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ON THE STRICTION CURVES OF INVOLUTIVE FRENET

RULED SURFACES IN E3

ŞEYDA KILIÇOĞLU, SÜLEYMAN ŞENYURT, AND ABDUSSAMET ÇALIŞKAN

Abstract. In this article we conceive eight ruled surfaces related to the evo-

lute curve α and involute α∗. They are called as Frenet ruled surface and
involutive Frenet ruled surfaces, cause of their generators are Frenet vector

fields of evolute curve α. First we give tangent vector fields of striction curves

of all Frenet ruled surfaces and the tangent vector fields of striction curves
of involutive Frenet ruled surfaces are given according to Frenet apparatus of

evolute curve α. Further we give only one matrix in which we can see sixteen

position of these tangent vector fields, such that we can say there is six position
the tangent vector fields are perpendicular.

1. General Information

Deriving curves based on the other curves is a subject in geometry. Bertrand
curves, involute-evolute curves are this kind of curves. By using the analogous
means we generate ruled surface based on the other ruled surface. The properties
of the B-scroll are also examined in Euclidean 3-space, Lorentzian 3-space and n-
space with time-like directrix curve and null rulings (see [2], [5], [6] ). Differential

geometric elements of the involute D̃ scroll are examined in [10]. Let Frenet vector
fields be V1 (s) , V2 (s) , V3 (s) of α and let first and second curvatures of the curve
α(s) be k1 (s) and k2 (s) , respectively. The quantities {V1, V2, V3, k1, k2} are Frenet-
Serret elements of the curves. Frenet formulae are,

(1.1)

 V̇1

V̇2

V̇3

 =

 0 k1 0
−k1 0 k2

0 −k2 0

 V1

V2

V3

 .
The Darboux vector makes a path of curvature k1 and torsion k2, curvature is the
measuring of the rotation of the Frenet frame on the binormal unit vector, and
torsion is the measurement of the rotation of the Frenet frame on the tangent unit
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vector. For any unit speed curve α, according to the Frenet-Serret elements, the
Darboux vector can be defined

(1.2) D(s) = k2(s)V1 (s) + k1(s)V3 (s)

where curvature functions are defined by k1(s) = ‖V1(s)‖ and k2(s) = −
〈
V2, V̇3

〉
.

The Darboux vector field of α and it has the bellowing symmetrical properties, [3].

(1.3) D̃(s) =
k2

k1
(s)V1 (s) + V3 (s)

throughout α(s) under the condition that k1(s) 6= 0 and it is called the modified
Darboux vector field of α [8].
Let unit speed regular curve α : I → E3 and α∗ : I → E3 be given. For ∀s ∈ I,
then the curve α∗ is called the involute of the curve α, if the tangent at the point
α(s) to the curve α passes through the tangent at the point α∗(s) to the curve α∗,
then we can write that

α∗ (s) = α (s) + (c− s)V1 (s) , c = const.

The distance between corresponding points of the involute curve in E3 is d
(
α(s), α∗(s)

)
=

|c− s|, c is constant ,∀s ∈ I, ([4],[9]). The Frenet vector fields of the involute α∗,
based on the its evolute curve α are

(1.4)


V ∗1 = V2,

V ∗2 = −k1
(k21+k22)

1
2
V1 + k2

(k21+k22)
1
2
V3

V ∗3 = k2

(k21+k22)
1
2
V1 + k1

(k21+k22)
1
2
V3

and

(1.5) D̃∗ =
k2

(k2
1 + k2

2)
1
2

V1 −
k′1k2 − k1k

′

2

(k2
1 + k2

2)
3
2

V2 +
k1V3

(k2
1 + k2

2)
1
2

.

The first curvature and second curvature of involute α∗ are, respectively [9],

(1.6) k∗1 =

√
k2

1 + k2
2

(c− s)k1
, k∗2 =

−k2
2

(
k1
k2

)′
(c− s)k1 (k2

1 + k2
2)
.

Since η = k2
1 + k2

2 6= 0, and µ =
(
k2
k1

)′
, we have

η∗ = k∗21 + k∗22 =

(√
k2

1 + k2
2

λk1

)2

+

(
k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)

)2

=
η3 + k4

1µ
2

λ2η2k2
1

,(1.7)

µ∗ =

(
k∗2
k∗1

)′
ds

ds∗
=

k
′
2k1−k

′
1k2

λk1(k21+k22)√
k21+k22
λk1

1

λk1
=

k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)
3
2

=
µk1

λη
3
2

,(1.8)

(
k∗1
η∗

)′
=


√
k21+k22
λk1

(k21+k22)
3
+(k′2k1−k

′
1k2)

2

λ2k21(k21+k22)
2


′

1

λk1
=

(
η

5
2λk1

η3 + k2
1µ

)′
1

λk1
·(1.9)
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A ruled surface is generated by a one-parameter family of straight lines and it
possesses a parametric representation ,

(1.10) ϕ(s, v) = α(s) + vx(s),

where α and x are curves in E3. We call ϕ a ruled patch. The curve α is called the
directrix or base curve of the ruled surface, and x is called the director curve, [1].
The striction point on a ruled surface is the foot of the common normal between
two consecutive generators. The set of striction points defines the striction curve
given by [1]

(1.11) c(s) = α(s)− 〈αs, xs〉
〈xs, xs〉

x(s).

2. On the striction curves of Involutive Frenet ruled surfaces in E3

Theorem 2.1. The striction curves of Frenet ruled surfaces are, [7]

(2.1)


c1 − α
c2 − α
c3 − α
c4 − α

 =


0 0 0

0 k1
k22+k22

0

0 0 0
−k2

k1
(
k2
k1

)′ 0 −1(
k2
k1

)′


 V1

V2

V3

 .
Theorem 2.2. Tangent vector fields T1, T2, T3, and T4 of striction curves
along Frenet ruled surface are given by

T1

T2

T3

T4

 =


1 0 0

k22
η‖c′2(s)‖

( k1η )
′

‖c′2(s)‖
k1k2

η‖c′2(s)‖
1 0 0

µ−µ′− k2k1
µ‖c′4(s)‖ 0 µ′

µ2‖c′4(s)‖


 V1

V2

V3



where k2
1 + k2

2 = η,
(
k2
k1

)′
= µ.

Proof. It is given this matrix, so we get equalyties as follows:

T1 (s) = T3 (s) = α′ (s) = V1

Since c2(s) = α(s) + k1
k21+k22

V2 and

T2 (s) =
k2

2

(k2
1 + k2

2) ‖c′2(s)‖
V1 +

(
k1
η

)′
(k2

1 + k2
2) ‖c′2(s)‖

V2 +
k1k2

(k2
1 + k2

2) ‖c′2(s)‖
V3.

Also

T4 (s) =

((
k2
k1

)′)2

−
(
k2
k1

)′ (
k2
k1

)′′
− k2

k1

(
k2
k1

)′
((

k2
k1

)′)2

‖c′4(s)‖
V1 −

−1
(
k2
k1

)′′
((

k2
k1

)′)2

‖c′4(s)‖
V3,

T4 (s) =
µ2 − µµ′ − k2

k1
µ

µ2 ‖c′4(s)‖
V1 +

µ′

µ2 ‖c′4(s)‖
V3.

�
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Definition 2.1. Let α∗ (s) be involute of α(s) with arc-lenght parameter s. The
equations 

ϕ∗1 (s, v1) = α∗ (s) + v1V
∗
1 (s)

ϕ∗2 (s, v2) = α∗ (s) + v2V
∗
2 (s)

ϕ∗3 (s, v3) = α∗ (s) + v3V
∗
3 (s)

ϕ∗4 (s, v4) = α∗ (s) + v4D̃
∗(s)

are the parametrization of Frenet ruled surface of involute curve α∗ (s) .

The above definition can be written as follows.

ϕ∗1 (s, v1) = α (s) + (σ − s)V1 (s) + v1V2 (s) ,

ϕ∗2 (s, v2) = α (s) + (σ − s)V1 (s) + v2

(
−k1V1+k2V3

(k21+k22)
1
2

)
,

ϕ∗3 (s, v3) = α (s) + (σ − s)V1 (s) + v3

(
k2V1+k1V3

(k21+k22)
1
2

)
,

ϕ∗4 (s, v4) = α (s) + (σ − s)V1 (s)

+v4

(
k2√
k21+k22

V1 − k′1k2−k1k
′
2

(k21+k22)
3
2
V2 + k1V3√

k21+k22

)
Theorem 2.3. The equations of the striction curves of involutive Frenet ruled
surfaces on the evolute curve α according to Frenet elements of evolute curve α, [7]

(2.2)


c∗1 − α
c∗2 − α
c∗3 − α
c∗4 − α

 =


λ 0 0

λ
(

1− k21
η(1+m)

)
0 λ k1k2

η(1+m)

λ 0 0

λ− k2

m′ η
1
2

− m
m′

k1

m′η
1
2


 V1

V2

V3

 .
Theorem 2.4. Tangent vector fields T1

∗, T2
∗, T3

∗, T4
∗ of striction curves of in-

volutive Frenet ruled surface according to Frenet elements by themselves are given
by

(2.3)


T1
∗

T2
∗

T3
∗

T4
∗

 =



0 1 0
−b∗k1 + c∗k2

(k2
1 + k2

2)
1
2

a∗
b∗k2 + c∗k1

(k2
1 + k2

2)
1
2

0 1 0
e∗k2

(k2
1 + k2

2)
1
2

d∗
e∗k1

(k2
1 + k2

2)
1
2


 V1

V2

V3

 .

where

a∗ =
k∗2

2

η∗
∥∥c∗2′(s)∥∥ , b∗ =

(
k∗1
η∗

)′∥∥c∗2′(s)∥∥ , c∗ =
k∗1k
∗
2

η∗
∥∥c∗2′(s)∥∥

d∗ =
µ∗ − µ∗′ − k∗2

k∗1

µ∗‖c∗4
′(s)‖

, e∗ =
µ∗′

µ∗2
∥∥c∗4′(s)∥∥

and k∗1
2 + k∗2

2 = η∗,
(
k∗2
k∗1

)′
= µ∗.
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Proof. Tangent vector fields T1
∗, T2

∗, T3
∗, T4

∗ of striction curves of involutive Frenet
ruled surface matrix form as follows;


T ∗1
T ∗2
T ∗3
T ∗4

 =


1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


 V ∗1
V ∗2
V ∗3

 .

In the above matrix by using the equation (1.2), we can write


T ∗1
T ∗2
T ∗3
T ∗4

 =


1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗




0 1 0
−k1

(k21+k22)
1
2

0 k2

(k21+k22)
1
2

k2

(k21+k22)
1
2

0 k1

(k21+k22)
1
2


 V1

V2

V3



or


T1
∗

T2
∗

T3
∗

T4
∗

 =



0 1 0
−b∗k1 + c∗k2

(k2
1 + k2

2)
1
2

a∗
b∗k2 + c∗k1

(k2
1 + k2

2)
1
2

0 1 0
e∗k2

(k2
1 + k2

2)
1
2

d∗
e∗k1

(k2
1 + k2

2)
1
2


 V1

V2

V3

 .

�

Theorem 2.5. The product of tangent vector fields T ∗1 , T ∗2 , T ∗3 , T ∗4 and tan-

gent vector fields T1, T2, T3, T4, of striction curves belonging to Frenet ruled
surfaces and involutive Frenet ruled surfaces are given by,

(2.4) [T ] [T ∗]
T

=
1

η
1
2


0 −k1b

∗ + k2c
∗ 0 k2e

∗

bη
1
2 X bη

1
2 bη

1
2 d∗ + (ak2 + ck1) e∗

0 −k1b
∗ + k2c

∗ 0 k2e
∗

0 Y 0 e∗ (dk2 + ek1)



where X = bη
1
2 a∗ + (−ak1 + ck2) b∗ + (ak2 + ck1) c∗ and Y = b∗ (−dk1 + ek2) +

c∗ (dk2 + ek1)
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Proof. By using matrices (2.3) and (2.4), we can write
T1

T2

T3

T4



T ∗1
T ∗2
T ∗3
T ∗4


T

=


1 0 0
a b c
1 0 0
d 0 e


 V1

V2

V3





1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


 V ∗1
V ∗2
V ∗3




T

=


1 0 0
a b c
1 0 0
d 0 e



 V1

V2

V3

 V ∗1
V ∗2
V ∗3

T



1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


T

=


1 0 0
a b c
1 0 0
d 0 e


 1

η
1
2

 0 −k1 k2

η
1
2 0 0

0 k2 k1




1 0 0
a∗ b∗ c∗

1 0 0
d∗ 0 e∗


T

=
1

η
1
2


0 −k1b

∗ + k2c
∗ 0 k2e

∗

bη
1
2 X bη

1
2 bη

1
2 d∗ + (ak2 + ck1) e∗

0 −k1b
∗ + k2c

∗ 0 k2e
∗

0 Y 0 e∗ (dk2 + ek1)

 .
�

The position of the unit tangent vector field T ∗1 , T
∗
2 , T

∗
3 , T

∗
4 of ruled surfaces

ϕ∗1, ϕ
∗
2, ϕ
∗
3, ϕ
∗
4, respectively, on the curve α∗, can be expressed by the bellowing

matrix;

(2.5) [T ] [T ∗]
T

=


〈T1, T

∗
1 〉 〈T1, T

∗
2 〉 〈T1, T

∗
3 〉 〈T1, T

∗
4 〉

〈T2, T
∗
1 〉 〈T2, T

∗
2 〉 〈T2, T

∗
3 〉 〈T2, T

∗
4 〉

〈T3, T
∗
1 〉 〈T3, T

∗
2 〉 〈T3, T

∗
3 〉 〈T3, T

∗
4 〉

〈T4, T
∗
1 〉 〈T4, T

∗
2 〉 〈T4, T

∗
3 〉 〈T4, T

∗
4 〉

 ,
here [T ∗]

T
is the tranpose matrix of [T ∗] .

The six pairs of Frenet ruled surface and involutive Frenet ruled surface have stric-
tion curves with orthogonal tangent vector fields, these are
Tangent and involutive tangent ruled surfaces of the α,
involutive binormal and tangent ruled surface of the α,
involutive tangent and binormal ruled surface of the α,
Binormal and involutive binormal ruled surfaces of the α,
Darboux and involutive tangent ruled surfaces of an α,
Darboux and involutive binormal ruled surfaces of an α.

Theorem 2.6. Tangent vector fields of striction curves on tangent ruled surface
and involutive normal ruled surface and binormal ruled surface have orthogonal

under the condition are
k2

k1
=

(
k∗1
η∗

)′
η∗

k∗1k
∗
2

·

Proof. Since the equations (2.4) and (2.5), we have

〈T1, T
∗
2 〉 = 〈T3, T

∗
2 〉 =

−k1b
∗ + k2c

∗

η
1
2

= 0 =⇒ k2

k1
=

(
k∗1
η∗

)′
η∗

k∗1k
∗
2

,

this completes the proof. �
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Theorem 2.7. Tangent vector fields of striction curves on tangent ruled surface
and binormal ruled surface and involutive Darboux ruled surface have orthogonal

under the condition are
k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)
3
2

= constant.

Proof. From the equations (2.4) and (2.5), we have

〈T1, T
∗
4 〉 = 〈T3, T

∗
4 〉 =

1

η
1
2

k2e
∗ = 0 =⇒ k2e

∗ = 0, k2 6= 0

e∗ = 0 =⇒ (µ∗)′ = 0 =⇒ k
′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)
3
2

= const.,

this completes the proof. �

Theorem 2.8. i) Tangent vector fields of striction curves on normal and involutive

tangent ruled surfaces have orthogonal under the condition are
(

k1
k21+k22

)′
= 0.

ii) Tangent vector fields of striction curves on normal and involutive binormal ruled

surfaces have orthogonal under the condition are
(

k1
k21+k22

)′
= 0.

Proof. i) By using the equations (2.4) and (2.5), we can write

〈T2, T
∗
1 〉 = b =

(
k1

k21+k22

)′
‖c′2(s)‖

= 0 =⇒
( k1

k2
1 + k2

2

)′
= 0,

this completes the proof.
ii) Since 〈T2, T

∗
3 〉 = b, it is trivial. �

Theorem 2.9. Tangent vector fields of striction curves along normal and involutive
normal ruled surfaces are orthogonal under the condition

bη
1
2 a∗ + (−ak1 + ck2) b∗ + (ak2 + ck1) c∗ = 0.

Proof. Since the equations (2.4) and (2.5), we have

〈T2, T
∗
2 〉 =

X

η
1
2

= 0 =⇒ X = bη
1
2 a∗ + (−ak1 + ck2) b∗ + (ak2 + ck1) c∗ = 0,

this completes the proof. �

Theorem 2.10. Tangent vector fields of striction curves along normal and invo-
lutive Darboux ruled surfaces are orthogonal under the condition

bη
1
2 d∗ + (ak2 + ck1) e∗ = 0.

Proof. Since 〈T2, T
∗
4 〉 =

bη
1
2 d∗ + (ak2 + ck1) e∗

η
1
2

in the equations (2.4) and (2.5) and

under the orthogonality condition bη
1
2 d∗ + (ak2 + ck1) e∗ = 0. �

Theorem 2.11. Tangent vector fields of striction curves along Darboux ruled sur-
face and involutive normal ruled surface are orthogonal under the condition

k1

k2
=

(dc∗ + eb∗)

(db∗ − ec∗)
·
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Proof. Since the equations (2.4) and (2.5), we have

〈T4, T
∗
2 〉 =

Y

η
1
2

= 0 =⇒ Y = b∗ (−dk1 + ek2) + c∗ (dk2 + ek1) = 0

=⇒ k1

k2
=

(dc∗ + eb∗)

(db∗ − ec∗)
,

this completes the proof. �

Theorem 2.12. Tangent vector fields of striction curves on involutive Darboux
ruled surface and Darboux ruled surface are orthogonal under the condition (dk2 + ek1) =

0 or

(
k∗2
k∗1

)′
= const.

Proof. By using the equations (2.4) and (2.5), we can write

〈T4, T
∗
4 〉 =

e∗ (dk2 + ek1)

η
1
2

= 0 =⇒ (dk2 + ek1) = 0 ore∗ = 0

e∗ = 0 =⇒ µ∗ = const. =⇒
(
k∗2
k∗1

)′
= const.

this completes the proof. �
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[10] Şenyurt, S. and Kılıçoğlu Ş., On the differential geometric elements of the involute

D̃ scroll, Advances in Applied Clifford Algebras, Springer Basel, 25(4), 977-988, 2015,

doi:10.1007/s00006-015-0535-z.

Faculty of Education, Department of Mathematics, Başkent University, Ankara,
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