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Abstract

In this study, firstly lacunary convergence and lacunary ideal convergence is introduced in fuzzy normed spaces. Later, the relation between
lacunary convergence and lacunary ideal convergence are investigated in fuzzy normed spaces. Finally, we have introduced the concept of
FIθ−limit point, FIθ−cluster point, Fθ−Cauchy sequence and FIθ−Cauchy sequences have introduced in fuzzy normed space.
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1. Introduction and Background

The statistical convergence was derived from the convergence of real sequences by Fast [14] and Schoenberg [37]. After the studies of Šalát
[34], Fridy [16] and Connor [4] in this area, many studies have been conducted. On the one hand, Kostyrko et al. [22] has introduced the
concept of ideal convergence by expanding the concept of statistical convergence. On the other hand; Nuray and Ruckle [29] have worked on
the same topic as generalized statistical convergence.
Matloka [24] was the first scholar who introduced the convergence of a sequence of fuzzy numbers and he showed evidence some basic
Theorems. In next years, Nanda [27] made studies the sequences of fuzzy numbers again and S. enc. imen and Pehlivan [36] introduced
the notions of statistically convergent sequence and statistically Cauchy sequence in a fuzzy normed linear space. The concepts of I -
convergence, I ∗-convergence and I -Cauchy sequence was studied by Hazarika [18] in a fuzzy normed linear space. Recently, on the one
hand, Türkmen and C. ınar [39] studied lacunary statistical convergence. On the other hand, Türkmen and Dündar [43] scrutinized same
concepts for double sequences and Türkmen [41] reinterpreted these works in fuzzy n-normed spaces. In addition, many researchers have
been working on these issues recently.[2, 3, 10, 11, 12, 13]
In this paper, we introduce and study the concepts of lacunary I−convergence, lacunary I−Cauchy, lacunary I ∗−convergence with
respect to fuzzy norm. Also, we study some properties and relations of them. In addition, the fact that these definitions and theorems are
parallel to the definitions and theorems given in different fuzzy norms [5, 6, 7, 8, 9, 21] supports that the definitions and theorems are correct.
Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence, lacunary convergence, fuzzy normed and some
basic definitions (see[1, 14, 15, 16, 17, 19, 20, 23, 25, 26, 28, 29, 30, 31, 32, 33, 35, 38, 36, 34, 42, 39, 40, 43, 44].
Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that each element x ∈ X
is assigned a membership grade u(x) taking values in [0,1], with u(x) = 0 corresponding to nonmembership, 0 < u(x) < 1 to partial
membership, and u(x) = 1 to full membership.
According to Zadeh, a fuzzy subset of X is a nonempty subset {(x,u(x)) : x ∈ X} of X× [0,1] for some function u : X → [0,1]. The function
u itself is often used for the fuzzy set. And the function u is called fuzzy number under certain conditions. Also, we denote all fuzzy numbers
as L(R). We have written L∗ (R) by the set of all non-negative fuzzy numbers. For u ∈ L(R), the α level set of u is defined by

[u]
α
=

{
{x ∈ R : u(x)≥ α}, ifα ∈ (0,1]

sup p, ifα = 0.

For u,v ∈ L(R), the supremum metric on L(R) is defined as

D(u,v) = sup
0≤α≤1

max
{∣∣u−α − v−α

∣∣ , ∣∣u+α − v+α
∣∣} .
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A sequence x = (xk) of fuzzy numbers is said to be convergent to the fuzzy number x0 if for every ε > 0, there exists a positive integer k0
such that D(xk,x0)< ε , for k > k0. And a sequence x = (xk) of fuzzy numbers convergens to levelwise to x0 if and only if lim

k→∞
[xk]α = [x0]

−
α

and lim
k→∞

[xk]α = [x0]
+
α
, where [xk]α =

[
(xk)

−
α
,(xk)

+
α

]
and [x0]α =

[
(x0)

−
α
,(x0)

+
α

]
, for every α ∈ (0,1) .

A sequence x = (xk) of fuzzy numbers is said to be statistically convergent to fuzzy numbers x0 if every ε > 0,

lim
n

1
n

∣∣{k ≤ n : d (xk,x0)≥ ε
}∣∣= 0.

Later, many mathematicians studied statistical convergence of fuzzy numbers and extended to fuzzy normed spaces.
Let X be a vector space over R, let ‖.‖ : X → L∗ (R) and the mappings L;R : [0,1]× [0,1]→ [0,1] be symetric, nondecreasing in both
arguments and satisfy L(0,0) = 0 and R(1,1) = 1. The quadruple (X ,‖.‖ ,L,R) is called fuzzy normed linear space (briefly (X ,‖.‖) FNS)
and ‖.‖ is a fuzzy norm if ‖.‖ provide certain conditions.
Let (X ,‖.‖) be an fuzzy normed linear space. A sequence (xn)

∞

n=1 in X is convergent to x ∈ X with respect to the fuzzy norm on X and we

denote by xn
FN→ x, provided that (D)− lim

n→∞
‖xn− x‖ = 0̃; i.e. for every ε > 0 there is an N (ε) ∈ N such that D

(
‖xn− x‖ , 0̃

)
< ε for all

n > N (ε) . This means that for every ε > 0 there is an N (ε) ∈ N such that supα∈[0,1] ‖xn− x‖+α = ‖xn− x‖+0 < ε for all n≥ N (ε) .
Let (X ,‖.‖) be an FNS. A sequence (xk) in X is statistically convergent to L ∈ X with respect to the fuzzy norm on X and we denote by

xn
FS→ x, provided that for each ε > 0, we have δ

({
k ∈ N : D

(
‖xk−L‖ , 0̃

)
≥ ε
})

= 0. This implies that for each ε > 0, the set

K (ε) =
{

k ∈ N : ‖xk−L‖+0 ≥ ε
}

has natural density zero; namely, for each ε > 0, ‖xk−L‖+0 < ε for almost all k.
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr− kr−1→ ∞ as r→ ∞. The intervals
determined by θ will be denoted by Ir = (kr−1,kr].
Let (X ,‖.‖) be an FNS and θ = {kr} be lacunary sequence. A sequence x = (xk)k∈N in X is said to be lacunary summable with respect to
fuzzy norm on X if there is an L ∈ X such that

lim
r→∞

1
hr

(
∑
k∈Ir

D
(
‖xk−L‖, 0̃

))
= 0.

In this case, we can write xk→ L((Nθ )FN) or xk
(Nθ )FN−→ L and

(Nθ )FN =

{
x = (xk) : lim

r→∞

1
hr

(
∑
k∈Ir

D
(
‖xk−L‖ , 0̃

))
= 0, for someL

}
.

A sequence x = (xk) in X is said to be lacunary statistically convergent or FSθ−convergent to L ∈ X with respect to fuzzy norm on X if for
each ε > 0,

lim
r→∞

1
hr

∣∣{k ∈ Ir : D
(
‖xk−L‖ , 0̃

)
≥ ε
}∣∣= 0

where |A| denotes the number of elements of the set A⊆ N. In this case, we write xk
FSθ−→ L or xk→ L(FSθ ) or FSθ − limk→∞ xk = L . This

implies that for each ε > 0, the set K (ε) =
{

k ∈ Ir : ‖xk−L‖+0 ≥ ε
}

has natural density zero, namely, for each ε > 0, ‖xk−L‖+0 < ε , for
almost all k.
Let X 6= /0. A class I of subsets of X is said to be an ideal in X provided:
(i) /0 ∈I , (ii) A,B ∈I implies A∪B ∈I ,(iii) A ∈I , B⊂ A implies B ∈I .
I is called a nontrivial ideal if X 6∈I . A nontrivial ideal I in X is called admissible if {x} ∈I for each x ∈ X .
Let X 6= /0. A non empty class F of subsets of X is said to be a filter in X provided:
(i) /0 6∈F , (ii) A,B ∈F implies A∩B ∈F , (iii) A ∈F , A⊂ B implies B ∈F .
Let I is a nontrivial ideal in X , X 6= /0, then the class F (I ) = {M ⊂ X : (∃A ∈I )(M = X\A)} is a filter on X , called the filter associated
with I .
Let (X ,‖.‖) be fuzzy normed space. A sequence x = (xm)m∈N in X is said to be I− convergent to L ∈ X with respect to fuzzy norm on

X if for each ε > 0, the set A(ε) =
{

m ∈ N : ‖xm−L‖+0 ≥ ε
}

belongs to I . In this case, we write xm
FI−→ L . The element L is called the

I−limit of (xm) in X .
A sequence (xm) in X is said to be I ∗- convergent to L in X with respect to the fuzzy norm on X if there exists a set M ∈ F (I ),
M = {tk : t1 < t2 < · · ·} ⊂ N such that lim

k→∞
‖xtk −L‖= 0.

2. Lacunary I−Convergence

In this section, we introduce the concepts of lacunary convergence and lacunary ideal convergence in fuzzy normed spaces. Also, we
investigate some properties these concepts and examined the relationships between them.
Throughout the paper, we let (X ,‖.‖) be an FNS and I ⊂ 2N be an strongly admissible ideal.

Definition 2.1. Let x = (xm) be a sequence in X . If for each ε > 0, there exists r0 ∈ N such that

1
hr

∑
m∈Jr

D
(
‖xm−L1‖, 0̃

)
< ε,

for all r ≥ r0, then x is Fθ−convergent to L1 ∈ X . In this case, we write xm
Fθ−→ L1 or xm→ L1 (Fθ) or Fθ − lim

m→∞
xm = L1 . The element

L1 is called the Fθ−limit of (xm) in X .



Konuralp Journal of Mathematics 345

Theorem 2.2. Let x = (xm)m∈N be a sequence in X. If (xm) is θ−convergent, Fθ − limx is unique.

Proof. Suppose that Fθ − limx = L1 and Fθ − limx = L2. Then for any ε > 0, there exists r1 ∈ N such that
1
hr

∑
m∈Jr

‖xm−L1‖+0 < ε

2 , for all r ≥ r1. Also there exists r2 ∈ N such that 1
hr

∑
m∈Jr

‖xm−L2‖+0 < ε

2 , for all r ≥ r2. Now, consider r0 =

max{r1,r2}. Then for r ≥ r0, we will get a p ∈ N such that∥∥xp−L1
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε

2
and

∥∥xp−L2
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L2‖+0 <
ε

2
.

Then, we have
‖L1−L2‖+0 ≤

∥∥xp−L1
∥∥+

0 +
∥∥xp−L2

∥∥+
0 < ε.

Since ε > 0 is arbitrary, we have ‖L1−L2‖+0 = 0 which implies that L1 = L2. Therefore, we conclude that Fθ − limx is unique.

Definition 2.3. Let x = (xm) be a sequence in X . If for each ε > 0, the set
{

r ∈ N : 1
hr

∑
m∈Jr

D
(
‖xm−L1‖, 0̃

)
≥ ε

}
belongs to I , then

x = (xm) is said to be lacunary I−convergent to L1 ∈ X with respect to fuzzy norm on X . In this case, we write xm
FIθ−→ L1 or xm→ L1 (FIθ )

or FIθ − lim
m→∞

xm = L1 . The element L1 is called the FIθ−limit of (xm) in X .

Lemma 2.4. Let x = (xm) be a sequence in X . For each ε > 0, the following statements are equivalent.
a) FIθ − lim

m→∞
xm = L1,

b)
{

r ∈ N : 1
hr

∑
m∈Jr

‖xm−L1‖+0 ≥ ε

}
∈I ,

c)
{

r ∈ N : 1
hr

∑
m∈Jr

‖xm−L1‖+0 < ε

}
∈ F (I ) ,

d) FIθ − lim
m→∞

‖xm−L1‖+0 = 0.

Theorem 2.5. Let x = (xm) be a sequence in X. If (xm) is FIθ−convergent, FIθ − limx is unique.

Proof. Suppose that FIθ − limx = L1 and FIθ − limx = L2. For any ε > 0, define the following sets;

A1 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 ≥
ε

2

}
and A2 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L2‖+0 ≥
ε

2

}
.

Since FIθ − limx = L1 and FIθ − limx = L2, using Lemma 2.4, we have A1 ∈I and A2 ∈I for all ε > 0.
Let A3 = A1∪A2, then A3 ∈I . So its complement (A3)

c is a non-empty set in F (I ). If r ∈ (A3)
c, we have

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε

2
and

1
hr

∑
m∈Jr

‖xm−L2‖+0 <
ε

2
.

Clearly, we will get a p ∈ N such that∥∥xp−L1
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε

2
and

∥∥xp−L2
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L2‖+0 <
ε

2
.

Then, we have
‖L1−L2‖+0 ≤

∥∥xp−L1
∥∥+

0 +
∥∥xp−L2

∥∥+
0 < ε.

Since ε > 0 is arbitrary, we have ‖L1−L2‖+0 = 0 which implies that L1 = L2. Therefore, we conclude that FIθ − limx is unique.

Theorem 2.6. Let (xm) , (ym) be two sequences in X . Then,
i) If FIθ − limxm = L1 and FIθ − limym = L2, then FIθ − lim(xm + ym) = L1 +L2;
ii) If FIθ − limxm = L1 then FIθ − limcxm = cL1 for c ∈ R−{0} .

Proof. i) For any ε > 0, define the following sets;

A1 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 ≥
ε

2

}
and A2 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖ym−L2‖+0 ≥
ε

2

}
.

Since FIθ − limxm = L1 and FIθ − limym = L2, using Lemma 2.4, we have A1 ∈I and A2 ∈I for all ε > 0.
Let A3 = A1∪A2, then A3 ∈I . So (A3)

c is a non-empty set in F (I ). We claim that

(A3)
c ⊂

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1 + ym−L2‖+0 < ε

}
.

Let r ∈ (A3)
c, then we have

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε

2
and

1
hr

∑
m∈Jr

‖ym−L2‖+0 <
ε

2
.
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We will get a p ∈ N such that

∥∥xp−L1
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε

2
and

∥∥yp−L2
∥∥+

0 <
1
hr

∑
m∈Jr

‖ym−L2‖+0 <
ε

2
.

Then, we have ∥∥xp−L1 + yp−L2
∥∥+

0 ≤
∥∥xp−L1

∥∥+
0 +

∥∥yp−L2
∥∥+

0 < ε.

Hence,

(A3)
c ⊂

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1 + ym−L2‖+0 < ε

}
.

Since (A3)
c ∈ F (I ) , so {

r ∈ N :
1
hr

∑
m∈Jr

‖(xm + ym)− (L1 +L2)‖+0 ≥ ε

}
∈I .

Therefore FIθ − lim(xm + ym) = L1 +L2.

ii) Let FIθ − limxm = L1. We define the set

A1 =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε

|c|

}
,

c ∈ R−{0} for every ε > 0. So A1 ∈ F (I ). Let r ∈ A1, then we have

1
hr

∑
m∈Jr

‖xm−L1‖+0 <
ε

|c|
⇒ |c|

hr
∑

m∈Jr

‖xm−L1‖+0 < |c| . ε

|c|
⇒ 1

hr
∑

m∈Jr

|c|‖xm−L1‖+0 < ε ⇒ 1
hr

∑
m∈Jr

‖c.xm− c.L1‖+0 < ε

Hence,

A1 ⊂

{
r ∈ N :

1
hr

∑
m∈Jr

‖cxm− cL1‖+0 < ε

}

and {
r ∈ N :

1
hr

∑
m∈Jr

‖cxm− cL1‖+0 < ε

}
∈ F (I ) .

Hence FIθ − limcxm = cL1.

Theorem 2.7. Let (X ,‖.‖) be a fuzzy normed space and x = (xm) in X . If Fθ − limx = L1, then FIθ − limx = L1.

Proof. Let Fθ − limx = L1. Then for every ε > 0, there exists r0 ∈ N such that 1
hr

∑
m∈Jr

‖xm−L1‖+0 < ε for all r ≥ r0. Therefore the set

K =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 ≥ ε

}
⊂ {1,2,3, ...,r0−1} .

So, we have K ∈I . Hence FIθ − limx = L1.

Theorem 2.8. Let (X ,‖.‖) be a fuzzy normed space and x = (xm) in X . If Fθ − limx = L1, then there exists a subsequence
(
xkm

)
such that

xkm

FN→ L1.

Proof. Let Fθ − limx = L1.Then for every ε > 0, there exists r0 ∈N such that 1
hr

∑
m∈Jr

‖xm−L1‖+0 < ε for all r≥ r0. Clearly, for each r≥ r0,

we can select a km ∈ Jr such that ∥∥xkm −L1
∥∥+

0 <
1
hr

∑
m∈Jr

‖xm−L1‖+0 < ε.

It follows that xkm

FN→ L1.
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3. Limit Point and Cluster Point

In this section, we gave definition of FIθ−limit point and FIθ−cluster point and some properties.

Definition 3.1. Let x=(xm) be a sequence in X . If there is a set K = {k1 < k2... < km < ...}⊂N such that the set K′= {r ∈ N : km ∈ Jr} /∈I
and Fθ − limxkm = L, then the element L ∈ X is said to be FIθ−limit point of x = (xm) .

Definition 3.2. Let x = (xm) be a sequence in X . If for every ε > 0, we have{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L‖+0 < ε

}
/∈I ,

then the element L ∈ X is said to be FIθ−cluster point of x = (xm) .

We denote the set of all FIθ−limit points of x as Λ
Iθ

F (x) and denote the set of all FIθ−cluster point of x as Γ
Iθ

F (x) .

Theorem 3.3. Let x = (xm) be a sequence in X . For each x = (xm) , we have Λ
Iθ

F (x)⊂ Γ
Iθ

F (x) .

Proof. Let L1 ∈ Λ
Iθ

F (x). There exists a set K ⊂ N such that K′ /∈I , where K and K′ are as in definition 3.1, satisfies Fθ − limxkm = L1.
For every ε > 0, there exists r0 ∈ N such that

1
hr

∑
km∈Jr

∥∥xkm −L1
∥∥+

0 < ε

for all r ≥ r0. Therefore,

C =

{
r ∈ N :

1
hr

∑
m∈Jr

‖xm−L1‖+0 < ε

}
⊇ K′\{k1,k2,k3, ...,kr0} .

So, we must have K′\{k1,k2,k3, ...,kr0} /∈I and as such C /∈I . Hence L1 ∈ Γ
Iθ

F (x) .

4. Fθ−Cauchy and FIθ−Cauchy

Definition 4.1. Let x = (xm) be a sequence in X. If there exist r0,n ∈ N satisfying 1
hr

∑
m∈Jr

‖xm− xn‖+0 < ε for every ε > 0 and all r ≥ r0,

x = (xm) is said to be Fθ−Cauchy sequence.

Definition 4.2. Let x = (xm) be a sequence in X. If there exists n ∈ N satisfying{
r ∈ N :

1
hr

∑
m∈Jr

‖xm− xn‖+0 < ε

}
∈ F (I )

for every ε > 0, x = (xm) is said to be FIθ−Cauchy sequence.

Definition 4.3. Let x=(xm) be a sequence in X. If there exists a set M = {k1 < k2... < km < ...}⊂N such that the set M′= {r ∈ N : km ∈ Jr}∈
F (I ) and the subsequence

(
xkm

)
of x = (xm) is a Fθ−Cauchy sequence, x is said to be FI ∗

θ
−Cauchy sequence.

Theorem 4.4. Let x = (xm) be a sequence in X. If x is Fθ−Cauchy sequence, then it is FIθ−Cauchy sequence.

Proof. This Theorem is an analogue of Theorem 2.7; the proof follows easily.

Theorem 4.5. Let x = (xm) be a sequence in X. If x is Fθ−Cauchy sequence, then there is a subsequence of x = (xm) which is ordinary
Cauchy sequence.

Proof. The proof of theorem is similar to that of Theorem 2.8.

Theorem 4.6. Let x = (xm) be a sequence in X. If x is FI ∗
θ
−Cauchy sequence, then it is FIθ−Cauchy sequence as well.

Proof. The proof of theorem can be proved easily using similar techniques as in the proof of Theorem 2.8.

5. Conclusion

In this paper, first of all, we have introduced consept of Fθ − convergence and FIθ − convergence. So, we saw that these limits are unique
and if Fθ − limx = L1, then FIθ − limx = L1. Later, we gave definitions of FIθ−limit point and FIθ−cluster point and we proved that
every limit point is cluster point. Finally, we introduced definitions of Fθ−Cauchy and FIθ−Cauchy and gave some properties.
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