left(u_{2 i}^{-1} \triangleright u_{2 i-1}^{-1}\right)\right)^{-1}(1 \leq i \leq n)$. Then, iterated bicrossed product $U_{1} \bowtie$ $U_{2} \bowtie \cdots \bowtie U_{2 n}$ is a group with the inverse element $\left(u_{2}^{-1} \triangleright u_{1}^{-1},\left(u_{2} \triangleleft\left(u_{2}^{-1} \triangleright u_{1}^{-1}\right)\right)^{-1}, u_{4}^{-1} \triangleright u_{3}^{-1}, \cdots, u_{2 n}^{-1} \triangleright u_{2 n-1}^{-1},\left(u_{2 n} \triangleleft\left(u_{2 n}^{-1} \triangleright u_{2 n-1}^{-1}\right)\right)^{-1}\right)$. Hence the result.

Now, as consequences of Theorem 2.2, we can get a favourable results according to the cases of maps $\alpha_{i}(1 \leq i \leq 2 n-1)$ and $\beta_{i}(1 \leq i \leq$ $2 n-1)$.

Corollary 2.3. Let $\left(U_{i}, U_{i+1}, \alpha_{i}, \beta_{i}\right)(1 \leq i \leq 2 n-1)$ be matched pairs.

1. Assume $\beta_{i}(1 \leq i \leq 2 n-1)$ are trivial maps. Then $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$ is the iterated semidirect product, denoted by $U_{1} \rtimes U_{2} \rtimes$ $U_{3} \cdots \rtimes U_{2 n}[3]$.
2. Assume $\alpha_{i}(1 \leq i \leq 2 n-1)$ and $\beta_{i}(1 \leq i \leq 2 n-1)$ are trivial maps. Then $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$ is the direct products of $2 n$ groups, denoted by $U_{1} \times U_{2} \times U_{3} \cdots \times U_{2 n}$.

Corollary 2.4. Let $\left(U_{i}, U_{i+1}, \alpha_{i}, \beta_{i}\right)(1 \leq i \leq 2 n-1)$ be matched pairs.

1. Let $\alpha_{i}(2 \leq i \leq 2 n-1)$ and $\beta_{i}(2 \leq i \leq 2 n-1)$ be trivial maps and $U_{i}(3 \leq i \leq 2 n)$ be trivial groups. Then $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$ is the bicrossed product $U_{1} \bowtie U_{2}$.
2. Let $\alpha_{i}(2 \leq i \leq 2 n-1)$ and $\beta_{i}(1 \leq i \leq 2 n-1)$ be trivial maps and $U_{i}(3 \leq i \leq 2 n)$ be trivial groups. Then $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$ is the semi-direct product of U_{1} by U_{2}, denoted by $U_{1} \rtimes U_{2}$.
3. Let $\alpha_{i}(1 \leq i \leq 2 n-1)$ and $\beta_{i}(1 \leq i \leq 2 n-1)$ be trivial maps and $U_{i}(3 \leq i \leq 2 n)$ be trivial groups. Then $U_{1} \bowtie U_{2} \bowtie \cdots \bowtie U_{2 n}$ is the direct product $U_{1} \times U_{2}$.

2.2. Example Part:

We take cognizance of finite cyclic groups and give an application of the iterated bicrossed product.
Example 2.5. Let $U_{1}=U_{3}=U_{5}=\cdots=U_{2 i-1}=\mathbb{Z}_{2}=\left\langle a_{2 i-1} ; a_{2 i-1}^{2}=1\right\rangle(1 \leq i \leq n)$ and $U_{2}=U_{4}=U_{6}=\cdots=U_{2 i}=\mathbb{Z}_{3}=\left\langle a_{2 i} ; a_{2 i}^{3}=1\right\rangle(1 \leq i \leq n)$ be finite cyclic groups. Suppose that, for $i \in\{1,2,3, \cdots, n\}$,

$$
\begin{aligned}
\alpha_{2 i-1}: \mathbb{Z}_{3} \times \mathbb{Z}_{2} & \rightarrow \mathbb{Z}_{2} \\
\left(a_{2 i}, a_{2 i-1}\right) & \mapsto \alpha_{2 i-1}\left(a_{2 i}, a_{2 i-1}\right)=a_{2 i} \triangleright a_{2 i-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{2 i-1}: \mathbb{Z}_{3} \times \mathbb{Z}_{2} & \rightarrow \mathbb{Z}_{3} \\
\left(a_{2 i}, a_{2 i-1}\right) & \mapsto \beta_{2 i-1}\left(a_{2 i}, a_{2 i-1}\right)=a_{2 i} \triangleleft a_{2 i-1}
\end{aligned}
$$

are maps, where $a_{2 i-1}(1 \leq i \leq n) \in \mathbb{Z}_{2}$ and $a_{2 i}(1 \leq i \leq n) \in \mathbb{Z}_{3}$. So, we can write

$$
\begin{aligned}
\alpha_{i}(1,1)=1, & \beta_{i}(1,1)=1, \\
\alpha_{i}\left(1, a_{i}\right)=a_{i}, & \beta_{i}\left(1, a_{i}\right)=1, \\
\alpha_{i}\left(a_{i+1}, 1\right)=1, & \beta_{i}\left(a_{i+1}, 1\right)=a_{i+1}, \\
\alpha_{i}\left(a_{i+1}, a_{i}\right)=a_{i+1} \triangleright a_{i}, & \beta_{i}\left(a_{i+1}, a_{i}\right)=a_{i+1} \triangleleft a_{i}, \\
\alpha_{i}\left(a_{i+1}^{2}, 1\right)=1, & \beta_{i}\left(a_{i+1}^{2}, 1\right)=a_{i+1}^{2} \\
\alpha_{i}\left(a_{i+1}^{2}, a_{i}\right)=a_{i+1}^{2} \triangleright a_{i}, & \beta_{i}\left(a_{i+1}^{2}, a_{i}\right)=a_{i+1}^{2} \triangleleft a_{i} .
\end{aligned}
$$

Then, iterated bicrossed product $\mathbb{Z}_{2} \bowtie \mathbb{Z}_{3} \bowtie \mathbb{Z}_{2} \cdots \mathbb{Z}_{2} \bowtie \mathbb{Z}_{3}$ has a generators

$$
a_{1}, a_{2}, a_{3}, \cdots, a_{2 n-1}, a_{2 n}
$$

and relations

$$
\begin{array}{r}
a_{1}^{2}=1, a_{2}^{3}=1, a_{3}^{2}=1, a_{4}^{3}=1, \cdots, a_{2 n-1}^{2}=1, a_{2 n}^{3}=1 \\
a_{i+1} a_{i}=\left(a_{i+1} \triangleright a_{i}\right)\left(a_{i+1} \triangleleft a_{i}\right)(1 \leq i \leq 2 n-1), \\
a_{i+1}^{2} a_{i}=\left(a_{i+1}^{2} \triangleright a_{i}\right)\left(a_{i+1}^{2} \triangleleft a_{i}\right)(1 \leq i \leq 2 n-1) .
\end{array}
$$

Corollary 2.6. We note that $U_{i}(3 \leq i \leq 2 n)$ are trivial groups given in Example 2.5, then the iterated bicrossed product $\mathbb{Z}_{2} \bowtie \mathbb{Z}_{3} \bowtie$ $\mathbb{Z}_{2} \cdots \mathbb{Z}_{2} \bowtie \mathbb{Z}_{3}$ reduced to bicrossed product $\mathbb{Z}_{2} \bowtie \mathbb{Z}_{3}$. The bicrossed product $\mathbb{Z}_{2} \bowtie \mathbb{Z}_{3}$ is also a special case of the structure obtained in study in [[1], Theorem 3.1], authors investigated the construction of bicrossed $\mathbb{Z}_{p} \bowtie \mathbb{Z}_{m}$ of two finite cyclic groups that one of them has prime order.

References

[1] A. L. Agore, A. Chirvasitu, B. Ion, G. Militaru, Bicrossed products for finite groups, Algebr Represent Theor 12 (2009), 481-488.
[2] F. Ates, Some new monoid and group constructions under semidirect products. Ars Comb., 91 (2009), 203-218.
[3] D.C. Cohen and A.I. Suciu, Homology of iterated semidirect products of free groups, J. Pure Appl. Algebra, 126 (1998), 87-120.
[4] E.K. Çetinalp, E.G. Karpuz, F. Ateş, A.S. Çevik, Two-sided crossed product of groups, Filomat, 30(4) (2016), 1005-1012.
[5] E.K. Çetinalp, E.G. Karpuz, Iterated crossed product of cyclic groups, Bulletin of the Iranian Mathematical Society, 44(6) (2018), 1493-1508.
[6] E.K. Çetinalp, E.G. Karpuz, Crossed Product of Infinite Groups and Complete Rewriting Systems, Turkish Journal Of Mathematics, 45 (1) (2021), 410-422.
[7] A. Emin, F. Ates, S. Ikikardes, I. N. Cangul, A new monoid construction under crossed products, Journal of Inequalities and Applications 244 (2013).
[8] F. Panaite, Iterated crossed products, J. Algebra Appl., 13(7) (2014).
[9] J.M. Howie and N. Ruskuc, Constructions and presentations for monoids, Comm. in Algebra 22 (15) (1994), 6209-6224.
[10] P. W. Michor, Knit products of graded Lie algebras and groups, Suppl. Rendiconti Circolo Matematico di Palermo Ser. II, 22 (1989), 171-175.
[11] M. Takeuchi, Matched pairs of groups and bismah product of Hopf algrebras, Comm. Algebra, 9(8)(1981), 841-882.
[12] S. O. Unal, Green's relations on ternary semihypergroups and crossed hyperproduct of hypergroups, Asian-European Journal of Mathematics, 14(7) (2021).
[13] G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti Secondo Congresso Un.Mat Ital. Bologna, (1940), 119-125.

