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Abstract

In this study, we investigate the form of solutions, stability character and asymptotic behavior of the following four rational difference
equations

xn+1 =
1

xn (xn−1±1)±1
,

xn+1 =
−1

xn (xn−1±1)∓1
,

such that their solutions are associated with Tribonacci numbers.
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1. Introduction

The applications of the theory of difference equations appear as discrete mathematical models of many phenomena such as in biology,
economics, ecology, control theory, physics, engineering, population dynamics and so forth. Recently, there has been a growing interest in
the study of finding closed-form solutions of difference equations and systems of difference equations. Some of the forms of solutions of
these equations are representable via well-known integer sequences such as Fibonacci numbers, Pell numbers, Lucas numbers and Padovan
numbers. There are many papers on such these studies from several authors [1-17]. For example, in [2], Tollu et al. considered the following
difference equations

xn+1 =
1

1+ xn
, yn+1 =

1
−1+ yn

, n = 0,1, ..., (1.1)

such that their solutions are associated with Fibonacci numbers.
Then, in [17], Yazlik et al. studied the following rational difference equation systems

xn+1 =
xn−1±1
ynxn−1

, yn+1 =
yn−1±1
xnyn−1

, n = 0,1, ..., (1.2)

such that their solutions associated with Padovan numbers.
In [12], Halim concerned with the following systems of rational difference equations

xn+1 =
1

1+ yn
, yn+1 =

1
1+ xn

, n = 0,1, ..., (1.3)

and

xn+1 =
1

1− yn
, yn+1 =

1
1− xn

, n = 0,1, ..., (1.4)

initial conditions are arbitrary nonzero real numbers.
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In [13], Halim and Bayram investigated the solutions, stability character, and asymptotic behavior of the difference equation

xn+1 =
α

β + γxn−k
, n ∈ N0, (1.5)

where the initial conditions x−k,x−k+1, ...,x0 are nonzero real numbers, such that their solutions are associated to Horadam numbers, which
are generalized Fibonacci numbers.
In [9], Öcalan and Duman considered the following nonlinear difference equation

xn+1 =
xn−1

xn
, n = 0,1, ..., (1.6)

with any nonzero initial values x−1 and x0. Then, they extended their all results to solutions of the following nonlinear recursive equations

xn+1 =

(
xn−1

xn

)p
, p > 0 and n = 0,1, ..., (1.7)

with any nonzero initial values x−1 and x0.
As far as we examine, there is no paper dealing with the following difference equations. Hence, in this study, we deal with the following
difference equations

xn+1 =
1

xn (xn−1−1)−1
, n = 0,1, ..., (1.8)

xn+1 =
1

xn (xn−1 +1)+1
, n = 0,1, ..., (1.9)

xn+1 =
−1

xn (xn−1−1)+1
, n = 0,1, ..., (1.10)

xn+1 =
−1

xn (xn−1 +1)−1
, n = 0,1, ..., (1.11)

such that their solutions are associated with Tribonacci numbers.
Our aim in this study is to investigate some relationships both between Tribonacci numbers and solutions of above mentioned difference
equations and between the Tribonacci constant and the equilibrium point of these difference equations.

2. Preliminaries

2.1. Linearized stability

Let I be some interval of real numbers and let f : Ik+1→ I be a continuously differentiable function. A difference equation of order (k+1)
is an equation of the form

xn+1 = f (xn,xn−1, ...,xn−k), n = 0,1, .... (2.1)

A solution of Eq.(2.1) is a sequence {xn}∞
n=−k that satisfies Eq.(2.1) for all n≥−k.

Definition 2.1. A solution of Eq.(2.1) that is constant for all n≥−k is called an equilibrium solution of Eq.(2.1). If

xn = x, for all n≥−k

is an equilibrium solution of Eq.(2.1), then x is called an equilibrium point, or simply an equilibrium of Eq.(2.1)..

Definition 2.2 (Stability). Let x an equilibrium point of Eq.(2.1).

(a) An equilibrium point x of Eq.(2.1) is called locally stable if, for every ε > 0; there exists δ > 0 such that if {xn}∞
n=−k is a solution of

Eq.(2.1) with

|x−k− x|+ |x1−k− x|+ ...+ |x0− x|< δ ,

then

|xn− x|< ε, for all n≥−k.

(b) An equilibrium point x of Eq.(2.1) is called locally asymptotically stable if, it is locally stable, and if in addition there exists γ > 0 such
that if {xn}∞

n=−k is a solution of Eq.(2.1) with

|x−k− x|+ |x−k+1− x|+ ...+ |x0− x|< γ,

then we have

lim
n→∞

xn = x.
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(c) An equilibrium point x of Eq.(2.1) is called a global attractor if, for every solution {xn}∞
n=−k of Eq.(2.1), we have

lim
n→∞

xn = x.

(d) An equilibrium point x of Eq.(2.1) is called globally asymptotically stable if it is locally stable, and a global attractor.
(e) An equilibrium point x of Eq.(2.1) is called unstable if it is not locally stable.

Suppose that the function f is continuously differentiable in some open neighborhood of an equilibrium point x. Let

qi =
∂ f
∂ui

(x,x, ...,x), for i = 0,1, ...,k

denote the partial derivative of f (u0,u1, ...,uk) with respect to ui evaluated at the equilibrium point x of Eq.(2.1).

Definition 2.3. The equation

yn+1 = q0yn +q1yn−1 + ...+qkyn−k, n = 0,1, ... (2.2)

is called the linearized equation of Eq.(2.1) about the equilibrium point x, and the equation

λ
k+1−q0λ

k− ...−qk−1λ −qk = 0 (2.3)

is called the characteristic equation of Eq.(2.2) about x.

Theorem 2.4 (The Linearized Stability Theorem). Assume that the function f is a continuously differentiable function defined on some open
neighborhood of an equilibrium point x. Then the following statements are true:

(a) When all the roots of characteristic equation (2.3) have absolute value less than one, then the equilibrium point x of Eq.(2.1) is locally
asymptotically stable.

(b) If at least one root of characteristic equation (2.3) has absolute value greater than one, then the equilibrium point x of Eq.(2.1) is
unstable.

Moreover, the equilibrium point x of Eq.(2.1) is called hyperbolic if no root of characteristic equation (2.3) has absolute value equal to one.
If there exists a root of characteristic equation (2.3) with absolute value equal to one, then the equilibrium x is called nonhyperbolic.
An equilibrium point x of Eq.(2.1) is called a repeller if all roots of characteristic equation (2.3) have absolute value greater than one.
An equilibrium point x of Eq.(2.1) is called a saddle if one of the roots of characteristic equation (2.3) is greater and another is less than one
in absolute value.

2.2. Tribonacci numbers

Now, we give information about Tribonacci numbers that we afterwards need in the paper.
The Tribonacci sequence {Tn}∞

n=0 is defined by the third-order recurrence relations

Tn+3 = Tn+2 +Tn+1 +Tn, (2.4)

with initial conditions T0 = 0, T1 = 1, T2 = 1. Also, it can be extended the Tribonacci sequence backward (negative subscripts) as

T−n = T−n+3−T−n+2−T−n+1. (2.5)

It can be clearly obtained that the characteristic equation of (2.4) has the form

x3− x2− x−1 = 0 (2.6)

such that the roots

α =
1+ 3
√

19+3
√

33+ 3
√

19−3
√

33
3

β =
1+ω

3
√

19+3
√

33+ω2 3
√

19−3
√

33
3

γ =
1+ω2 3

√
19+3

√
33+ω

3
√

19−3
√

33
3

where α is called Tribonacci constant and

ω =
−1+ i

√
3

2
= exp(2πi/3)

is a primitive cube root of unity. Therefore, Tribonacci sequence can be expressed using Binet formula

Tn =
αn+1

(α−β )(α− γ)
+

β n+1

(β −α)(β − γ)
+

γn+1

(γ−α)(γ−β )
.

Furthermore, there exist the following limit

lim
n→∞

Tn+r

Tn
= α

r, (2.7)

where r ∈ Z and Tn is the nth Tribonacci number.
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3. Main Results

In this section, we present our main results considering above mentioned difference equations. Our aim is to investigate the general solutions
in explicit form of difference equations and the asymptotic behavior of solutions of difference equations.

3.1. The Difference Equation (1.8)

In this subsection, we consider Eq.(1.8), that is,

xn+1 =
1

xn (xn−1−1)−1
, n = 0,1, ...,

and investigate the dynamical behavior of solutions of Eq.(1.8).

Theorem 3.1. Let {xn}∞

n=−1 be a solution of Eq.(1.8). Then, for n = 0,1,2, ..., the form of solutions {xn}∞

n=−1 is given by

xn =
T−nx−1x0 +

(
T−(n+1)+T−(n+2)

)
x0 +T−(n+1)

T−(n+1)x−1x0 +
(

T−n−T−(n+1)

)
x0 +T−(n+2)

, (3.1)

where Tn is the nth Tribonacci number and the initial conditions x−1, x0 ∈ R−F, with F is the forbidden set of Eq.(1.8) given by

F1 = ∪∞
n=−1

{
(x−1,x0) : T−(n+1)x−1x0 +

(
T−n−T−(n+1)

)
x0 +T−(n+2) = 0

}
.

Proof. We will prove this theorem by induction on k. For k = 0, from Eq.(1.8),

x1 =
1

x0 (x−1−1)−1
=

1
x−1x0− x0−1

=
T−1x−1x0 +(T−2 +T−3)x0 +T−2

T−2x−1x0 +(T−1−T−2)x0 +T−3
.

Now, we assume that

xk =
T−kx−1x0 +

(
T−(k+1)+T−(k+2)

)
x0 +T−(k+1)

T−(k+1)x−1x0 +
(

T−k−T−(k+1)

)
x0 +T−(k+2)

(3.2)

is true for all 1≤ n≤ k. Hence, we have to prove that it is true for k+1. Taking into account (2.5) and (3.2), we have

xk+1 =
1

xk (xk−1−1)−1

=
1(

T−kx−1x0+(T−(k+1)+T−(k+2))x0+T−(k+1)

T−(k+1)x−1x0+(T−k−T−(k+1))x0+T−(k+2)

)(
T−(k−1)x−1x0+(T−k+T−(k+1))x0+T−k

T−kx−1x0+(T−(k−1)−T−k)x0+T−(k+1)
−1
)
−1

=
T−(k+1)x−1x0 +

(
T−k−T−(k+1)

)
x0 +T−(k+2)(

T−(k−1)−T−k−T−(k+1)

)
x−1x0 +

(
T−(k+1)−T−(k+2)

)
x0 +T−k−T−(k+1)−T−(k+2)

=
T−(k+1)x−1x0 +

(
T−(k+2)+T−(k+3)

)
x0 +T−(k+2)

T−(k+2)x−1x0 +
(

T−(k+1)−T−(k+2)

)
x0 +T−(k+3)

,

which ends the induction and the proof.

Theorem 3.2. Eq.(1.8) has unique positive equilibrium point x = α and α is a repeller point.

Proof. Equilibrium point of Eq.(1.8) satisfy the equation

x =
1

x(x−1)−1
.

After simplification, we get the following cubic equation

x3− x2− x−1 = 0. (3.3)

The cubic equation (3.3) is the characteristic equation of the recurrence relation of the Tribonacci numbers in (2.6) having the unique real
root α . Therefore, the unique positive equilibrium point of Eq.(1.8) is x = α .
Now, we indicate that the equilibrium point of Eq.(1.8) is repeller point.
Let I be an interval of real numbers and

f : I2→ I

be a continuous function defined by

f (x,y) =
1

x(y−1)−1
.
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Therefore, it follows that

∂ f (x,y)
∂x

=
−(y−1)

(x(y−1)−1)2 ,

∂ f (x,y)
∂y

=
−x

(x(y−1)−1)2 .

Then, from (3.3)

∂ f (x,x)
∂x

=
−(α−1)

(α (α−1)−1)2

=
1−α(

α2−α−1
)2

=
1−α( 1

α

)2

= α
2−α

3

=−(α +1) ,

∂ f (x,x)
∂y

=
−α

(α (α−1)−1)2

=
−α(

α2−α−1
)2

=
−α( 1
α

)2

=−α
3,

and the linearized equation of Eq.(1.8) about x = α is

zn+1 =−(α +1)zn +
(
−α

3
)

zn−1

or equivalently

zn+1 +(α +1)zn +α
3zn−1 = 0.

Therefore, the corresponding characteristic polynomial is

λ
2 +(α +1)λ +α

3 = 0.

Then, from Theorem (2.4), it is clearly seen that

λ1,2 =
−(α +1)±

√
−4α3 +α2 +2α +1

2

and numerically

|λ1|=

∣∣∣∣∣−(α +1)+
√
−4α3 +α2 +2α +1

2

∣∣∣∣∣= 2,4944 > 1

|λ2|=

∣∣∣∣∣−(α +1)−
√
−4α3 +α2 +2α +1

2

∣∣∣∣∣= 2,4944 > 1.

So, the equilibrium point α is a repeller point. This completes the proof.

3.2. The Difference Equation (1.9)

In this subsection, we study Eq.(1.9), that is,

xn+1 =
1

xn (xn−1 +1)+1
, n = 0,1, ...,

and examine the dynamical behavior of solutions of Eq.(1.9).

Theorem 3.3. Let {xn}∞

n=−1 be a solution of Eq.(1.9). Then, for n = 0,1,2, ..., the form of solutions {xn}∞

n=−1 is given by

xn =
Tn−1x−1x0 +(Tn+1−Tn)x0 +Tn

Tnx−1x0 +(Tn−1 +Tn)x0 +Tn+1
, (3.4)

where Tn is the nth Tribonacci number and the initial conditions x−1, x0 ∈ R−F, with F is the forbidden set of Eq.(1.9) given by

F2 = ∪∞
n=−1 {(x−1,x0) : Tnx−1x0 +(Tn−1 +Tn)x0 +Tn+1 = 0} .
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Proof. (First proof) Now, we give the proof with an analytic approach. We make the substitution

xn =
tn−1

tn
(3.5)

in Eq.(1.9) to get the linear difference equation. Then, we have

tn+1 = tn + tn−1 + tn−2.

By using same operations in Theorem 2.1. in [10] such that a = b = c = 1, we obtain the initial values of three sequences are defined

an = aan−1 +ban−2 + can−3,

bn = an+1−aan,

cn = can−1,

such that

a0 = 1, a−1 = 0, a−2 = 0,
b0 = 0, b−1 = 1, b−2 = 0,
c0 = 0, c−1 = 0, c−2 = 1.

(3.6)

Next, we get

tn = ant0 +(an+1−aan) t−1 + can−1 t−2.

So a = b = c = 1 and from (3.5), we obtain

xn =
an−2x−1x0 +(an−an−1)x0 +an−1

an−1x−1x0 +(an+1−an)x0 +an

or equivalently

xn =
an−2x−1x0 +(an−an−1)x0 +an−1

an−1x−1x0 +(an−1 +an−2)x0 +an
.

From initial values (3.6) and definitions of sequences an and Tn, we have

an = Tn+1,

with the backward shifted initial values of the sequence an. Hence, we obtain

xn =
Tn−1x−1x0 +(Tn+1−Tn)x0 +Tn

Tnx−1x0 +(Tn−1 +Tn)x0 +Tn+1
.

So, the proof is complete.
Proof. (Second proof) We will prove this theorem by induction on k. For k = 0, from Eq.(1.9),

x1 =
1

x0 (x−1 +1)+1
=

1
x−1x0 + x0 +1

=
T0x−1x0 +(T2−T1)x0 +T1

T1x−1x0 +(T0 +T1)x0 +T2
.

Now, we assume that

xk =
Tk−1x−1x0 +(Tk+1−Tk)x0 +Tk

Tkx−1x0 +(Tk−1 +Tk)x0 +Tk+1
, (3.7)

is true for all 1≤ n≤ k. Hence, we have to prove that it is true for k+1. Taking into account (2.4) and (3.7), we have

xk+1 =
1

xk (xk−1 +1)+1

=
1(

Tk−1x−1x0+(Tk+1−Tk)x0+Tk
Tkx−1x0+(Tk−1+Tk)x0+Tk+1

)(
Tk−2x−1x0+(Tk−Tk−1)x0+Tk−1
Tk−1x−1x0+(Tk−2+Tk−1)x0+Tk

+1
)
+1

=
Tkx−1x0 +(Tk−1 +Tk)x0 +Tk+1

(Tk−2 +Tk−1 +Tk)x−1x0 +(Tk +Tk+1)x0 +Tk−1 +Tk +Tk+1

=
Tkx−1x0 +(Tk+2−Tk+1)x0 +Tk+1
Tk+1x−1x0 +(Tk +Tk+1)x0 +Tk+2

,

which ends the induction and the proof.
Proof. (Third proof) Consider Eq.(1.9) by taking n = 0,1,2, ... as follows:

n = 0 ⇒ x1 =
1

x−1x0+x0+1 ,
n = 1 ⇒ x2 =

x−1x0+x0+1
x−1x0+2x0+2 ,

n = 2 ⇒ x3 =
x−1x0+2x0+2
2x−1x0+3x0+4 ,

n = 3 ⇒ x4 =
2x−1x0+3x0+4
4x−1x0+6x0+7 ,

n = 4 ⇒ x5 =
4x−1x0+6x0+7

7x−1x0+11x0+13 ,
n = 5 ⇒ x6 =

7x−1x0+11x0+13
13x−1x0+20x0+24 ,

· · ·

If we keep on this process and also regard (2.4), then the solution in (3.4) directly follows from a simple induction.
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Theorem 3.4. Eq.(1.9) has unique positive equilibrium point x = a and a is locally asymptotically stable.

Proof. Equilibrium point of Eq.(1.9) is the real roots of the equation

x =
1

x(x+1)+1
.

After simplification, we get the following cubic equation

x3 + x2 + x−1 = 0. (3.8)

Then, the roots of the cubic equation (3.8) are given by

a =
−1+ 3

√
3
√

33+17− 3
√

3
√

33−17
3

,

b =
−1+ω

3
√

3
√

33+17−ω2 3
√

3
√

33−17
3

,

c =
−1+ω2 3

√
3
√

33+17−ω
3
√

3
√

33−17
3

,

where

ω =
−1+ i

√
3

2
= exp(2πi/3)

is a primitive cube root of unity. So, the root a is only real number. Therefore, the unique positive equilibrium point of Eq.(1.9) is x = a.
Now, we show that the equilibrium point of Eq.(1.9) is locally asymptotically stable.
Let I be an interval of real numbers and consider the function

f : I2→ I

defined by

f (x,y) =
1

x(y+1)+1
.

The linearized equation of Eq.(1.9) about the equilibrium point x = a is

zn+1 = pzn +qzn−1,

where

p =
∂ f (x,x)

∂x
=

−(a+1)

(a(a+1)+1)2 = a−1,

q =
∂ f (x,x)

∂y
=

−a

(a(a+1)+1)2 =−a3,

and the corresponding characteristic equation is

λ
2 +(1−a)λ +a3 = 0.

Therefore, from Theorem (2.4), it is easily seen that

λ1,2 =
a−1±

√
−4a3 +a2−2a+1

2

and numerically

|λ1|= |λ2|= 0,40089 < 1.

This completes the proof.

Theorem 3.5. The equilibrium point of Eq.(1.9) is globally asymptotically stable.

Proof. Let {xn}n≥−1 be a solution of Eq.(1.9). By Theorem 3.4., we need only to prove that the equilibrium point a is global attractor, that is

lim
n→∞

xn = a.
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From (3.4), (2.6) and (2.7), it follows that

lim
n→∞

xn = lim
n→∞

Tn−1x−1x0 +(Tn+1−Tn)x0 +Tn

Tnx−1x0 +(Tn−1 +Tn)x0 +Tn+1

= lim
n→∞

Tn−1

(
x−1x0 +

(
Tn+1
Tn−1
− Tn

Tn−1

)
x0 +

Tn
Tn−1

)
Tn

(
x−1x0 +

(
Tn−1
Tn

+1
)

x0 +
Tn+1
Tn

)
=

(
x−1x0 +

(
α2−α

)
x0 +α

x−1x0 +
( 1

α
+1
)

x0 +α

)
lim
n→∞

Tn−1

Tn

= lim
n→∞

Tn−1

Tn

=
1
α

= a.

The proof is complete.

3.3. The Difference Equation (1.10)

In this subsection, we take into account Eq.(1.10), that is,

xn+1 =
−1

xn (xn−1−1)+1
, n = 0,1, ...,

and analyze the dynamical behavior of solutions of Eq.(1.10).

Theorem 3.6. Let {xn}∞

n=−1 be a solution of Eq.(1.10). Then, for n = 0,1,2, ..., the form of solutions {xn}∞

n=−1 is given by

xn =
−(Tn−1x−1x0 +(Tn−Tn+1)x0 +Tn)

Tnx−1x0− (Tn−1 +Tn)x0 +Tn+1
, (3.9)

where Tn is the nth Tribonacci number and the initial conditions x−1, x0 ∈ R−F, with F is the forbidden set of Eq.(1.10) given by

F3 = ∪∞
n=−1 {(x−1,x0) : Tnx−1x0− (Tn−1 +Tn)x0 +Tn+1 = 0} .

Proof. (First proof) We will prove this theorem by induction on k. For k = 0, from Eq.(1.10),

x1 =
−1

x0 (x−1−1)+1
=

−1
x−1x0− x0 +1

=
−(T0x−1x0 +(T1−T2)x0 +T1)

T1x−1x0− (T0 +T1)x0 +T2
.

Now, we assume that

xk =
−(Tk−1x−1x0 +(Tk−Tk+1)x0 +Tk)

Tkx−1x0− (Tk−1 +Tk)x0 +Tk+1
, (3.10)

is true for all 1≤ n≤ k. Hence, we have to prove that it is true for k+1. Taking into account (2.4) and (3.10), we have

xk+1 =
−1

xk (xk−1−1)+1

=
−1(

−(Tk−1x−1x0+(Tk−Tk+1)x0+Tk)
Tkx−1x0−(Tk−1+Tk)x0+Tk+1

)(
−(Tk−2x−1x0+(Tk−1−Tk)x0+Tk−1)

Tk−1x−1x0−(Tk−2+Tk−1)x0+Tk
−1
)
+1

=
−(Tkx−1x0− (Tk−1 +Tk)x0 +Tk+1)

(Tk−2 +Tk−1 +Tk)x−1x0− (Tk +Tk+1)x0 +Tk−1 +Tk +Tk+1

=
−(Tkx−1x0 +(Tk+1−Tk+2)x0 +Tk+1)

Tk+1x−1x0− (Tk +Tk+1)x0 +Tk+2
,

which ends the induction and the proof.
Proof. (Second proof) Consider Eq.(1.10) by taking n = 0,1,2, ... as follows:

n = 0 ⇒ x1 =
−1

x−1x0−x0+1 ,

n = 1 ⇒ x2 =
−(x−1x0−x0+1)

x−1x0−2x0+2 ,

n = 2 ⇒ x3 =
−(x−1x0−2x0+2)

2x−1x0−3x0+4 ,

n = 3 ⇒ x4 =
−(2x−1x0−3x0+4)

4x−1x0−6x0+7 ,

n = 4 ⇒ x5 =
−(4x−1x0−6x0+7)
7x−1x0−11x0+13 ,

n = 5 ⇒ x6 =
−(7x−1x0−11x0+13)

13x−1x0−20x0+24 ,
· · ·

If we keep on this process and also regard (2.4), then the solution in (3.9) directly follows from a simple induction.
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Theorem 3.7. Eq.(1.10) has unique negative equilibrium point x = d and d is locally asymptotically stable.

Proof. Equilibrium point of Eq.(1.10) is the real roots of the equation

x =
−1

x(x−1)+1
.

After simplification, we get the following cubic equation

x3− x2 + x+1 = 0. (3.11)

Then, the roots of the cubic equation (3.11) are given by

d =
1+ 3
√

3
√

33−17− 3
√

3
√

33+17
3

,

e =
1+ω

3
√

3
√

33−17−ω2 3
√

3
√

33+17
3

,

f =
1+ω2 3

√
3
√

33−17−ω
3
√

3
√

33+17
3

,

where

ω =
−1+ i

√
3

2
= exp(2πi/3)

is a primitive cube root of unity. So, the root d is only real number. Therefore, the unique negative equilibrium point of Eq.(1.10) is x = d.
Now, we show that the unique negative equilibrium point of Eq.(1.10) is locally asymptotically stable.
Let I = (0,∞) and consider the function

f : I2→ I

defined by

f (x,y) =
−1

x(y−1)+1
.

The linearized equation of Eq.(1.10) about the equilibrium point x = d is

zn+1 = pzn +qzn−1,

where, from (3.11),

p =
∂ f (x,x)

∂x
=

d−1

(d (d−1)+1)2 =
d−1(

d2−d +1
)2 =

d−1(
− 1

d
)2 =−(d +1) ,

q =
∂ f (x,x)

∂y
=

d

(d (d−1)+1)2 =
d(

d2−d +1
)2 =

d(
− 1

d
)2 = d3,

and the corresponding characteristic equation is

λ
2 +(d +1)λ −d3 = 0.

Therefore, from Theorem (2.4), it is easily seen that

λ1,2 =
−(d +1)±

√
4d3 +d2 +2d +1

2

and numerically

|λ1|= |λ2|= 0,40089 < 1.

So, this completes the proof.

Theorem 3.8. The equilibrium point of Eq.(1.10) is globally asymptotically stable.

Proof. Let {xn}n≥−1 be a solution of Eq.(1.10). By Theorem 3.7., we need only to prove that the equilibrium point d is global attractor, that
is

lim
n→∞

xn = d.
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From (3.9), (2.6) and (2.7), it follows that

lim
n→∞

xn = lim
n→∞

−(Tn−1x−1x0 +(Tn−Tn+1)x0 +Tn)

Tnx−1x0− (Tn−1 +Tn)x0 +Tn+1

= lim
n→∞

−
(

Tn−1

(
x−1x0 +

(
Tn

Tn−1
− Tn+1

Tn−1

)
x0 +

Tn
Tn−1

))
Tn

(
x−1x0−

(
Tn−1
Tn

+1
)

x0 +
Tn+1
Tn

)
=

(
x−1x0 +

(
α−α2)x0 +α

x−1x0−
( 1

α
+1
)

x0 +α

)
lim
n→∞

−Tn−1

Tn

= lim
n→∞

−Tn−1

Tn

=− 1
α

= d.

The proof is complete.

3.4. The Difference Equation (1.11)

In this subsection, we take into account Eq.(1.11), that is,

xn+1 =
−1

xn (xn−1 +1)−1
, n = 0,1, ...,

and analyze the dynamical behavior of solutions of Eq.(1.11).

Theorem 3.9. Let {xn}∞

n=−1 be a solution of Eq.(1.11). Then, for n = 0,1,2, ..., the form of solutions {xn}∞

n=0−1 is given by

xn =
−
(

T−nx−1x0−
(

T−(n+1)+T−(n+2)

)
x0 +T−(n+1)

)
T−(n+1)x−1x0 +

(
T−(n+1)−T−n

)
x0 +T−(n+2)

, (3.12)

where Tn is the nth Tribonacci number and the initial conditions x−1, x0 ∈ R−F, with F is the forbidden set of Eq.(1.11) given by

F4 = ∪∞
n=−1

{
(x−1,x0) : T−(n+1)x−1x0 +

(
T−(n+1)−T−n

)
x0 +T−(n+2) = 0

}
.

Proof. We will prove this theorem by induction on k. For k = 0, from Eq.(1.11),

x1 =
−1

x0 (x−1 +1)−1
=

−1
x−1x0 + x0−1

=
−(T−1x−1x0 (T−2 +T−3)x0 +T−2)

T−2x−1x0 +(T−2−T−1)x0 +T−3
.

Now, we assume that

xk =
−
(

T−kx−1x0−
(

T−(k+1)+T−(k+2)

)
x0 +T−(k+1)

)
T−(k+1)x−1x0 +

(
T−(k+1)−T−k

)
x0 +T−(k+2)

(3.13)

is true for all 1≤ n≤ k. Hence, we have to prove that it is true for k+1. Taking into account (2.5) and (3.13), we have

xk+1 =
−1

xk (xk−1 +1)−1

=
−1(

−(T−kx−1x0−(T−(k+1)+T−(k+2))x0+T−(k+1))
T−(k+1)x−1x0+(T−(k+1)−T−k)x0+T−(k+2)

)(
−(T−(k−1)x−1x0−(T−k+T−(k+1))x0+T−k)

T−kx−1x0+(T−k−T−(k−1))x0+T−(k+1)
+1
)
−1

=
−
(

T−(k+1)x−1x0−
(

T−(k+2)+T−(k+3)

)
x0 +T−(k+2)

)
(

T−(k−1)−T−k−T−(k+1)

)
x−1x0 +

(
T−(k+2)−T−(k+1)

)
x0 +T−k−T−(k+1)−T−(k+2)

=
−
(

T−(k+1)x−1x0−
(

T−(k+2)+T−(k+3)

)
x0 +T−(k+2)

)
T−(k+2)x−1x0 +

(
T−(k+2)−T−(k+1)

)
x0 +T−(k+3)

,

which ends the induction and the proof.

Theorem 3.10. Eq.(1.11) has unique negative equilibrium point x = a and a unstable.
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Proof. Equilibrium point of Eq.(1.11) satisfies the equation

x =
−1

x(x+1)−1
.

After simplification, we get the following cubic equation

x3 + x2− x+1 = 0. (3.14)

Then, the roots of the cubic equation (3.14) are given by

g =
−1− 3

√
19+3

√
33− 3

√
19−3

√
33

3
,

h =
−1−ω

3
√

19+3
√

33−ω2 3
√

19−3
√

33
3

,

k =
−1−ω2 3

√
19+3

√
33−ω

3
√

19−3
√

33
3

,

where

ω =
−1+ i

√
3

2
= exp(2πi/3)

is a primitive cube root of unity. So, the root g is only real number. Therefore, the unique negative equilibrium point of Eq.(1.11) is x = g.
Now, we indicate that the negative equilibrium point of Eq.(1.11) is unstable.
Let I be an interval of real numbers and

f : I2→ I

be a continuous function defined by

f (x,y) =
−1

x(y+1)−1
.

Therefore, it follows that

∂ f (x,y)
∂x

=
y+1

(x(y+1)−1)2 ,

∂ f (x,y)
∂y

=
x

(x(y+1)−1)2 .

Then, from (3.14)

∂ f (x,x)
∂x

=
g+1

(g(g+1)−1)2

=
g+1(

g2 +g−1
)2

=
g+1(
− 1

g

)2

= g3 +g2

= g−1,

∂ f (x,x)
∂y

=
g

(g(g+1)−1)2

=
g(

g2 +g−1
)2

=
g(
− 1

g

)2

= g3,

and the linearized equation of Eq.(1.11) about x = g is

zn+1 = (g−1)zn +g3zn−1

or equivalently

zn+1− (g−1)zn−g3zn−1 = 0.



90 Konuralp Journal of Mathematics

Therefore, the corresponding characteristic polynomial is

λ
2− (g−1)λ −g3 = 0.

Then, from Theorem (2.4), it is clearly seen that

λ1,2 =
(g−1)±

√
4g3 +g2−2g+1

2

and numerically

|λ1|= |λ2|= 2,4944 > 1.

So, the equilibrium point g is unstable. This completes the proof.
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