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Abstract

In this study, we have first provided the relations between the Frenet frame and Sannia frame on the striction points of four ruled surfaces of
each formed by taking the basis as the tangent, normal, binormal and Darboux vector. Second, we have defined the relations between the
Sannia vectors and their derivatives. For each Sannia frame, we have calculated the Darboux frame and expressed those in terms of Frenet
frame. Last, we have obtained the arc lengths and the geodesic curvatures according to both Euclidean space E3 and unit sphere S2 of Sannia
vectors for each four of ruled surfaces.
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1. Introduction

We engage the curves in almost many areas of our daily life. For example, we see helix curves on DNA sequencing. The cornu spiral is used
in construction of highways, railways, metro or rail systems. The Catanery curve is used as a design of bridge or train tracks. We can give
so many examples like this. The frames on the other hand is an essential subject in the curve theory. The most used is the Frenet frame.
Researchers define some associated curves by using the vectors of Frenet frames and characterize them as a special curve. Some of those are
known as the involute-evolute curves, Bertrand curves, Mannheim curves. If a curve lacks of the second derivative, then the Frenet frame
cannot be established. Therefore Bishop (1975) defined an another frame and provided the corresponding relations between his frame and
Frenet frame in [2]. In Euclidean space, E>, a spherical indicatrix curve is defined to be the locus of the end points of a unit vector settled at
the center of a sphere. The arc lengths and the geodesic curvatures of these curves were studied in [4]. The idea of spherical indicatrix was
extended to the Minkowski space in [3]. By using Bishop frame instead Frenet, the spherical indicatrices were given in [11]. As an extension
of this to the dual space, the spherical indicatrix curves were defined according to the Dual Bishop frame in [S]. There are other studies that
the spherical curves were considered in different spaces and related with some associated curves [1, 9, 10].

Motivated by these, in this study we have first established the relations between the Sannia and Frenet frame by using the Darboux vector
defined by Frenet vectors. Next we have defined the derivative relations of the vectors of Sannia frame. And last, we have calculated the
arclengths and the geodesic curvatures of spherical indicatrices of Sannia vectors.

2. Preliminaries

In this section, we recall some basic concepts that will be used throughout the paper. Let @ = o(s) be any differentiable curve in three
dimensional Euclidean space E>. The curvatures and the Frenet vectors of o together with the corresponding Frenet formulae are given as

o (s) o/ (s) A (s)
T(s)=+——~, B(s)=+——~——+%, N(s)=B(s)AT(s), 2.1
o (s) ] o (s) A (s) |
//\ " //\ 1 n
e e na e o
[l o/ Ae|]
T'=kvN, N =-«xvT+tvB, B'=—1wN, |d|[=v, (2.3)
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where v = || o||, x is the curvature and 7 is the torsion of the curve [7]. It is known that the Frenet vectors rotate instantaneously along the
curve and this instantaneous rotation happens around an axis spanned by a vector. This vector is called as Darboux vector and according to
the definition, it has the following form:

W =1T +«B 24
However, if 0 is taken to be the angle between the vectors B and W, then we may write,

K=|W|cosB, 7=|W]|sin6, (2.5)
and may correspondingly derive the unit Darboux vector as

C = sin0T + cosOB. 2.6)

Now let us consider M as a surface in E3, and denote &, S and D as the normal of surface, the shape operator and Riemann connection,
respectively. For X,Y € x (M), the following operation,

DxY =DxY +(S(X),Y) & 2.7

is called as the Gauss equation where the operand D is the derivative operator in Gauss sense. The geodesic curvature according to the E3 is
defined as

ke = |DrT|| (2.8)
while it is expressed as
& =IDrT| (2.9)

according to S, where T is the tangent vector at the point s of a(s).
On the other hand, if specifically the given surface is taken to be as a ruled surface then a parametrization to this is given by

X (s,v) = a(s) +vr(s), (2.10)

where o is called as the base curve and r(s) is the director curve. Moreover, the foot of the common perpendicular to two neighbor rulings
on main ruling is known as the striction (or central) point. Therefore, the locus of these points are called as the striction curve. The equation
of the striction curve on a given ruled surface, X (s, v) is given by [7]

a/7 r/
Bls) = () - <H '|\2> @1
r
If the base curve is chosen to be the predefined striction curve, then we may write the following ruled surface as
X (s,v) = B(s) +vr(s). (2.12)

It is known that there exists an orthonormal system denoted by {e;,e>,e3} on the striction curve where the unit vectors e;, (i = 1,2,3) are
defined as
/
€1
el =r, ezzm, e3 =e|1Nep. (2.13)
€

Such an orthonormal system is known as Sannia Frame [8]. (Gustavo Sannia was an Italian mathematician lived in 1875-1930.) If k; and &,
are taken to be the curvatures of the striction curve, then the Frenet formulae wise derivative changes are given by

6/1 = k1e2, 6/2 = —kje +k2€3, eg = —kpep. (2.14)

3. Spherical indicatrix curves generated by Sannia frame

In this section, we first form a set of ruled surfaces by choosing the directors as the each element of Frenet frame and the Darboux vector of a
given curve. Then, we calculate the corresponding striction curves of every ruled surface and construct the Sannia frame on these curves. By
considering the unit vectors of Sannia frame for each case, we define the spherical indicatrix curves and calculate their arc lengths and the
geodesic curvatures.

Proposition 3.1. Let {e},ey,e3} denote the Sannia frame on the striction curve of the ruled surface that is swept out by the tangent vector
of . Then the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

e1=T, ey =N, e3=Bh. 3.1
Proof. By the definition given in (2.13), the proof is trivial. O

Remark 3.2. Note that the spherical indicatrix curves generated by {ey,e,e3} Sannia frame is same as the spherical indicatrices of Frenet
frame. The characterizations of the spherical indicatrices of Frenet vectors can be found in [6].

Proposition 3.3. Let {f1, f2, f3} denote the Sannia frame on the striction curve of the ruled surface that is swept out by the normal vector
of a. Then the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

fi =N, f»=—cosOT +sin OB, f3=sinOT +cosOB 3.2)

where 0 is the angle between B and W.
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Proof. By the equation given in (2.11), we may define the striction curve of the surface ruled by principal normal as

K
——=N.
k2 +12

Bls) = a(s) +

Now by considering the definition of the ruled surface, Xy, it is clear that f{ = N. When referred the equations (2.5) and (2.13), the proof is
trivial for the vectors f> and f3. O

Theorem 3.4. The relationship between the vector elements, {f1, f», f3} of Sannia frame and their derivatives are given by the following:

A =xif, A=—xkifi+ufs, f=-1f. (3.3)

where k) = |W||, and 7 = 6’

Proof. If we take the derivatives of each vector f1, f2, f3 by considering the equations at (3.2) and referring the relation (2.5), then we
complete the proof by the following calculations:

f1=—xT+1B
= (Kcos0+ 7sinB) fr + (Tcos 6 — ksin 6) f3
V2t 2f
=Wl f2
=K1 /2,

f5=10'sin0T — (kcos 8 +TsinO)N + 0’ cos OB
=0'sin@ (—cosBf, +sinBf3) — (kcosO +Tsin0) f
+6'cosf (sin@f, +cosf3)
=—|Wllfi+6'fs
=-Kifi+1f3,

3 =6"cosOT + kNsin® — 6 sin OB — TN cos O
=0'cos0(—cosOf,+sinff;) —0'sin @ (sin@ f> +cos O f3)

=-0'f
=-Tif2.
O
Theorem 3.5. The Darboux vector denoted by Wy corresponding to the Sannia frame, {f1, f>, f3} is given by the following:
Wi =0"fi +[IW]| f3. 34

Proof. Let us express the Darboux vector W with the linear combinations of the vectors fi, f2, f3 as

Wi =x1fi+y1fa+afs,

where x1, y1, z1 € R. By taking into account the relations given in (3.3), the vector product of W; expressed by above with each fi, f>, f3
results the following:

WinNfi=hH'= -nfh+afh=W[f
=y=0, z1=|W|,
WiNfa=FH'=xfs—afi=|W|fi+6'f
=271 = HVVH7 X1 = 9,.
When substituted the coefficients x;, y;, z, the proof is complete. O
Corollary 3.6. If C, is taken to be the unit Darboux vector, then it is stated by means of Frenet vectors as following
Cy =sinO;N +cos 0, C, 3.5)

where 0y is the angle between C| and f3.
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Proof. By referring the relation (3.4), we may write C; as

o’ w
= . fi+ H2 [ s
VO WP /(o) + (1wl

Since 6 is the angle between C; and f3, we write

o’ w 0’
sinf) = ——————=, cos0; = ﬁ, 0, = arctan (m) , 3.6)

2 2 2 2

6"+ (W] (67 + W]

and therefore
Cy =sin 0y fi +cos 0 f3,
which completes the proof. O

Corollary 3.7. The spherical indiatrix curves of fi and f3 are two separate spherical involutes of the Cy spherical indicatrix curve.

Proof. The tangent vector of moving curve C; and the spherical indicatrix of C; is common. Since C; = Cj(s) is defined to be the unit
vector in the direction of Wy, the tangent of C; can be calculated by following:

ac . .
o= (sin61)'fi +(cos 61)'f3 +sin 6y (k1 f2) +cos 01 (~71./2)
= (sin )’ f; 4 (cos ;) f3 + (k1 sin @) — 7 cos 6;) f>

=0

= (sin @)’ f1 + (cos 01)' f3.

On the other hand, as the tangents of the spherical indicatrix of (1) and (f3) are given by

% =fi' =x1fa,

% =f'=—1uf,

we write

<%, %> =0 and <%, %> =0.

The latter expression clearly shows that (1) and (f3) are the spherical involutes of C;. O

Definition 3.8. In Euclidean space, E3, the curves traced out on the unit sphere by a radius of each unit vectors fi, fa, f3 on the B(s)
striction curve are called as f|— indicatrix, f,— indicatrix and f3— indicatrix curve and these are denoted by

Br(s)=fi(s),  Bpls)=rfals),  Bp(s)=f3(s). (3.7
The corresponding arc lengths of these curves are given as follows:
dﬁf] de] ’ del
it} i’ SR T, =
ds;, ds =T — =W
del
A w) 38)

=55 = [ IWlds,

dﬁfz de2 ’ dsfz /
U — =T =—||W 0
dsp, ds 5 s (W] f146'f3
dsfz 2
= = w o’ 3.9
ok fiwiP + (9)
=57, :/\/IIW|\2+6’ds,
dfy, dsy, dsy, ,
e Rl J =T, _ _p
dsg, ds 5 57 ds 2
Bh _ g (3.10)
ds

=s5p = /G'ds.
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Theorem 3.9. Let ky, denote the geodesic curvature of the f1— indicatrix, then it is defined by
kf =secH.
Proof. It is clear by the relation (3.8) that Ty, = f>. By taking the derivative of this and considering the relations (3.3), we write

del de] _

!
dsy, ds f

/

DT/‘u T, =—fi+ I

5. 3.11)

By taking the norm of the latter and referring the ralations given in (3.6), we complete the proof by following:

0’ \?2
Ky = H(f)
/i Il

=+/1+tan26,

=secH.

Theorem 3.10. Let ky, denote the geodesic curvature of the f,— indicatrix, then it is defined by
kfz = SeC 91 .
Proof. By using the relation (3.9), the tangent vector of f, — indicatrix curve can be given as
W o’
Ty, =— | 2H fit+ > f3-
JIwPR+e JiwP+er

We simplify this by referring the relations given in (3.6) as

sz = —cos 0, f; +sin b f3. (3.12)
If we take the derivative of this last expression and consider the relations (3.3) and (3.4), then we get

dTy, ds .
T =0/ sineyfi — Wil £+ 01 cos 64,

St ds
61'sin 6y f1 — Wil f2+ 61" cos 01 f3

Al ’

Dsz Tf2 =

_ 0 (3.13)
=t '

By taking the norm of the last expression, we complete the proof as like below

01/ )2
Ky = 1+(i
A Wi
= +/1+tan26,

= secO,.

Theorem 3.11. Let ky, denote the geodesic curvature of the f3— indicatrix, then it is defined by

kg, =cscy.

Proof. Itis clear by the relation (3.10) that Ty, = — f> By taking the derivative of this and considering the relations given in (3.3), we get
Ty, dsy, _

_ i
dsy, ds f2
W

Dy, Ty, = He,Hfl —f (3.14)

Similarly, by taking the norm and using the relations in (3.6), we obtain that

w2
kg =4/ 1+ (7
= /1+cot?6,

=csc Oy,

which completes the proof. O
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Theorem 3.12. The geodesic curvatures of f1, f> and f3 indicatrices according to S are given by

0/

—_— =cot6y, (3.15)
NG

Cp =tanby, Cp =
respectively.
Proof. By using the relations (2.7), (3.11), (3.13) and (3.14), we can write

Dr,, Ty, = D1, Tr, +(S(T1,) , Tp, ) fi

9/
= w3
Wil

Dr, Tj, = D1, Tp, + (S (T,) s T, ) f2
91’
=—C
wil !
Dy, T, = D1, Tp, + (S (Ty,) . Tp, ) f3

w
g

Now, by referring the relations in (3.6), the proof is straightforward. O

Proposition 3.13. Let {g|,g2,83} denote the Sannia frame along the striction curve & of the ruled surface, Xg(s,v) = a(s) +vB(s). Then
the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

g1=B, g=-N, g=T. (3.16)
Proof. The proof is straightforward, when considered the definition of Sannia frame given in (2.13). O
Theorem 3.14. The relationship between the Sannia vectors, {g1,82,83} and their derivatives are given by the following:

g’ =k, & =-Ka+ng &' =-no (3.17)
where Ko = T, and Th = K

Proof. By considering (3.16) and taking the derivatives of each {g;, g2, g3}, the proof is complete by following:

g1'=—TN =18 =K g,

g =—N =T — 1B = —108| + g3,

g =T =«xN=—kg =—ng.

Corollary 3.15. The Darboux vector of the Frenet frame of o is same as of the {g1, 82,83} Sannia Frame.

Corollary 3.16. The arc length and the geodesic curvatures according to both E3 and S? of each spherical indicatrices of tangent, normal
and binormal vectors of o are the same as of g3—, go— and g1 — indicatrices, respectively.

Proposition 3.17. Let {py, p2, p3} denote the Sannia frame along the striction curve ¥y of the ruled surface, Xc(s,v) = a(s) +vC(s). Then
the corresponding relationships between the elements of Sannia and Frenet frame are given as follows:

p1=sin0T +cosOB, py=cosOT —sinOB, p3z=N. (3.18)

Proof. By using the definition of striction curve given in (2.11) we write
1
Y(s) = a(s)— acos ocC.

It is clear from the definition of the ruled surface X¢(s,v) that p; = C(s). By referring both (2.5) and (2.13), one can easily calculate p, and
p3. O

Theorem 3.18. The relationship between the Sannia vectors, {p1, p2, p3} and their derivatives are given by the following:

pi'=Kkspa, p'=-kpi+wmps, pi=-wmps (3.19)

where k3 = 0’ and 73 = |W||.
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Proof. When taken the derivatives of each vector p, py, p3 and considered the equations given in (2.5) and (3.18), the proof is done with
the following:

p1’ =6'cosOT + (ksinh —tcos @) N — 0'sin OB

N— ——
-0

=0'cos B (sinBp; +cosOp;) —0'sin B (cosOp; —sinBpy)

=60'p

= K3p2,

p2) =—6'sinOT + (kcos O + TsinO) N — 6’ cos OB
= —6'sin 6 (sinOp| +cosOp;) + (kcos @ + Tsin 6) p3
—6'cos B (cosOp; —sinOp,)
=—6'p1 + W/ p3
= —K3p1 +13P3,
p3’ = —xT+1B
= —xk(sin@p +cosOp;y)+ T (cosOp; —sinHp;)

=—[Wllp2
= —T3p2.
O
Theorem 3.19. The unit Darboux vector Wy of corresponding Sannia frame, {p1, p2, p3} is given by
Wy = |[W| p1 +6'ps. (3.20)

Proof. The Darboux vector, W, can be expressed as the linear combination of {py, p2, p3} as

Wo =xap1 +y2p2 + 2203,

where x;, y2, z2 € R. When considered the relation (3.19) and applied the vector production of W, with each py, p», p3 the corresponding
coefficients can be found as

WaApi=pi' = —vp3+2p2=6'p
=0n=0, =0,
WaApa=p2' = xap3s—zap1 = —6'p1 + W] p3
=x =W,
which completes the proof. O
Corollary 3.20. If C, is considered to be the unit Darboux vector, then by means of Frenet vectors, it has the following equation:
Cp = sin6,C +cos BN, 3.21)
where 0, is the angle between C, and ps3.
Proof. By referring the relation (3.20), it is easy to write C as

W]l

_ (%) - n o’
N 1 2 273
(002 + W] (02 + W]

Now since 6 is the angle between C; and p3, we may write

G

sinf@, = [l , cosB, = 97/, 6, = arctan ( HW”) . (3.22)
(67 + W (67 + W o

Hence

Cy =sinBypi +cos O p3,

which completes the proof. O

Corollary 3.21. The spherical indiatrix curves of p and p3 are two separate spherical involutes of the Cy spherical indicatrix curve.
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Proof. The tangent vectors of moving curve C, and the spherical indicatrix of C; are common. Since the curve (C;) with C; = Cy(s) is
defined to be the unit vector in the direction of W5, the tangent vector of (C;) can be calculated by following:

Cy =sinByp +cos b, p3,

dcC: . .
7; = (sin6y)'p1 + (cos 62)' p3 +sin 63 (k2 p2) + cos 2 (—T2p2)

= (sin6)'py + (cos 6,) p3 + (K sin B, — Trc0s 6;) po

-0

= (sin6)'py + (cos 6,) p3.
On the other hand, since the tangents of the spherical indicatrix of (p;) and (p3) are
dpy

ds

dp3_ ’
ds =p3 = —0p2.
S

!/
=p1 =Kp2,

Thus, we write
dCy dp . dCy dp3 _
<ds’ds =0, and ds ’ ds =0
This clearly means that (p;) and (p3) are two spherical involutes of C,. O

Definition 3.22. In E3, the curves traced out on the unit sphere by a radius of each unit vectors py, pa, p3 of the striction curve Y(s) are
called as p1— indicatrix, py— indicatrix and p3— indicatrix curve and we denote them as

You () =p1(s), Voo (s) =p2(s), ¥ps(s)=p3(s). (3.23)

The arc lengths of these curves are calculated as like below:

d¥p, dsp, / dsp, !
L] Bpsd NG =6
dSp] ds pP1 p1 ds P2
dSpl 12
s (3.24)
:>sp| :/G’ds,
dy,, ds ds
sz TIS’Z =p' =T, diz =—0'p1 +|W| p3
P2
d
= =P+ -
= s = [\IWIF+ 0'ds.
dyp, dsp, / dsps
: =p3 =T, ——==—|w
dsp, ds } P ds Wie:
ds
=0 =Wl -

= Spy = /\|W||ds.
Theorem 3.23. Let kp, denote the geodesic curvature of the p1— indicatrix, then it is defined by
kp, =sec6.

Proof. By the relation (3.24) it is clearly seen that T, = p;. By taking the derivative of this and considering the relations (3.19), we write

dTp dsp,
ds, ds P
P1
w
Dr, Tp, = —p1 + ”67/”],3. (3.27)

Next taking the norm of the latter and referring the ralation in (3.22), complete the proof as following:

0 \?
K = 1+(i)
. W]

=+/1+tan26,

=sec0,.
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Theorem 3.24. Let kp, denote the geodesic curvature of the p,— indicatrix, then it is given by

0,/ )2
ky, = 1+(— .
P [[Wa|

Proof. By the relation (3.25), the tangent vector of p; — indicatrix curve is written as
. Il

P = > p1+ 5 p3-
JIwP+or /iwf>+er

We may express this by considering (3.22) as

Ty, = —cosbhp| +sinbp3.

If we take the derivative of the above expression with respect to s and consider the relations (3.19) and (3.20), then we get

dTy, dsp,

d = 6,'sin6yp; — [|Wa| p2+ 62" cos 623
Sp, ds
Dy 7. — 8/ sin6p1 —[Wal| pr+6,'cos 63p3

e Wil ~

”

(3.28)

Taking the norm as a last step, we get

6, )2
1 (V)
P (W]

and complete the proof. O

Theorem 3.25. Let kp, denote the geodesic curvature of the p3— indicatrix, then it is defined by
kp, =csc 6.

Proof. As similar before it is clear that T, = —p, by the relation (3.26). Now taking the derivative of this and considering the relations
given in (3.19), we have

dTp, dspy /

ds,. ds P
P3

!

0
D];]3 TPS = mp] — P3- (329)

By taking the norm and using the relations in (3.22), we complete the proof by

0’ \?2
kpy =4[ 1+ [ ——
P +(ku)

=+/1+cot26,

=csc ;.
O

Theorem 3.26. If L, Up, and Wy, denote the geodesic curvatures of p1, ps and p3 indicatrices according to S2, then they are defined as
following:

6,
Up, =tan6, Uy, = W, Up; = cotBs, (3.30)

respectively.
Proof. By using the Gauss equation in (2.7) and the relation (3.27), we can write

DT,” Ty = DTp] Tp + <S (TPI) i Ipy >p1,
_ vl
=g P
Now taking the norm of this and using (3.22) result

Wl

Hp, = 7 = tan@z.
By referring this time, the relation (3.28) with again the Gauss equation (2.7), we have the following:
Ty, = Dsz Tp, + <S (sz) 7sz>p27

o 92, sinG,p; + 92/COS 6,p3
IWa

Dr

P2
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Here, if we take the norm, then

6,

Hp, = -
L

Lastly, when considered (3.29) with (2.7), we obtain

DTp3 Tp, =Dy, Tps + (S(Tps) s Tps) P3s
9/
= mpl-

By the norm of this and the relation (3.22), we find

/

=-—— =cotbh,
Wi

Hps
which completes the proof. O

Example 3.27. Let us consider a simple twisted cubic curve as o.(s) = (s7s27 s3). The corresponding Frenet apparatus and the Darboux

vector of & = a(s) are as fallows

T(S):M7 N(s) = (_5(952‘1‘2),—9S4—i-1,3s(252—0—1))7 B(s :M7
VOt AT JOA a2+ 1) 0 92+ 1) N
1((5):%\/T+17 T(s):#, W(s) = (3,6s,952) N (652,—6572)3‘
(9s* +4s2 4 1) st 9T (05 +92 - ) VOTHA2 T (o6t 442 1)

According to the propositions (3.1) and (3.13), the spherical indicatrix curves of {ey, e», e3} and {g1, g2, g3} Sannia frames and {T, N, B}
Frenet frame are same and these are illustrated in figure 3.1.

h L’

(a) e;—, g3— and T — indicatrix curve (b) ex—, g2— and N— indicatrix curve (c) e3—, g1— and B— indicatrix curve

Figure 3.1: Spherical indicatrix curves of {e|, e2, e3} and {g1, g2, g3} Sannia frames and {T, N, B} Frenet frame

On the other hand, according to the propositions (3.3) and (3.17), the parametric form of the spherical indicatrix curves by { f1, f2, f3} and
{p1,P2,P3} Sannia frames on the striction curve of the principal normal and unit Darboux ruled surface of & are given in the following:

(fs (9s2 +2) ,—9s*+1,3s (2s2 + 1))
Vst +452 +1V9s* + 952 + 1
( 729510 4 48658 — 1850 — 1265 — 275> — 2, —s (1053s8 + 129650 +7025* + 1445 + 13) , >
4865'0 +7295% +3785° + 65 — 1857 — 3
\/ (954 +952 1) (95* + 452 + 1) (9477512 4+ 17496510 + 1579558 + 738056 + 175554 +21652 + 13) 7
(3 (185° +27s* + 657 + 1), —30s%,815% + 545* +275% + 2)
fals) = p1(s) = V9477512 417496510 + 1579558 4738056 + 1755s5% 421652 + 13

fi(s) = p3(s) =

fas) = —pa(s) =

and the illustration of these curves are presented in figure 3.2.



232

Konuralp Journal of Mathematics

e H

(a) fi— and p3— indicatrix curve (b) f>— and p,— indicatrix curve (¢) f3— and p;— indicatrix curve

Figure 3.2: Spherical indicatrix curves of both {f1, f2, f3} and {p1, p2, p3} Sannia frame

References

Bilici, M. The Curvatures and the natural lifts of the spherical indicator curves of the involute-evolute curve. Master Thesis, Ondokuz May1s University,
The Institute of Science, Samsun, 1999.

Bishop, R.L. There is more than one way to Frame a curve. American Mathematical Monthly, 82(3), (1975), :246-251.

Capin, R. Spherical Indicator Curves In Minkowski Space. Master Thesis, Gaziantep University, The Institute of Science, Gaziantep, 2016.

Fenchel, W. On The Differential Geometry of Closed Space Curves, Bulletin of American Mathematical Society, 57, (1951), (44-54).

Gokyesil, D.Characterizations Of Some Curves According To Dual Bishop Frame In Dual Space. Master Thesis, Manisa Celal Bayar University, The
Institute of Science, Manisa, 2018. .

Hacisalihoglu, H. H., Diferensiyel geometri, Cilt I-1I, AnkaraUniversitesi, Fen Fakiiltesi Yayinlari, 2000.

O’Neill, B., Semi Riemannian geometry with applications to relativity, Academic Press, Inc. New York, 1983.

Pottmann, H., and Wallner, J. Computational line geometry. Springer Science & Business Media, 2009.

Senyurt, S. Natural lifts and the geodesic sprays for the spherical indicatrices of the Mannheim partner curves in E°. International Journal of Physical
Sciences, 7(23), (2012), 2980-2993.

Senyurt S. and Ozgiiner Z. The Natural Lift Curves And Geodesic Curvatures Of The Spherical Indicatrices Of The Bertrand Curve Couple. Ordu Univ.
J. Sci. Tech., 3(2), (2013), 58-81.

Yilmaz, S., Ozyilmaz, E. and Turgut, M. New Spherical Indicatrices and Their Characterizations. An. St. Univ. Ovidius Constanta, 18(2), (2010),
337-354.



	Introduction
	Preliminaries
	Spherical indicatrix curves generated by Sannia frame

