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Abstract

In this paper, we will consider a class of even order neutral differential equations with several delays and adequate conditions are obtained for
the oscillation of solutions. Results of this work extended and improved the oscillatory results studied in [20] with several delays. Examples
are specified to illustrate the main results.
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1. Introduction

This study concerned with the oscillation of solutions to a class of even order neutral differential equations with several delays of the form

dn

dtn [x(t)+ p(t)x(τ(t))]+
m

∑
j=1

q j(t)x(σ j(t)) = 0, (1.1)

where t ≥ t0 for some positive constant t0, m is natural number, and n≥ 4 is an even natural number.
We assume without further mention that

(H1) p,q j ∈C([t0,∞),R), p(t)> 0, q j(t)≥ 0, q j(t) is not identically zero for large t, j = 1,2, . . . ,m;
(H2) τ , σ j ∈C([t0,∞),R); τ(t)≤ t, σ j(t)≤ t and τ,σ j are invertible with

limt→∞ τ(t) = limt→∞ σ j(t) = ∞; j = 1,2, . . . ,m.

Let t∗ = min
t∈[t0,∞)

{
τ(t),σ j(t)

}
; j = 1,2, . . . ,m.

1.1. Review of Literature

Differential equations play an innovative role in the development of science, machinery and social sciences. Differential equation is an
effective tool in mathematics to describe the changes happening in every stages of nature. Numerous phenomena in these branches have
mathematical models in expressions of differential equations. The consequence of differential equations lies in the plenty of the incidences
and their effectiveness in understanding the sciences. While describing a physical phenomena by differential equations, that the future state
of the system is determined by the present circumstances. On various incidents, the present state of a system depends on some previous
history. If we consider this approach while modeling, we end up with another class of equations called delay differential equations.

Various techniques appeared for the investigation of solutions of differential equations. Once the existence of a solution for differential
equation is established, the next question in the study is: How does solution behave with the growth of time? These constitute the study
of asymptotic behavior of solutions of differential equations. The asymptotic behavior of differential equations has been studied by many
authors with different methods, see for example [6, 7, 10, 17, 21, 23, 28], and the references cited therein. Asymptotic behavior means
behavior of solutions as time variable goes to infinity. This tacitly assumes that solutions can be extended to infinity. The concept of
asymptotic behavior of solutions to differential equations is rich and multifaceted, oscillatory behavior is only one of possible types of
asymptotic behavior, in this case all solutions have a sequence of zeroes.
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The existence and location of the zeros of solutions of ordinary differential equations are of central significance in the theory of boundary
value problems for such equations and the first essential result by Sturm [29] was the celebrated comparison theorem. Protter [26], Clark and
Swanson [9] extended comparison theorems for elliptic differential equations. These results were integrated in the monograph [30]. Also this
monograph contains the arguments about comparison and oscillation theorems of Reid, Levin, Nehari, Hille, Wintner, Leighton, Hartman,
Kneser, Courant and Hanan. The oscillation theory of ordinary differential equations marks its commencement with the manuscript of
Sturm [29] in 1836 appeared in which theorems of oscillation and comparison of the solutions of second order linear homogeneous ordinary
differential equations were proved. The first oscillation result for differential equations with translated arguments were obtained by Fite [13]
in 1921.

In recent years, there has been growing interest in oscillation theory of functional differential equations of neutral type [1, 2, 12, 14, 15, 33, 34]
and the references cited therein. To the best of the authors’ knowledge, the first step toward a systematic investigation of the second kind was
taken by Ruan [27] who studied the existence of non-oscillatory solutions of second-order equations of the form (1.1). Our study here is
related to the recent work of T. Li and Y. V. Rogovchenko [20] which is one of the first attempts in a systematic investigation of oscillatory
properties of higher order neutral equations. Recently, many results on oscillation of non-neutral differential equations and neutral functional
differential equations have been established. Philos [24] established some Philos-type oscillation criteria for a second-order linear differential
equation. In [11, 16, 18, 31], the authors gave some sufficient conditions for oscillation of all solutions of second-order half-linear differential
equations. Distinctively, Baculı́ková and Džurina [3] presented some sufficient conditions for oscillation of the second-order differential
equations with mixed arguments.

It is known that determination of the signs of the derivatives of the solution is necessary and causes a significant effect before studying the
oscillation of delay differential equations. The other essential thing is to establish relationships between derivatives of different orders, which
may lead to additional restrictions during the study. In odd-order differential equations, in some cases, it is difficult to find relationships
between derivatives of different orders. Therefore, it can very easily be observed that differential equations of odd-order received less
attention than differential equations with even-order. The theoretical background of the second order and even order equations are nearly
common and in this direction, we can study oscillatory behavior of even order equations.

1.2. Outline of the study

This paper is organized as follows: In Section 1.3, we present the definitions, notations and results that will be needed. In Section 2, we
discuss the main results of the problem (1.1). In Section 3, we present two examples to illustrate the main results. The results obtained in this
paper expand and improve the results studied in [20]. Finally Section 4, provides conclusion of the present work.

1.3. Preliminaries

In this section, we begin with definitions, notations and well known results which are required throughout this paper.

By a solution of (1.1), we mean a function x ∈C([t∗,∞),R) such that z ∈Cn([t0,∞),R) and x(t) satisfies (1.1) on [t0,∞). In what follows,
we suppose that solutions of (1.1) exist and continuable to infinity to the right. Furthermore, we consider only solutions x(t) of (1.1) which
satisfy sup {|x(t)| : t ≥ T} > 0 for all T ≥ t0 and we assume that Eq. (1.1) possesses such solution. A solution x(t) of (1.1) is said to be
oscillatory if it has no last zero, i.e., if x(t1) = 0, then there exist an t2 > t1 such that x(t2) = 0. Eq. (1.1) itself is said to be oscillatory if
every solution of (1.1) is oscillatory. A solution x(t) which is not oscillatory is called non-oscillatory.

Numerous interesting oscillation criteria for the equations of the type (1.1) studied in [4, 5, 19, 32] have been reported in the recent papers
under the assumptions that

0≤ p(t)≤ p0 < ∞, τ ◦σ j = σ j ◦ τ, j = 1,2, . . . ,m (1.2)

τ ∈C1([t0,∞),R) and τ
′(t)≥ τ0 > 0.

For our further reference, we denote and assume that τ−1 and σ
−1
j for the inverse functions of τ and σ j along with f+(t) = max{0, f (t)},

Q(t) = min
{

q j(t),q j(τ(t))
}

, Q̄(t) = min
{

q j(σ
−1
j (t)),q j(σ

−1
j (τ(t)))

}
, j = 1,2, . . . ,m, and that

I1(t) = t− t1; t1 > t0, Ii(t) =
∫ t

t1
Ii−1(s)ds; i = 2,3, . . . ,n−1,

J∗2 (t) =
∫

∞

t
τ
′(u)

∫
∞

u
Q(s)dsdu, J∗i (t) =

∫
∞

t
τ
′(s)J∗i−1(s)ds; i = 3,4, . . . ,n,

Q∗n−1(t) = Q(t)In−1(σ j(t)),

Q∗i (t) =
1
i!
(τ−1(σ j(t))− t1)iJ∗n−1−i(τ

−1(t)); i = 1,2, . . . ,n−3,

p∗(t) =
1

p(τ−1(t))

[
1− (τ−1(τ−1(t)))(n−1)/l?

(τ−1(t))(n−1)/l? p(τ−1(τ−1(t)))

]

and

p∗(t) =
1

p(τ−1(t))

[
1− (τ−1(τ−1(t)))1/l?

(τ−1(t))1/l? p(τ−1(τ−1(t)))

]
.
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Theorem 1.1. ([1, Theorem 2.2]) Let conditions (H1) and (H2) be satisfied. Suppose further that σ(t)≤ τ(t),

τ ∈C1([t0,∞),R), τ
′(t)> 0 and 1− (τ−1(τ−1(t)))n−1

(τ−1(t))n−1 p(τ−1(τ−1(t)))
≥ 0. (1.3)

If there exist functions ρ , δ ∈C1([t0,∞),(0,∞)) such that

∫
∞

[
ρ(t)q(t)p∗(σ(t))

(τ−1(σ(t)))n−1

tn−1 − (n−2)!
4λ0

(ρ ′+(t))
2

tn−2ρ(t)

]
dt = ∞

for some λ0 ∈ (0,1) and

∫
∞

[
δ (t)

(n−3)!

∫
∞

t
(η− t)n−3q(η)p∗(σ(η))

τ−1(σ(η))

η
dη−

(δ ′+(t))
2

4δ (t)

]
dt = ∞,

then Eq. (1.1) is oscillatory.

Theorem 1.2. ([5, Corollary 2.8], [32, Corollary 2.14]) Assume that 0≤ p(t)≤ p0 < ∞, τ ∈C1([t0,∞),R), τ ′(t)≥ τ0 > 0, and that the
assumptions (H1) and (H2) hold. If σ is invertible with σ−1 ∈C1([t0,∞),R), (σ−1(t))′ ≥ σ0 > 0, σ(t)< τ(t) and

τ0σ0

(τ0 + p0)(n−1)!
liminf

t→∞

∫ t

τ−1(σ(t))
Q̄(s)sn−1ds >

1
e
,

then Eq. (1.1) is oscillatory.

Theorem 1.3. ([4, Corollary 2]) Suppose that J∗n (t0) = ∞ and the assumptions (H1), (H2) and (1.2) hold. If σ(t)< τ(t) and

τ0

τ0 + p0
liminf

t→∞

∫ t

τ−1(σ(t))
Q∗i (s)ds >

1
e

for i = 1,2, . . . ,n−1, then Eq. (1.1) is oscillatory.

The objective of this paper is to derive a new oscillation criteria for Eq. (1.1) that improve Theorems 1.1-1.3. In the sequel, all functional
inequalities are supposed to hold for all t large enough. Without loss of generality, we deal only with positive solutions of Eq. (1.1), since
under our assumptions, if x(t) is a solution, so is −x(t).

2. Main Results

We need the following lemmas to prove our results.

Lemma 2.1. (Philos [25]). Let f ∈Cn([t0,∞),(0,∞)). If the derivative f (n)(t) is eventually of one sign for large t, then there exist a tx ≥ t0
and an integer l, 0≤ l ≤ n with n+ l even for f (n)(t)≥ 0, or n+ l odd for f (n)(t)≤ 0 such that
l > 0 yields f (k)(t)> 0; t ≥ tx, k = 0,1, . . . , l−1 and
l ≤ n−1 yields (−1)l+k f (k)(t)> 0; t ≥ tx, k = l, l +1, . . . ,n−1.

Lemma 2.2. ([2], Lemma 2.2.3) Let f ∈Cn([t0,∞),(0,∞)), f (n)(t) f (n−1)(t) ≤ 0 for t ≥ t∗, and assume that limt→∞ f (t) 6= 0. Then for
every λ ∈ (0,1) there exists a tλ ∈ [t∗,∞) such that

f (t)≥ λ

(n−1)!
tn−1| f (n−1)(t)|

for all t ∈ [tλ ,∞).

Lemma 2.3. ([8], Lemma 1) Suppose that the function h satisfies h(i)(t)> 0, i = 0,1, . . . ,k, and h(k+1)(t)≤ 0 eventually. Then for every
l? ∈ (0,1),

h(t)
h′(t)

≥ l?t
k

for t large enough.

Lemma 2.4. Suppose that x(t) is an eventually positive solution of (1.1), let

z(t) = x(t)+ p(t)x(τ(t)).

Then there exists a number t1 ≥ t0 such that

z(t)> 0, z′(t)> 0, z(n−1)(t)> 0 and z(n)(t)≤ 0, t ≥ t1.

Proof. The proof is subsequent from Lemma 2.3 in [22] with the application of Lemma 2.1 in the present paper.

The following is the main result of the paper.
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Theorem 2.5. Let conditions (H1), (H2) and (1.3) be satisfied. Suppose that there exist functions η j ∈C([t0,∞),R) and ξ j ∈C1([t0,∞),R),
satisfying η j(t)≤ σ j(t), η j(t)< τ(t), ξ j(t)≤ σ j(t), ξ j(t)< τ(t), ξ ′ j(t)≥ 0 and limt→∞ η j(t) = limt→∞ ξ j(t) = ∞; j = 1,2, ...,m. If there
exists a constant λ0 ∈ (0,1) such that the following two first order delay differential equations

y′(t)+
λ0

(n−1)!

m

∑
j=1

q j(t)p∗(σ j(t))(τ−1(η j(t)))n−1y(τ−1(η j(t))) = 0 (2.1)

and

w′(t)+
1

(n−3)!

(∫
∞

t
(s− t)n−3

m

∑
j=1

q j(s)p∗(σ j(s))ds

)
τ
−1(ξ j(t))w(τ−1(ξ j(t))) = 0 (2.2)

are oscillatory, then Eq. (1.1) is oscillatory.

Proof. Assume that Eq. (1.1) is not oscillatory and x(t) be a non-oscillatory solution of it. Without loss of generality, we may assume that
x(t) is eventually positive. It follows from (1.1) that

zn(t) =−
m

∑
j=1

q j(t)x(σ j(t))≤ 0. (2.3)

Then, using Lemma 2.4, we conclude that there are two possible cases for the behavior of z and its derivatives for large t:

Case (i) z(t)> 0, z′(t)> 0, z′′(t)> 0, z(n−1)(t)> 0, z(n)(t)≤ 0: Then we have

lim
t→∞

z(t) 6= 0,

and, by virtue of Lemma 2.2, for every λ ∈ (0,1) and for a large t, we have

z(t)≥ λ

(n−1)!
tn−1z(n−1)(t). (2.4)

It follows from the definition of z(t) that

x(t) =
1

p(τ−1(t))

[
z(τ−1(t))− x(τ−1(t))

]
=

z(τ−1(t))
p(τ−1(t))

− 1
p(τ−1(t))

[
z(τ−1(τ−1(t)))
p(τ−1(τ−1(t)))

− x(τ−1(τ−1(t)))
p(τ−1(τ−1(t)))

]
≥ z(τ−1(t))

p(τ−1(t))
− 1

p(τ−1(t))
z(τ−1(τ−1(t)))
p(τ−1(τ−1(t)))

. (2.5)

Then, by Lemma 2.3,

z(t)
z′(t)

≥ l?t
n−1

,

and we deduce that(
z(t)

t(n−1)/l?

)′
=

tz′(t)− ((n−1)/l?)z(t)
t((n−1)/l?)+1

≤ 0. (2.6)

Hence, z(t)/t(n−1)/l? is nonincreasing for sufficiently large t.
Using the condition τ−1(t)≤ τ−1(τ−1(t)) and (2.6), we conclude that

z(τ−1(τ−1(t)))≤ (τ−1(τ−1(t)))(n−1)/l?

(τ−1(t))(n−1)/l?
z(τ−1(t)). (2.7)

Using (2.7) and (2.5) we obtain

x(t)≥ z(τ−1(t))
p(τ−1(t))

[
1− (τ−1(τ−1(t)))(n−1)/l?

(τ−1(t))(n−1)/l? p(τ−1(τ−1(t)))

]
= p∗(t)z(τ−1(t)). (2.8)

Subsequently, substituting (2.8) into (2.3) yields

z(n)(t)+
m

∑
j=1

q j(t)p∗(σ j(t))z(τ−1(σ j(t)))≤ 0.

Using conditions η j(t)≤ σ j(t) and z′(t)> 0, we conclude that

z(n)(t)+
m

∑
j=1

q j(t)p∗(σ j(t))z(τ−1(η j(t)))≤ 0. (2.9)
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It follows from (2.4) and (2.9) that for all λ ∈ (0,1),

z(n)(t)+
λ

(n−1)!

m

∑
j=1

q j(t)p∗(σ j(t))(τ−1(η j(t)))n−1z(n−1)(τ−1(η j(t)))≤ 0.

Now, introduce the function y(t) = z(n−1)(t). Clearly, y(t) is a positive solution of the first-order delay differential inequality

y′(t)+
λ

(n−1)!

m

∑
j=1

q j(t)p∗(σ j(t))(τ−1(η j(t)))n−1y(τ−1(η j(t)))≤ 0. (2.10)

It follows from [24, Theorem 1] that the associated with (2.10), Eq. (2.1) also has a positive solution for all λ0 ∈ (0,1), but this
contradicts our assumption on Eq. (2.1).

Case (ii) z(t) > 0, z(k)(t) > 0, z(k+1)(t) < 0 for all odd k ∈ {1,2,3, . . . ,n− 3}, z(n−1)(t) > 0 and z(n)(t) ≤ 0: By the definition of z(t), (2.5)
holds. When k = 1, we deduce that, for every l? ∈ (0,1), it follows from conditions z(t)> 0, z′(t)> 0, z′′(t)< 0 and Lemma 2.3 that

z(t)≥ l?tz′(t), (2.11)

and hence(
z(t)
t1/l?

)′
=

tz′(t)− (1/l?)z(t)
t(1/l?)+1

≤ 0 (2.12)

eventually. By virtue of condition τ−1(t)≤ τ−1(τ−1(t)) and (2.12), we deduce that

z(τ−1(τ−1(t)))≤ [τ−1(τ−1(t))]1/l?

[τ−1(t)]1/l?
z(τ−1(t)). (2.13)

Substitution of (2.13) into (2.5) yields

x(t)≥ z(τ−1(t))
p(τ−1(t))

[
1− (τ−1(τ−1(t)))1/l?

(τ−1(t))1/l? p(τ−1(τ−1(t)))

]
= p∗(t)z(τ−1(t)). (2.14)

Substituting now (2.14) into (2.3), we obtain

z(n)(t)+
m

∑
j=1

q j(t)p∗(σ j(t))z(τ−1(σ j(t)))≤ 0.

Since ξ j(t)≤ σ j(t) and z′(t)> 0, we also have

z(n)(t)+
m

∑
j=1

q j(t)p∗(σ j(t))z(τ−1(ξ j(t)))≤ 0. (2.15)

Integrating (2.15) from t to ∞ consecutively n−2 times, we deduce that

z′′(t)+
1

(n−3)!

(∫
∞

t
(s− t)n−3

m

∑
j=1

q j(s)p∗(σ j(s))ds

)
z(τ−1(ξ j(t)))≤ 0. (2.16)

Letting w(t) = z′(t) and using (2.11) in (2.16), we conclude that w(t) is a positive solution of a first-order delay differential inequality

w′(t)+
1

(n−3)!

(∫
∞

t
(s− t)n−3

m

∑
j=1

q j(s)p∗(σ j(s))ds

)
τ
−1(ξ j(t))w(τ−1(ξ j(t)))≤ 0. (2.17)

It follows from [24, Theorem 1] that the associated with (2.17) delay differential Eq. (2.2) also has a positive solution, which again
contradicts our assumption on Eq. (2.2). Therefore, Eq. (2.1) is oscillatory.

Theorem 2.5 and the oscillation criterion reported by Baculikova and Džurina [3, Lemma 4] imply the following result.

Corollary 2.6. Let conditions (H1), (H2) and (1.3) be satisfied. Suppose that there exist functions η j and ξ j, j = 1,2, . . . ,m, as in
Theorem 2.5. If

1
(n−1)!

liminf
t→∞

m

∑
j=1

∫ t

τ−1(η j(t))
q j(s)p∗(σ j(s))(τ−1(η j(s))n−1ds >

1
e

(2.18)

and

1
(n−3)!

liminf
t→∞

m

∑
j=1

∫ t

τ−1(ξ j(t))

∫
∞

s
(u− s)n−3q j(u)p∗(σ j(u)du(τ−1(ξ j(s))ds >

1
e
, (2.19)

then Eq. (1.1) is oscillatory.

Proof. Applying (2.18), (2.19) and the Lemma 4 in [3], we conclude that (2.1) and (2.2) are oscillatory. Hence by Theorem 2.5, Eq. (1.1) is
oscillatory.
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3. Examples and Remarks

The following examples illustrate theoretical results obtained in the previous section. Throughout this section we assume that t ≥ 1 and
q0 > 0.

Example 3.1. Consider the fourth-order neutral delay differential equation

[x(t)+12x(t/2)](4)+
q0

t4 x(t/6)+
q0

t4 x(t/8) = 0. (3.1)

Let η1(t) = ξ1(t) = t/6 and η2(t) = ξ2(t) = t/8. Application of Corollary 2.6 yields that Eq. (3.1) is oscillatory provided that

q0 >
216( 1

27 ln3+ 1
64 ln4

)
e
≈ 2169.336013

Remark 3.2. The oscillation criteria for Eq. (3.1) improves some known theorems. Indeed, Theorem 2.4 in [19] cannot be applied to
Eq. (3.1) since t/6 and t/8 are both less than t/2 for t ≥ 1. Let p0 = 12, τ0 = 1/2 and σ0 = 6. Theorem 2.5 ensures the oscillation of
Eq. (3.1) for q0 > 102400/(e ln12)≈ 15159.86718. Therefore this criterion provides a sharper estimate.

Example 3.3. Consider the fourth-order neutral differential equation

[x(t)+12x(t/2)](4)+
q0

t4 x(5t/6)+
q0

t4 x(7t/8) = 0. (3.2)

Note that 5t/6 and 7t/8 are both greater than t/2 on [1,∞). Observe that in this case Theorem 1.1-1.3 cannot be applied to Eq. (3.2). Let
η1(t) = ξ1(t) = t/3 and η2(t) = ξ2(t) = t/4. By Corollary 2.6, Eq. (3.2) is oscillatory for

q0 >
216(

8
27

ln(3/2)+
1
8

ln2
)

e
≈ 384.280372.

Remark 3.4. For a class of even-order neutral functional differential equations with several delays, i.e., for Eq. (1.1), we derived two new
oscillation results which complement and improve those obtained by Agarwal et al. [1], Baculı́ková and Džurina [4], Baculı́ková et al. [3],
Liu et al. [19], and Xing et al. [32]. A distinguishing feature of our criteria is that we do not impose specific restrictions on the deviating
argument σ j, that is, σ j can be delayed, advanced and even change back and forth from advanced to delayed for j = 1, . . . ,m.

4. Conclusion

This work was improved oscillation criteria studied in [20] with several delays. Lemma 2.3 provides the sharp estimate for the values of
p∗(t), p∗(t) and improve the results of main Theorem 2.5. Finally, in Section 3, Couple of fourth order differential equations with several
delays discussed and these examples demonstrated the main results of this study.
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