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Abstract

In this study, we have first provided the relations between the Frenet frame and Sannia frame on the striction points of four ruled surfaces of
each formed by taking the basis as the tangent, normal, binormal and Darboux vector. Second, we have defined the relations between the
Sannia vectors and their derivatives. For each Sannia frame, we have calculated the Darboux frame and expressed those in terms of Frenet
frame. Last, we have obtained the arc lengths and the geodesic curvatures according to both Euclidean space E3 and unit sphere S2 of Sannia
vectors for each four of ruled surfaces.
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1. Introduction

We engage the curves in almost many areas of our daily life. For example, we see helix curves on DNA sequencing. The cornu spiral is used
in construction of highways, railways, metro or rail systems. The Catanery curve is used as a design of bridge or train tracks. We can give
so many examples like this. The frames on the other hand is an essential subject in the curve theory. The most used is the Frenet frame.
Researchers define some associated curves by using the vectors of Frenet frames and characterize them as a special curve. Some of those are
known as the involute-evolute curves, Bertrand curves, Mannheim curves. If a curve lacks of the second derivative, then the Frenet frame
cannot be established. Therefore Bishop (1975) defined an another frame and provided the corresponding relations between his frame and
Frenet frame in [2]. In Euclidean space, E3, a spherical indicatrix curve is defined to be the locus of the end points of a unit vector settled at
the center of a sphere. The arc lengths and the geodesic curvatures of these curves were studied in [4]. The idea of spherical indicatrix was
extended to the Minkowski space in [3]. By using Bishop frame instead Frenet, the spherical indicatrices were given in [11]. As an extension
of this to the dual space, the spherical indicatrix curves were defined according to the Dual Bishop frame in [5]. There are other studies that
the spherical curves were considered in different spaces and related with some associated curves [1, 9, 10].
Motivated by these, in this study we have first established the relations between the Sannia and Frenet frame by using the Darboux vector
defined by Frenet vectors. Next we have defined the derivative relations of the vectors of Sannia frame. And last, we have calculated the
arclengths and the geodesic curvatures of spherical indicatrices of Sannia vectors.

2. Preliminaries

In this section, we recall some basic concepts that will be used throughout the paper. Let α = α(s) be any differentiable curve in three
dimensional Euclidean space E3. The curvatures and the Frenet vectors of α together with the corresponding Frenet formulae are given as

T (s) =
α ′(s)
‖α ′(s)‖

, B(s) =
α ′(s)∧α ′′(s)
‖α ′(s)∧α ′′(s)‖

, N(s) = B(s)∧T (s), (2.1)

κ =
‖α ′∧α ′′‖
‖α ′‖3 , τ =

〈α ′∧α ′′,α ′′′〉
‖α ′∧α ′′‖2 , (2.2)

T ′ = κνN, N′ =−κνT + τνB, B′ =−τνN,
∥∥α
′∥∥= ν , (2.3)
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where ν = ‖α ′‖, κ is the curvature and τ is the torsion of the curve [7]. It is known that the Frenet vectors rotate instantaneously along the
curve and this instantaneous rotation happens around an axis spanned by a vector. This vector is called as Darboux vector and according to
the definition, it has the following form:

W = τT +κB (2.4)

However, if θ is taken to be the angle between the vectors B and W , then we may write,

κ = ‖W‖cosθ , τ = ‖W‖sinθ , (2.5)

and may correspondingly derive the unit Darboux vector as

C = sinθT + cosθB. (2.6)

Now let us consider M as a surface in E3, and denote ξ , S and D as the normal of surface, the shape operator and Riemann connection,
respectively. For X ,Y ∈ χ(M), the following operation,

D̄XY = DXY + 〈S(X),Y 〉ξ (2.7)

is called as the Gauss equation where the operand D̄ is the derivative operator in Gauss sense. The geodesic curvature according to the E3 is
defined as

kg = ‖DT T‖ (2.8)

while it is expressed as

ζg = ‖D̄T T‖ (2.9)

according to S2, where T is the tangent vector at the point s of α(s).
On the other hand, if specifically the given surface is taken to be as a ruled surface then a parametrization to this is given by

X (s,v) = α(s)+ vr(s), (2.10)

where α is called as the base curve and r(s) is the director curve. Moreover, the foot of the common perpendicular to two neighbor rulings
on main ruling is known as the striction (or central) point. Therefore, the locus of these points are called as the striction curve. The equation
of the striction curve on a given ruled surface, X(s,v) is given by [7]

β (s) = α (s)− 〈α
′,r′〉
‖r′‖2 r. (2.11)

If the base curve is chosen to be the predefined striction curve, then we may write the following ruled surface as

X (s,v) = β (s)+ vr(s). (2.12)

It is known that there exists an orthonormal system denoted by {e1,e2,e3} on the striction curve where the unit vectors ei, (i = 1,2,3) are
defined as

e1 = r, e2 =
e′1
‖e′1‖

, e3 = e1∧ e2. (2.13)

Such an orthonormal system is known as Sannia Frame [8]. (Gustavo Sannia was an Italian mathematician lived in 1875-1930.) If k1 and k2
are taken to be the curvatures of the striction curve, then the Frenet formulae wise derivative changes are given by

e′1 = k1e2, e′2 =−k1e1 + k2e3, e′3 =−k2e2. (2.14)

3. Spherical indicatrix curves generated by Sannia frame

In this section, we first form a set of ruled surfaces by choosing the directors as the each element of Frenet frame and the Darboux vector of a
given curve. Then, we calculate the corresponding striction curves of every ruled surface and construct the Sannia frame on these curves. By
considering the unit vectors of Sannia frame for each case, we define the spherical indicatrix curves and calculate their arc lengths and the
geodesic curvatures.

Proposition 3.1. Let {e1,e2,e3} denote the Sannia frame on the striction curve of the ruled surface that is swept out by the tangent vector
of α . Then the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

e1 = T, e2 = N, e3 = B. (3.1)

Proof. By the definition given in (2.13), the proof is trivial.

Remark 3.2. Note that the spherical indicatrix curves generated by {e1,e2,e3} Sannia frame is same as the spherical indicatrices of Frenet
frame. The characterizations of the spherical indicatrices of Frenet vectors can be found in [6].

Proposition 3.3. Let { f1, f2, f3} denote the Sannia frame on the striction curve of the ruled surface that is swept out by the normal vector
of α . Then the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

f1 = N, f2 =−cosθT + sinθB, f3 = sinθT + cosθB (3.2)

where θ is the angle between B and W.
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Proof. By the equation given in (2.11), we may define the striction curve of the surface ruled by principal normal as

β (s) = α (s)+
κ

κ2 + τ2 N.

Now by considering the definition of the ruled surface, XN , it is clear that f1 = N. When referred the equations (2.5) and (2.13), the proof is
trivial for the vectors f2 and f3.

Theorem 3.4. The relationship between the vector elements, { f1, f2, f3} of Sannia frame and their derivatives are given by the following:

f1′ = κ1 f2, f2′ =−κ1 f1 + τ1 f3, f3′ =−τ1 f2. (3.3)

where κ1 = ‖W‖ , and τ1 = θ ′

Proof. If we take the derivatives of each vector f1, f2, f3 by considering the equations at (3.2) and referring the relation (2.5), then we
complete the proof by the following calculations:

f ′1 =−κT + τB

= (κ cosθ + τ sinθ) f2 +(τ cosθ −κ sinθ) f3

=
√

κ2 + τ2 f2
= ‖W‖ f2
= κ1 f2,

f ′2 = θ
′ sinθT − (κ cosθ + τ sinθ)N +θ

′ cosθB

= θ
′ sinθ (−cosθ f2 + sinθ f3)− (κ cosθ + τ sinθ) f1
+θ
′ cosθ (sinθ f2 + cosθ f3)

=−‖W‖ f1 +θ
′ f3

=−κ1 f1 + τ1 f3,

f3′ = θ
′ cosθT +κN sinθ −θ

′ sinθB− τN cosθ

= θ
′ cosθ (−cosθ f2 + sinθ f3)−θ

′ sinθ (sinθ f2 + cosθ f3)

=−θ
′ f2

=−τ1 f2.

Theorem 3.5. The Darboux vector denoted by W1 corresponding to the Sannia frame, { f1, f2, f3} is given by the following:

W1 = θ
′ f1 +‖W‖ f3. (3.4)

Proof. Let us express the Darboux vector W1 with the linear combinations of the vectors f1, f2, f3 as

W1 = x1 f1 + y1 f2 + z1 f3,

where x1, y1, z1 ∈ R. By taking into account the relations given in (3.3), the vector product of W1 expressed by above with each f1, f2, f3
results the following:

W1∧ f1 = f1′⇒−y1 f3 + z1 f2 = ‖W‖ f2
⇒ y1 = 0, z1 = ‖W‖ ,

W1∧ f2 = f2′⇒ x1 f3− z1 f1 = ‖W‖ f1 +θ
′ f3

⇒ z1 = ‖W‖ , x1 = θ
′.

When substituted the coefficients x1, y1, z1, the proof is complete.

Corollary 3.6. If C1 is taken to be the unit Darboux vector, then it is stated by means of Frenet vectors as following

C1 = sinθ1N + cosθ1C, (3.5)

where θ1 is the angle between C1 and f3.
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Proof. By referring the relation (3.4), we may write C1 as

C1 =
θ ′√

(θ ′)2 +‖W‖2
f1 +

‖W‖√
(θ ′)2 +‖W‖2

f3.

Since θ1 is the angle between C1 and f3, we write

sinθ1 =
θ ′√

(θ ′)2 +‖W‖2
, cosθ1 =

‖W‖√
(θ ′)2 +‖W‖2

, θ1 = arctan
(

θ ′

‖W‖

)
, (3.6)

and therefore

C1 = sinθ1 f1 + cosθ1 f3,

which completes the proof.

Corollary 3.7. The spherical indiatrix curves of f1 and f3 are two separate spherical involutes of the C1 spherical indicatrix curve.

Proof. The tangent vector of moving curve C1 and the spherical indicatrix of C1 is common. Since C1 =C1(s) is defined to be the unit
vector in the direction of W1, the tangent of C1 can be calculated by following:

dC1

ds
= (sinθ1)

′ f1 +(cosθ1)
′ f3 + sinθ1 (κ1 f2)+ cosθ1 (−τ1 f2)

= (sinθ1)
′ f1 +(cosθ1)

′ f3 +(κ1 sinθ1− τ1 cosθ1)︸ ︷︷ ︸
=0

f2

= (sinθ1)
′ f1 +(cosθ1)

′ f3.

On the other hand, as the tangents of the spherical indicatrix of ( f1) and ( f3) are given by

d f1
ds

= f1′ = κ1 f2,

d f3
ds

= f3′ =−τ1 f2,

we write〈
dC1

ds
,

d f1
ds

〉
= 0 and

〈
dC1

ds
,

d f3
ds

〉
= 0.

The latter expression clearly shows that ( f1) and ( f3) are the spherical involutes of C1.

Definition 3.8. In Euclidean space, E3, the curves traced out on the unit sphere by a radius of each unit vectors f1, f2, f3 on the β (s)
striction curve are called as f1− indicatrix, f2− indicatrix and f3− indicatrix curve and these are denoted by

β f1(s) = f1(s), β f2(s) = f2(s), β f3(s) = f3(s). (3.7)

The corresponding arc lengths of these curves are given as follows:

dβ f1

ds f1

ds f1

ds
= f1′⇒ Tf1

ds f1

ds
= ‖W‖ f2

⇒
ds f1

ds
= ‖W‖ (3.8)

⇒ s f1 =
∫
‖W‖ds,

dβ f2

ds f2

ds f2

ds
= f2′⇒ Tf2

ds f2

ds
=−‖W‖ f1 +θ

′ f3

⇒
ds f2

ds
=

√
‖W‖2 +θ ′ (3.9)

⇒ s f2 =
∫ √

‖W‖2 +θ ′ds,

dβ f3

ds f3

ds f3

ds
= f3′⇒ Tf3

ds f3

ds
=−θ

′ f2

⇒
ds f3

ds
= θ

′ (3.10)

⇒ s f3 =
∫

θ
′ds.
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Theorem 3.9. Let k f1 denote the geodesic curvature of the f1− indicatrix, then it is defined by

k f1 = secθ1.

Proof. It is clear by the relation (3.8) that Tf1 = f2. By taking the derivative of this and considering the relations (3.3), we write

dTf1

ds f1

ds f1

ds
= f2′

DTf1
Tf1 =− f1 +

θ ′

‖W‖
f3. (3.11)

By taking the norm of the latter and referring the ralations given in (3.6), we complete the proof by following:

k f1 =

√
1+
(

θ ′

‖W‖

)2

=
√

1+ tan2θ1

= secθ1.

Theorem 3.10. Let k f2 denote the geodesic curvature of the f2− indicatrix, then it is defined by

k f2 = secθ1.

Proof. By using the relation (3.9), the tangent vector of f2− indicatrix curve can be given as

Tf2 =−
‖W‖√
‖W‖2 +θ ′

f1 +
θ ′√

‖W‖2 +θ ′
f3.

We simplify this by referring the relations given in (3.6) as

Tf2 =−cosθ1 f1 + sinθ1 f3. (3.12)

If we take the derivative of this last expression and consider the relations (3.3) and (3.4), then we get

dTf2

ds f2

ds f2

ds
= θ1

′ sinθ1 f1−‖W1‖ f2 +θ1
′ cosθ1 f3,

DTf2
Tf2 =

θ1
′ sinθ1 f1−‖W1‖ f2 +θ1

′ cosθ1 f3
‖W1‖

,

=
θ1
′

‖W1‖
C1− f2. (3.13)

By taking the norm of the last expression, we complete the proof as like below

k f2 =

√
1+
(

θ1
′

‖W1‖

)2

=
√

1+ tan2θ1

= secθ1.

Theorem 3.11. Let k f3 denote the geodesic curvature of the f3− indicatrix, then it is defined by

k f3 = cscθ1.

Proof. It is clear by the relation (3.10) that Tf3 =− f2 By taking the derivative of this and considering the relations given in (3.3), we get

dTf3

ds f3

ds f3

ds
=− f2′

DTf3
Tf3 =

‖W‖
θ ′

f1− f3. (3.14)

Similarly, by taking the norm and using the relations in (3.6), we obtain that

k f3 =

√
1+
(
‖W‖

θ ′

)2

=
√

1+ cot2θ1

= cscθ1,

which completes the proof.
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Theorem 3.12. The geodesic curvatures of f1, f2 and f3 indicatrices according to S2 are given by

ζ f1 = tanθ1, ζ f2 =
θ1
′

‖W1‖
, ζ f3 = cotθ1, (3.15)

respectively.

Proof. By using the relations (2.7), (3.11), (3.13) and (3.14), we can write

D̄Tf1
Tf1 = DTf1

Tf1 +
〈
S
(
Tf1

)
,Tf1

〉
f1

=
θ ′

‖W‖
f3

D̄Tf2
Tf2 = DTf2

Tf2 +
〈
S
(
Tf2

)
,Tf2

〉
f2

=
θ1
′

‖W1‖
C1

D̄Tf3
Tf3 = DTf3

Tf3 +
〈
S
(
Tf3

)
,Tf3

〉
f3

=
‖W‖

θ ′
f1.

Now, by referring the relations in (3.6), the proof is straightforward.

Proposition 3.13. Let {g1,g2,g3} denote the Sannia frame along the striction curve δ of the ruled surface, XB(s,v) = α(s)+ vB(s). Then
the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

g1 = B, g2 =−N, g3 = T. (3.16)

Proof. The proof is straightforward, when considered the definition of Sannia frame given in (2.13).

Theorem 3.14. The relationship between the Sannia vectors, {g1,g2,g3} and their derivatives are given by the following:

g1
′ = κ2g2, g2

′ =−κ2g1 + τ2g3, g3
′ =−τ2g2 (3.17)

where κ2 = τ, and τ2 = κ

Proof. By considering (3.16) and taking the derivatives of each {g1,g2,g3}, the proof is complete by following:

g1
′ =−τN = τg2 = κ2g2,

g2
′ =−N′ = κT − τB =−κ2g1 + τ2g3,

g3
′ = T ′ = κN =−κg2 =−τ2g2.

Corollary 3.15. The Darboux vector of the Frenet frame of α is same as of the {g1,g2,g3} Sannia Frame.

Corollary 3.16. The arc length and the geodesic curvatures according to both E3 and S2 of each spherical indicatrices of tangent, normal
and binormal vectors of α are the same as of g3−, g2− and g1− indicatrices, respectively.

Proposition 3.17. Let {p1, p2, p3} denote the Sannia frame along the striction curve γ of the ruled surface, XC(s,v) = α(s)+ vC(s). Then
the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

p1 = sinθT + cosθB, p2 = cosθT − sinθB, p3 = N. (3.18)

Proof. By using the definition of striction curve given in (2.11) we write

γ(s) = α (s)− 1
ϕ ′

cosθC.

It is clear from the definition of the ruled surface XC(s,v) that p1 =C(s). By referring both (2.5) and (2.13), one can easily calculate p2 and
p3.

Theorem 3.18. The relationship between the Sannia vectors, {p1, p2, p3} and their derivatives are given by the following:

p1
′ = κ3 p2, p2

′ =−κ3 p1 + τ3 p3, p3
′ =−τ3 p2 (3.19)

where κ3 = θ ′ and τ3 = ‖W‖ .
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Proof. When taken the derivatives of each vector p1, p2, p3 and considered the equations given in (2.5) and (3.18), the proof is done with
the following:

p1
′ = θ

′ cosθT +(κ sinθ − τ cosθ)︸ ︷︷ ︸
=0

N−θ
′ sinθB

= θ
′ cosθ (sinθ p1 + cosθ p2)−θ

′ sinθ (cosθ p1− sinθ p2)

= θ
′p2

= κ3 p2,

p2
′ =−θ

′ sinθT +(κ cosθ + τ sinθ)N−θ
′ cosθB

=−θ
′ sinθ (sinθ p1 + cosθ p2)+(κ cosθ + τ sinθ) p3

−θ
′ cosθ (cosθ p1− sinθ p2)

=−θ
′p1 +‖W‖ p3

=−κ3 p1 + τ3 p3,

p3
′ =−κT + τB

=−κ (sinθ p1 + cosθ p2)+ τ (cosθ p1− sinθ p2)

=−‖W‖ p2

=−τ3 p2.

Theorem 3.19. The unit Darboux vector W2 of corresponding Sannia frame, {p1, p2, p3} is given by

W2 = ‖W‖ p1 +θ
′p3. (3.20)

Proof. The Darboux vector, W2 can be expressed as the linear combination of {p1, p2, p3} as

W2 = x2 p1 + y2 p2 + z2 p3,

where x2, y2, z2 ∈ R. When considered the relation (3.19) and applied the vector production of W2 with each p1, p2, p3 the corresponding
coefficients can be found as

W2∧ p1 = p1
′⇒−y2 p3 + z2 p2 = θ

′p2

⇒ y2 = 0, z2 = θ
′,

W2∧ p2 = p2
′⇒ x2 p3− z2 p1 =−θ

′p1 +‖W‖ p3

⇒ x2 = ‖W‖ ,

which completes the proof.

Corollary 3.20. If C2 is considered to be the unit Darboux vector, then by means of Frenet vectors, it has the following equation:

C2 = sinθ2C+ cosθ2N, (3.21)

where θ2 is the angle between C2 and p3.

Proof. By referring the relation (3.20), it is easy to write C2 as

C2 =
W2

‖W2‖
=

‖W‖√
(θ ′)2 +‖W‖2

p1 +
θ ′√

(θ ′)2 +‖W‖2
p3.

Now since θ2 is the angle between C2 and p3, we may write

sinθ2 =
‖W‖√

(θ ′)2 +‖W‖2
, cosθ2 =

θ ′√
(θ ′)2 +‖W‖2

, θ2 = arctan
(
‖W‖

θ ′

)
. (3.22)

Hence

C2 = sinθ2 p1 + cosθ2 p3,

which completes the proof.

Corollary 3.21. The spherical indiatrix curves of p1 and p3 are two separate spherical involutes of the C2 spherical indicatrix curve.
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Proof. The tangent vectors of moving curve C2 and the spherical indicatrix of C2 are common. Since the curve (C2) with C2 =C2(s) is
defined to be the unit vector in the direction of W2, the tangent vector of (C2) can be calculated by following:

C2 = sinθ2 p1 + cosθ2 p3,

dC2

ds
= (sinθ2)

′p1 +(cosθ2)
′p3 + sinθ2 (κ2 p2)+ cosθ2 (−τ2 p2)

= (sinθ2)
′p1 +(cosθ2)

′p3 +(κ2 sinθ2− τ2 cosθ2)︸ ︷︷ ︸
=0

p2

= (sinθ2)
′p1 +(cosθ2)

′p3.

On the other hand, since the tangents of the spherical indicatrix of (p1) and (p3) are

d p1

ds
= p1

′ = κ2 p2,

d p3

ds
= p3

′ =−τ2 p2.

Thus, we write〈
dC2

ds
,

d p1

ds

〉
= 0, and

〈
dC2

ds
,

d p3

ds

〉
= 0.

This clearly means that (p1) and (p3) are two spherical involutes of C2.

Definition 3.22. In E3, the curves traced out on the unit sphere by a radius of each unit vectors p1, p2, p3 of the striction curve γ(s) are
called as p1− indicatrix, p2− indicatrix and p3− indicatrix curve and we denote them as

γp1 (s) = p1 (s) , γp2 (s) = p2 (s) , γp3 (s) = p3 (s) . (3.23)

The arc lengths of these curves are calculated as like below:

dγp1

dsp1

dsp1

ds
= p1

′⇒ Tp1

dsp1

ds
= θ

′p2

⇒
dsp1

ds
= θ

′ (3.24)

⇒ sp1 =
∫

θ
′ds,

dγp2

dsp2

dsp2

ds
= p2

′⇒ Tp2

dsp2

ds
=−θ

′p1 +‖W‖ p3

⇒
dsp2

ds
=

√
‖W‖2 +θ ′ (3.25)

⇒ sp2 =
∫ √

‖W‖2 +θ ′ds,

dγp3

dsp3

dsp3

ds
= p3

′⇒ Tp3

dsp3

ds
=−‖W‖ p2

⇒
dsp3

ds
= ‖W‖ (3.26)

⇒ sp3 =
∫
‖W‖ds.

Theorem 3.23. Let kp1 denote the geodesic curvature of the p1− indicatrix, then it is defined by

kp1 = secθ2.

Proof. By the relation (3.24) it is clearly seen that Tp1 = p2. By taking the derivative of this and considering the relations (3.19), we write

dTp1

dsp1

dsp1

ds
= p2

′

DTp1
Tp1 =−p1 +

‖W‖
θ ′

p3. (3.27)

Next taking the norm of the latter and referring the ralation in (3.22), complete the proof as following:

kp1 =

√
1+
(

θ ′

‖W‖

)2

=
√

1+ tan2θ2

= secθ2.
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Theorem 3.24. Let kp2 denote the geodesic curvature of the p2− indicatrix, then it is given by

kp2 =

√
1+
(

θ2
′

‖W2‖

)2

.

Proof. By the relation (3.25), the tangent vector of p2− indicatrix curve is written as

Tp2 =
−θ ′√
‖W‖2 +θ ′

p1 +
‖W‖√
‖W‖2 +θ ′

p3.

We may express this by considering (3.22) as

Tp2 =−cosθ2 p1 + sinθ2 p3.

If we take the derivative of the above expression with respect to s and consider the relations (3.19) and (3.20), then we get

dTp2

dsp2

dsp2

ds
= θ2

′ sinθ2 p1−‖W2‖ p2 +θ2
′ cosθ2 p3

DTp2
Tp2 =

θ2
′ sinθ2 p1−‖W2‖ p2 +θ2

′ cosθ2 p3

‖W2‖
. (3.28)

Taking the norm as a last step, we get

kp2 =

√
1+
(

θ2
′

‖W2‖

)2

,

and complete the proof.

Theorem 3.25. Let kp3 denote the geodesic curvature of the p3− indicatrix, then it is defined by

kp3 = cscθ2.

Proof. As similar before it is clear that Tp3 =−p2 by the relation (3.26). Now taking the derivative of this and considering the relations
given in (3.19), we have

dTp3

dsp3

dsp3

ds
=−p2

′

DTp3
Tp3 =

θ ′

‖W‖
p1− p3. (3.29)

By taking the norm and using the relations in (3.22), we complete the proof by

kp3 =

√
1+
(

θ ′

‖W‖

)2

=
√

1+ cot2θ2

= cscθ2.

Theorem 3.26. If µp1 , µp2 and µp3 denote the geodesic curvatures of p1, p2 and p3 indicatrices according to S2, then they are defined as
following:

µp1 = tanθ2, µp2 =
θ2
′

‖W2‖
, µp3 = cotθ2, (3.30)

respectively.

Proof. By using the Gauss equation in (2.7) and the relation (3.27), we can write

D̄Tp1
Tp1 = DTp1

Tp1 +
〈
S
(
Tp1

)
,Tp1

〉
p1,

=
‖W‖

θ ′
p3.

Now taking the norm of this and using (3.22) result

µp1 =
‖W‖

θ ′
= tanθ2.

By referring this time, the relation (3.28) with again the Gauss equation (2.7), we have the following:

D̄Tp2
Tp2 = DTp2

Tp2 +
〈
S
(
Tp2

)
,Tp2

〉
p2,

=
θ2
′ sinθ2 p1 +θ2

′ cosθ2 p3

‖W2‖
.
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Here, if we take the norm, then

µp2 =
θ2
′

‖W2‖
.

Lastly, when considered (3.29) with (2.7), we obtain

D̄Tp3
Tp3 = DTp3

Tp3 +
〈
S
(
Tp3

)
,Tp3

〉
p3,

=
θ ′

‖W‖
p1.

By the norm of this and the relation (3.22), we find

µp3 =
θ ′

‖W‖
= cotθ2,

which completes the proof.

Example 3.27. Let us consider a simple twisted cubic curve as α(s) =
(
s,s2,s3). The corresponding Frenet apparatus and the Darboux

vector of α = α(s) are as fallows

T (s) =

(
1,2s,3s2)

√
9s4 +4s2 +1

, N(s) =

(
−s
(
9s2 +2

)
,−9s4 +1,3s

(
2s2 +1

))√(
9s4 +4s2 +1

)(
9s4 +9s2 +1

) , B(s) =

(
3s2,−3s,1

)
√

9s4 +9s2 +1
,

κ(s) =
2
√

9s4 +9s2 +1(
9s4 +4s2 +1

) 3
2
, τ(s) =

3
9s4 +9s2 +1

, W (s) =

(
3,6s,9s2)(

9s4 +9s2 +1
)√

9s4 +4s2 +1
+

(
6s2,−6s,2

)(
9s4 +4s2 +1

) 3
2
.

According to the propositions (3.1) and (3.13), the spherical indicatrix curves of {e1, e2, e3} and {g1, g2, g3} Sannia frames and {T, N, B}
Frenet frame are same and these are illustrated in figure 3.1.

(a) e1−, g3− and T− indicatrix curve (b) e2−, g2− and N− indicatrix curve (c) e3−, g1− and B− indicatrix curve

Figure 3.1: Spherical indicatrix curves of {e1, e2, e3} and {g1, g2, g3} Sannia frames and {T, N, B} Frenet frame

On the other hand, according to the propositions (3.3) and (3.17), the parametric form of the spherical indicatrix curves by { f1, f2, f3} and
{p1, p2, p3} Sannia frames on the striction curve of the principal normal and unit Darboux ruled surface of α are given in the following:

f1(s) = p3(s) =

(
−s
(
9s2 +2

)
,−9s4 +1,3s

(
2s2 +1

))
√

9s4 +4s2 +1
√

9s4 +9s2 +1
,

f2(s) =−p2(s) =

(
729s10 +486s8−18s6−126s4−27s2−2,−s

(
1053s8 +1296s6 +702s4 +144s2 +13

)
,

486s10 +729s8 +378s6 +6s4−18s2−3

)
√(

9s4 +9s2 +1
)(

9s4 +4s2 +1
)(

9477s12 +17496s10 +15795s8 +7380s6 +1755s4 +216s2 +13
) ,

f3(s) = p1(s) =

(
3
(
18s6 +27s4 +6s2 +1

)
,−30s3,81s6 +54s4 +27s2 +2

)
√

9477s12 +17496s10 +15795s8 +7380s6 +1755s4 +216s2 +13
,

and the illustration of these curves are presented in figure 3.2.
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(a) f1− and p3− indicatrix curve (b) f2− and p2− indicatrix curve (c) f3− and p1− indicatrix curve

Figure 3.2: Spherical indicatrix curves of both { f1, f2, f3} and {p1, p2, p3} Sannia frame
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[5] Gökyeşil, D.Characterizations Of Some Curves According To Dual Bishop Frame In Dual Space. Master Thesis, Manisa Celal Bayar University, The

Institute of Science, Manisa, 2018.
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