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BIOPERATIONS ON «o-SEMIOPEN SETS

ALIAS B. KHALAF AND HARIWAN Z. IBRAHIM

ABSTRACT. The aim of this paper is to introduce and study the concept of
o, ,Y/]—semiopen sets. Using this set, we introduce and study the concept of

ahﬁ/],a[Byﬁx])-semlcontlnuous and (ahﬁ/],a[Byﬁz])-lrresolute functions.

1. INTRODUCTION

The notion of semiopen sets is an important concept in general topology. In
1963, Levine [4] defined semiopen sets in a space X and discussed many of its
properties. Njastad [3] introduced a-open sets in a topological space and studied
some of its properties. Ibrahim [2] defined the concept of an operation on aO(X, 7)
and introduced o.-open sets in topological spaces and studied some of their basic
properties. Khalaf, et. al. [1] introduced the notion of aO(X,7), ./, Which is
the collection of all o, ,/1-open sets in a topological space (X, 7). In this paper,
we introduce and study the notion of aSO(X, ), /) which is the collection of all
[, ,/j-semiopen by using operations v and " on a topological space aO(X, 7). We
also introduce (ay, 1, g g))-semicontinuous and («, ./}, ag g1)-irresolute func-
tions and investigate some important properties of these functions.

2. PRELIMINARIES

Throughout this paper, (X, 7) and (Y, o) represent nonempty topological spaces
on which no separation axioms are assumed, unless otherwise mentioned. The
closure and the interior of a subset A of X are denoted by CI(A) and Int(A),
respectively.

Definition 2.1. A subset A of a topological space (X, 7) is called a-open [3] (resp.,
semiopen [4]) if A C Int(Cl(Int(A))) (resp., A C Ci(Int(A))). The complement of
an a-open (resp., semiopen) set is called a-closed (resp., semiclosed) set.

The family of all a-open (resp., semiopen) sets in a topological space (X, 1) is
denoted by aO(X,7) or aO(X) (resp.,SO(X, 7) or SO(X)).

2000 Mathematics Subject Classification. Primary: 54A05, 54A10; Secondary: 54C05.
Key words and phrases. Bioperations, a-open set, ap, /-open set, ap, 7/]—semiopen set.

193



194 ALIAS B. KHALAF AND HARIWAN Z. IBRAHIM

Definition 2.2. [2] Let X be a topological space. An operation v on the topology
aO(X) is a mapping from aO(X) into the power set P(X) of X such that V C V7
for each V' € aO(X), where V7 denotes the value of v at V. It is denoted by
v:a0(X) = P(X).

Definition 2.3. [2] An operation v on aO(X) is said to be a-regular if for every a-

open sets U and V containing = € X, there exists an c-open set W of X containing
x such that WY CUYN V7.

Definition 2.4. [1] A subset A of X is said to be o, /-open if for each z € A,
there exist a-open sets U and V' of X containing x such that U” N VY C A A
subset I of (X, 7) is said to be oy, j-closed if its complement X \ F' is «,, /j-open.

The family of all «, /-open sets of (X, 1) is denoted by aO(X, T)[,Y’,Y/].

Definition 2.5. [1] Let (X, 7) be a topological space and A be a subset of X, then:
(1) The intersection of all oy, -closed sets containing A is called the o
closure of A and denoted by oy, /-CI(A).
(2) The union of all o, ,/-open sets contained in A is called the «, ./ -interior
of A and denoted by o, ,/-Int(A).

S
7]

Definition 2.6. [5] A nonempty subset A of (X,7) is said to be [y, ]-open if for
cach 2 € A there exist open sets U and V of X containing « such that U'NV7" C A.

The family of all [y,~']-open sets of (X, 7) is denoted by Ty ]

Definition 2.7. [1] A function f : (X,7) — (Y,0) is said to be (a}, .}, o5,4)-
closed if for o, ./ \-closed set A of X, f(A) is a4 g-closed in Y.

3. o /]—SEMIOPEN SETS

VY

Definition 3.1. Let (X,7) be a topological space and ’y,fy' be two operations
on aO(X, 7). A subset A of X is said to be o, +j-semiopen, if there exists an
o, ,1-open set U of X such that U € A C oy, -CU(U).

The family of all a[%vz]—semiopen sets of a topological space (X, 7) is denoted by
aSO(X, 7)) Also, the family of all o, /j-semiopen sets of (X, 7) containing z

is denoted by aSO(X, z), /)

Theorem 3.1. If A is an oy /1-0pen set in (X, 1), then it is ahﬁ/]-semiopen set.
Proof. The proof follows from the definition. ([

The following example shows that the converse of the above theorem is not true
in general.

Example 3.1. Let X = {a,b,c} and 7 = {¢, X, {a}, {c}, {a, b}, {a,c}} be a topol-
ogy on X. For each A € aO(X, 1), we define two operations v and ~', respectively,
by

X ifceA

A ifcé¢ A

Now, aO(X, 1)y, 1 = {9, X, {a}, {a,b}}. Let A = {a,c}, then there exists an
o, y-open set {a} such that {a} € A C «a, /;-Cl({a}) = X. Thus, A is o
semiopen but not Q[ ,/)-OPen.

A’YA“//{

,ie
7]
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Theorem 3.2. If A is a [y,~']-open set in (X,7), then it is /) -Semiopen set.
Proof. The proof follows from [[1], Proposition 3.14] and Theorem 3.1. |

The converse of the above theorem need not be true. The subset {a,b} in [[1],
Example 3.15.], is an [,,,/j-Semiopen set but it is not [v,7 ]-open.

Also by Theorem 3.1 and [[1], Proposition 3.14], we obtain the following inclu-
sion
T

1 € a0(X, 1) C aSO(X,T1)

¥y [v7'] (v

The following examples show that the concept of semiopen and oy /|-Semiopen
sets are independent.

Example 3.2. Let X = {a,b,c} and 7 = {¢, X, {a}, {b}, {a, b}, {b, c}} be a topol-
ogy on X. For each A € «O(X, 1), we define two operations v and ~', respectively,
by

A ifac A

Cl(A) ifaé¢ A

Calculations give aO(X, 7)1, /1 = {9, X, {a}, {a,b}}. Then, A = {a,c} is ap, /-
semiopen but not a semiopen set.

Example 3.3. Let X = {a,b,c} and 7 = {¢, X, {a}, {b},{a, b}, {a,c}} be a topol-
ogy on X. For each A € «O(X, 1), we define two operations v and 7,, respectively,
by

m:m':{

’ A ifbe A
Y — A —
AT=4 —{ Cl(A) ifbe A
Calculations give aO(X, 1), .,y = {¢, X, {b},{a,b},{a,c}}. Then, A = {a} is
semiopen but not an ahﬁ/]—semiopen set.

Theorem 3.3. A subset A is Oy /) -S€Emiopen if and only if A C ahﬁf]—Cl(ahﬁ/]—
Int(A)).

Proof. Let A C oy, 1-Cl(ey, /1-Int(A)). Take U = o, /-Int(A). Then, by [[1],
Proposition 3.44 (1)], U is «, ,/j-open and we have U = «, /-Int(4) € A C
oy, 1-CUU). Hence, A'is ay, ./ )-semiopen.

Conversely, suppose that A is an o, ,;-semiopen set in X. Then, U C A C
oy, 1-CUU), for some ap, ,/-open sets U in X. Since U C ay, /-Int(A). Thus,
we have o, -ClU(U) C o, /1-Cl(ey, ,-Int(A)). Hence, A C oy 1-Cl(oy, -
Int(A)). O

Theorem 3.4. Let A be an a[%ﬂ/]—semiopen set in a space X and B a subset of
X. IfAC B C oy, /1-Cl(A), then B is o

"/;’Y/] -SEMiopen.

Proof. Since A is an ahﬁr]—semiopen set in X, then there exists an [y '1-OPen set
U of X such that U C A C oz[%ﬂ—C’l(U). Since A C B, so U C B. But Ay 1
Cl(A) C a[,m/]—C’l(U), then B C a[,m/]-C'l(U). Hence U C B C oz[%,yr]—Cl(U).
Thus, B is [ /1-Semiopen. O

Theorem 3.5. If A; is oy, r-semiopen for every i € I, then U{A; : i € I} is
a[,w/]-semiopen.
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Proof. Since A; is an [y /1-Semiopen set for every ¢ € I, so there exist an O‘h e
open set U; of X such that U; C A; C Ay ] -Cl(U;) this impies that |J,c; U; C
Uier 4i € ap, ,/-Cl(U;er Us)- By [[1], Proposition 3.2], U, Ui is open.

Therefore, U;cA; is an a[,m/]—semiopen set of (X, 7).

¥

If A and B are two o, ,/-semiopen sets in (X, 7), then the following example
shows that A N B need not be [ /j-Semiopen.

Example 3.4. Let X ={a,b,c} and 7 = {¢, X, {a}, {c}, {a, b}, {a, c}} be a topol-
ogy on X. For each A € aO(X, 1), we define two operations v and 7 , by

A — Cl(A) ifce A,
1 X ifc¢ A,

and
e A if A#{a},
X if A={a}.
Then, it is obvious that the sets {a, b} and {a, c} are «
intersection {a} is not «, ,/-semiopen.

[v,,/]-Semiopen, however their

Remark 3.1. From the above example we notice that the family of all ALy ')
semiopen subsets of a space X is a supratopology and need not be a topology
in general.

Theorem 3.6. Let v and ’y/ be a-reqular operations on aO(X). If A is a subset
of X, then for every o, /]—open set G of X, we have:
(2) Ay ' —Cl(AﬂG) = a C’l( oy —CZ(A) NG).

Proof. (1) Letz € oy, , —Cl( )NG and V be any oy, +j-open set containing z.
Then by [[1], Proposmon 3.4], VNG is also an o, /j-open set containing
x. Since © € ay, —C’l(A) implies that (VN G)N A # ¢, this implies that
VN(ANG) # ¢ and hence by [[1], Proposition 3.31], z € o, /-CI(ANG).
Therefore o, -CU(A) NG C oy, -CUANG).
(2) By (1), ahﬁ/]—C’l(A) NG C ap,Cl(ANG) and so ap, 1-Cl(ay, -
Cl(A)NG) € ap, ) CI(ANG). But ANG C ap, ./ -CI(A) N G implies
that o, ,/-Cl(ANG) C ap, /-Cl(ey, /1-CI(A) N G). Therefore, o
Cl(ANG) = ap, ,-Cl(ay, ,-CI(A) N G).

¥
O

Theorem 3.7. Let~y and 'y/ be a-regular operations on aO(X). If A is ALy '] -0PEN

and B 1is Q] -SEmiopen, then AN B is Oy /] -SEMIopen.

Proof. Since B is |, /j-semiopen, there exists an [y 1-0Pen set G such that
G CBC o, ClG)andso ANG € ANB C ANap, -CUG). By [[1],
Proposition 3.4], AﬂG is ay, ;-open and so ANG = o, /-Int(ANG). By Theorem
3.6 (1), ANnay, -CUG) C «ap, /-CI(ANG). Therefore, ANB C AN ap, /-
Cl(G) C ap, - CUANG) = ap, - Clla, - Int(AN G)) C -Cl(oy, 1
Int(AN B)). By Theorem 3.3, AN B is «ay, ,/-semiopen.

')



BIOPERATIONS ON «a-SEMIOPEN SETS 197

Proposition 3.1. The set A is Q1 -semiopen in X if and only if for each x € A,

there exists an Q) -SEmiopen set B such that x € B C A.

Proof. Suppose that A is an oy ,/-Semiopen set in the space X. Then for each
x € A, put B = A which is an [, /)-Semiopen set such that x € B C A.
Conversely, suppose that for each = € A, there exists an oy ,-semiopen set B
such that z € B C A. Thus A = UzeaB;, where B, € aSO(X, 1), /- Therefore,
by Theorem 3.5, A is an [, /)-semiopen set. O

Proposition 3.2. Let (X,7) be a topological space and ’y,vl be operations on
aO(X). A subset A of X is oy, .+ -semiopen if and only if o, 1-CU(A) =
Cl(a[%,y/]-]nt(A))

Qlyn'1"

Proof. Let A € aSO(X), } Then, we have A C oy, 1-Cl(ey, ,/1-Int(A)), which
implies that a[ -CU(A) C oy, -Cl(ey, - Int(A )) C o, ,-Cl(A) and hence
a[%,y/]—Cl(A) CZ(O[ ]-Int(A))

Conversely, Slnce by [[1], Prop051t10n 3.44 (1)] and Theorem 3.1, oy, 11-Int(A)
is an ay, sj-semiopen set such that a[%ﬂ/]—fnt(A) CAC ahﬂ/]—C’l(A) = Q)
Cl(ay, /;-Int(A)) and hence A is ay, /j-semiopen.

O
Proposition 3.3. If A is a nonempty o, ' -semiopen set in X, then Ny o]
Int(A) # ¢.
Proof. Since A is ay, /-semiopen, by Proposition 3.2, we have aj, -CZ( ) =
a[,w/]—Cl(a[%ﬂ/]—fnt(A)) Suppose that oy, ,/-Int(A) = ¢. Then, we have Q1
Cl(A) = ¢ and hence A = ¢. This contradlcts the hypothesis. Therefore, ALy ')
Int(A) # ¢. O

Proposition 3.4. Let (X,7) be a topological space and =, fy' be operations on

aO(X). Then a subset A of X is « -semiopen if and only if A C o

[v,7'] 17

Cl(ay, -Int(ay, . -Cl(A))) and o, . -Int(oy, 1-Cl(A)) C o, 1-Cllay, ,-Int(A)).
Proof. Let A be an o, ,/-Semiopen set. Then, we have A C a[%,y/]—Cl(a[%,yl]—
Int(A)) C Cl(ahv] -Int(oy, ,-Cl(A))). Moreover, o, ,/-Int(ay, ,/-Cl(A)) C
Oz[%,y/]—Cl( ) — ~,y Cl( ]—Int(A))

Conversely, since a[ ]Int( V] CZ(A)) € ap 4 Cllay, - Int(A)). Thus,
we obtain that o, Cl(a[ " Im‘( Cl(A ))) C ap ) Cllay, -Int(A)).
By hypothesis, we have ACao, ]—C’l(ah N ]—Imf( Cl(A))) € ap, -Cllay, 1
Int(A)). Hence, A is an «, ./j-semiopen set. O

Definition 3.2. Let A be a subset of a topological space (X, 7) and 7, 'y/ be oper-
ations on aO(X). Then, a subset A of X is said to be c, ./-semiclosed if and only
if X\ Ais ahﬁ/]—semiopen. The family of all ahﬁ/]—semiclosed sets of a topological
space (X, 7) is denoted by aSC(X,7), ..

The following theorem gives characterizations of @y, /-semiclosed sets.

Theorem 3.8. Let A be a subset of X and 'y,’y/ be operations on «O(X). Then,
the following statements are equivalent:
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(1) A s ay, s -semiclosed.
(2) o Int(a[ -Cl(A)) C A.
(4) There exists an I closed set F such that oy, Int(F) CACF.

Proof. (1) = (2): Since A € aSC(X,7)(, ./, then we have X\ A € aSO(X, 7), /-
Hence, by Theorem 3.3 and [[1], Proposition 3.45], X\ A C o, -Cl(a, /- Int(X\

A)) = X\ (ap, - Int(oy, /1-Cl(A))). Therefore, we obtain a, ,-Int(ag, /-
Cl(A4)) C A.

(2) = (3): Since oy, -Int(ayp, ,/-Cl(A)) € A implies that oy, -Int(ap, /-
Cli(A) C ap., ]—Int(A) but a[, ]—Int(A) C ap - Int(oy, ]—Cl( )) and so
OZ[,y v ]-Int( -CZ( )) = O[[,%,Y/]-Int(A).

(3) = (4): Let F' = ay, /-Cl(A), then F is an «ay, ./ |-closed set such that a, /-
Int(F) = ap, -Int(ey, -ClU(A)) = o, -Int(A) € A C F, which proves (4).

(4) = (1): If there exists an o, ,/-closed set F' such that a, /-Int(F) C ACF,
then X \ FF C X\ A C X\ o, - Int(F) = ap, -CU(X \ F). Since X \ F' is

Qp, ,/1-open, then X \ A is @, /|-Semiopen and so A is o -semiclosed. (Il

7]
Theorem 3.9. Let (X, 1) be a topological space and ~, ' be operations on a0O(X).
Arbitrary intersection of ahﬁ/]-semiclosed sets is always a[,w/]-semiclosed.

Proof. Follows from Theorem 3.5. g

Lemma 3.1. Let A € aSC(X, 1), /1 and suppose that o, . -Int(A) € B C A.

Then, B € aSC(X,T)}, .-

Proof. Let A € aSC(X, T)[,m/], then by Theorem 3.8, there exists an ahﬁ/]—closed
set ' such that a[%,y/]—lnt(F) CACF. Since BCAand ACF. Thus, BC F
also ap, -Int(F) € ap, -Int(A) and ap, /-Int(A) € B. This implies that
oy - Int(F) € B. Hence, oy, -Int(F) € B C F, where F is oy, /j-closed in X.
This proves that B € aSC(X, ), )

([

Proposition 3.5. Let (X,7) be a topological space and 7,7/ be operations on
aO(X). Then, a subset A of X is oy 7 -semiclosed if and only ifa[yﬁf]—fnt(ozhﬁz]—
Cl(ay, -Int(A))) € A and oy, ./ -Int(ey, -CU(A)) C oy, -Cl(ay, -Int(A)).

Proof. Let A be an ap, /-semiclosed set. Then, by Theorem 3.8 (2), we have
oy, Int(ag, 1 -Cllayg, -Int(A))) C a[ vy It (e, ,-Cl(A)) € A. Moreover,
by Theorem 3.8 (3), O‘[%“/ ]—Int(oz[%v Cl(A)) = ap, - Int(A) C oy, -Cllap, )
Int(A)).

Conversely, since o, ,/-Int(ap, ,/-Cl(A)) € ap, /-Cl(ay, /=Int(A)). Thus,
we obtain that O([ ] Int( CZ(A)) [,\/},\/’]—Int(a[,y’,yf]—cl(a[,y ] Int(A)))
By hypothesis, we have oy ]—Int(a[ 4+ 1"CUA)) € ap, -Int(oy, ]—C’l(
Int(A))) C A. Hence, by Theorem 3.8, A is an a, /-semiclosed set. D
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Definition 3.3. Let A be a subset of a topological space (X, 7) and ~, 7" be oper-
ations on aO(X). Then:

(1) The oy, j-semiclosure of A is defined as the intersection of all ay,
semiclosed sets containing A. That is, o, /-sCI(A) = ({F: F'is o, /-
semiclosed and A C F'}.

(2) The o, ./ -semiinterior of A is defined as the union of all o, ./-semiopen
sets contained in A. That is, a, ./ -sInt(4) = {U : U is a, /-semiopen
and U C A}.

(3) The oy, /-semiboundary of A, denoted by ai, ,/-sBd(A) is defined as
oy 417SCUA) \ o, p-sInt(A).

(4) The set denoted by oy, /-sD(A) and defined by {z : for every ay, /-
semiopen set U containing x, U N (A \ {z}) # ¢} is called the o, -

semiderived set of A.

The proofs of the following theorems are obvious and therefore are omitted.

Theorem 3.10. Let A, B be subsets of a topological space (X, 7) and 7, *y' be op-
erations on aO( ). Then:

(1) o, ,11-sCU(A) is the smallest oy, 1j-semiclosed subset of X containing A.
(2) Ae SC(X )iy if and only if ap, . -sCIU(A) = A.
(3) 04[777/]-SCI(OC[,%,Y/]-SCZ(A)) = Oz[%ﬂ/]—SCl(A).
(4) A g Oz[%,y/]—SCZ(A).
(5) If AC B, then o, ,/-sCI(A) C oy, ,/-sCU(B).
« 1S N - Nay, /1-8 .
(6) ap,,-sCl(ANB) C ap, -sCl(A) Ney, 1-sCU(B)
(7) ap,4-sCU(AU B) 2 oy, /-sCU(A) U oy, 11-sCIU(B).
(8) z € ap, ,/-sCU(A) if and only ifVNA# for every V € aSO(X, x), .-

Theorem 3.11. Let A, B be subsets of a topological space (X, T) and 7, 'y/ be op-
erations on «O(X). Then:

(1) o, y1-sInt(A) is the largest o, ./ -semiopen subset of X contained in A.

(2) A is ap, . -semiopen if and only if A=« ./ -sInt(A).
(3) ap, -sInt(a, sInt(A)) = oy, -sInt(A).
(4) o /]-slnt( )
(5) If C B, then ah N ]—slnt(A) C ap, -sInt(B).
(6) o, yy-sInt(AUB) 2 oy, ,-sInt(A) U oy, ,-sInt(B).
(7) oy y-sInt(AN B) C ay, . -sInt(A) Nay, /) -sInt(B).
(8) X\ ozhﬂ -sInt(A) = oy, 1-sClU(X \ A).
(9) X\ ap, -sCUA) = ap, -sInt(X \ A).

(10) oy, -sInt(A) = X \ oy, -sCU(X \ A).

(11) o, ,-sCUA) = X \ ap, g sInt(X\A).

Theorem 3.12. Let A, B be subsets of a topological space (X, T) and 7, 'y' be op-
erations on «O(X). Then:

(1) oy 41-sCUA) = ap, y-sInt(A) Uay, s-sBd(A)
(2) oy, y-sInt(A) N oy, y-sBd(A) =

(3) o, 4-sBd(A) = ap, . -sCU(A) Nay, /-sCUX \ A)
(4) o, -sBd(A) = o, -sBd(X \ A)
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(5) o, -sBd(A) is an ay, s -semiclosed set.

Theorem 3.13. Let A, B be subsets of a topological space (X, 7) and ’y,’y/ be op-
erations on «O(X). Then:

B) 2 Oé['Yv’Y 1 S.D( ) U OZ[,Y7,Y/]—SD(B),

B) C Oé[ ] SD( )ﬁ a[,y7,yl]—SD(B).
SD(A))\ A C ay,1-5D(A),
41-8D(AU ahﬂ/]-sD(A)) CAUap, -sD(A).

ap, 1-SCl(A) = AUy, 1 -sD(A).

A is o, -semiclosed zf and only if Ly ]—sD(A) C A.

Remark 3.2. Let A be subset of a topological space (X, 7) and ~, 7" be operations
on aO(X). Then:
Oz[%,y/]—fnt(A) g OZ[,Y7,Y/]-SInt(A) g A g OZ[,Y7,Y/]-SCZ(A) g Oz[%,y/]—Cl(A).

Theorem 3.14. Let (X, 7) be a topological space, v,y operations on aO(X) and
A a subset of X. Then, the following statements are equivalent:
(2) oy sInt( Ay ] —sC’l(A)) C A.

() (apy -CUX\(ap, -CUANN (X \ (0, 41)-CU(A)))) 2 (o, ,11-CU(A)\ A).
Proof. (1) = ( ) If A= Cv[,y7,y/]—SCl(A)7 then ap, -sInt(oy, -sClU(A)) = o, -
sInt(A) C A.

(2) = (1): Suppose that «, ./ -sInt(ay, 1-sCI(A)) € A. Now, by Theorem 3.10
(1), oy ,/1=sCU(A) is an o, /j-semiclosed set and so, by Theorem 3.8, there is an
o, -closed set F' such that o, -Int(F) C «p, ,-sCl(A) C F. Since o

Int(F)is o

fore, a, -Int(F) = ap, -sInt(oy, - Int(F)) C ap, . -sint(ag, 1-sCLI(A))
and hence ap, -Int(F) C A. But A C o, -sCl(A) C F. Thus, q
Int(F) C A C F, where F is o, 7/]—closed. Hence by Theorem 3.8, A is o

semiclosed and by Theorem 3.10 (2), A= ay, -sCIU(A).

A1
+/1-Semiopen, then o, _rj-sInt(ay, ., ]—Int(F)) = oy, /- Int(F). There-

,ie

7Y']
,ie

7]

(3) & (1): We have (o, -CUX\ (v, ,/-CUA))\ (X \ (v}, ,/-Cl(A)))) 2 (@
Cl(A)\ A)

(VA1

(a[ ’yl]_Cl(X \ (04[7,7’]'0“ I (
( (7] —Cl ( CZ(A)
(

\
Xy A1 Cl( \ (o, )
[vv] Cux \(O‘[“/W]Cl( )
Cl(X \ (Oz[,yﬁ ]-Cl(

X
)

& ap, -Cl(A) Nay, n-Int(ay, 1-Cl(A)) € A
& ap,-Int(ey, ,-Cl(4)) € A

< Als Ay ') semlclosed

S A= Oé[nm/]—sC’l(A). O
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Theorem 3.15. If A is a subset of a nonempty space X and 'y,’yl are operations
on aO(X), then the following statements are equivalent:

(1) 06[777/]-CZ(A) =X.
( ) CY[,Y,,Y/]—SCI(A) =X.
(3) If B is any o, /-semiclosed subset of X such that AC B, then B=X.
(4) Every nonempty a[%vf]—semiopen set has a nonempty intersection with A.
(5) apy yy-sInt(X \ A) = ¢

Proof. (1) = (2): Suppose z ¢ o, /1-sCl(A). Then, by Theorem 3.10 (8), there
exists an o, sj-semiopen set G containing z such that GN A = ¢. Since G is a
nonempty ahﬁ/]—semiopen set, then there is a nonempty [y /1-OPen set H such
that H C G and so H N A = ¢ which implies that a, ./-CI(A) # X, a contradic-
tion. Hence ay, /-sCl(A) = X.

(2) = (3): If B is any o, /-semiclosed set such that A C B, then X = a, /-
sCl(A) C oy, /1-sCl(B) = B and so B = X.

= : 1s any nonempty o semiopen set such that G N A = ¢, then
3 G [y,,/]Semi h that GN A = ¢, th
ACX \ G and X \ G is o, /- sennclosed By hypothesis, X \ G = X and so
G = ¢, a contradiction. Therefore, G N A # ¢.

4) = (5): Suppose that « -sInt(X \ A ¢. Then, by Theorem 3.11 (1),
[v'1

4y 17 8INE(X\ A) s a nonempty [, ,/j-semiopen set such that aj, /-sInt(X

N A = ¢, a contradiction. Therefore, a, /-sInt(X \ A) = ¢.

= 2

(5) = (1): Since ay, /;-sInt(X \ A) = ¢ implies that X \ o, ,/j-sInt(X \ A) = X
by Theorem 3.11 (11), implies that oy, ./-sCI(A) = X. By Remark 3.2, a; /-

sCl(B) € ay, ,/)-Cl(B) for every subset B of X. Therefore, ay, 11-sCI(A) =
implies that g, -CIl(A) = X.

0O >~

Proposition 3.6. Let vy and 'y/ be a-regular operations on aO(X). If A is a subset
of X and ahﬁ/]-sCl(A) = X, then for every Qp, /1-0pen set G of X, we have
OZ[,Y7,Y/]—CZ(A N G) /] —CZ(G)

= Ay

Proof. The proof follows from Theorem 3.15 and Theorem 3.6 (2). g

Definition 3.4. Let (X,7) be a topological space and -, 7/ be operations on
a@O(X). A subset B, of X is said to be an ay, _/-semineighborhood (resp. ay, /-

neighborhood) of a point z € X if there exists an QA semiopen (resp. Ay A1

open) set U such that x € U C B,.

Theorem 3.16. Let (X, 1) be a topological space and 7, ~" be operations on aO(X).
A subset G of X is Q'] -Semiopen if and only if it is an ahﬁr]—semineighborhood
of each of its points.

Proof. Let G be an [, /j-semiopen set of X. Then, by Definition 3.4, it is clear
that G is an ahﬂ/]—semineighborhood of each of its points, since for every z €
G,r € GCGandGis a[,yy,y/]—semiopen.
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Conversely, suppose that G is an ahﬁf]—semineighborhood of each of its points.
Then, for each z € G, there exists S, € aSO(X, x)[%,y/] such that S, C G. Then,
G = U{S: : © € G}. Since each Sy is o, /-semiopen, hence by Theorem 3.5, G is
[, /j-Semiopen in (X, 7). O

Proposition 3.7. For any two subsets A, B of a topological space (X, 7) and A C
B, if A is an ozhﬁr]-semineighborhood of a point x € X, Then, B is also o
semineighborhood of the same point x.

Proof. Obvious. (]

,ie
7]

4. SOME NEW FUNCTIONS

Throughout this section, let 7,7 : aO(X) — P(X) and 8,8 : aO(Y) = P(Y)
be operations on «O(X) and aO(Y), respectively.
Definition 4.1. A function f : (X,7) — (Y,0) is said to be (a}, ./}, o5,4)-
semicontinuous if for each z € X and each g g/-open set V of Y containing f(z),
there exists an a, s-semiopen set U of X such that € U and f(U) C V.

Theorem 4.1. For a function f : (X,7) — (Y,0) the following statements are
equivalent:
(1) fis (ap, ), op,5))-s€micontinuous.

2) The inverse image of each c gy 41-open set in'Y is ay., q-semiopen in X.
(8,8°] ']

3) The inverse image of each oz g1-closed set in'Y is o, _q-semiclosed in X.
[8,87] [v']

(4) For each subset A of X, f(ay, ,-sCU(A)) C ag 51-CU(f(A)).

(5) For each subset B of Y, oz[%n/]—SC’l(ffl(B)) C ffl(a[ﬁﬁf]—C’l(B)).

(6) For each subset B of Y, f~!(ag g-Int(B)) C ay, -sInt(f~1(B)).

Proof. (1) = (2): Let f be (o, /1, /g g7)-semicontinuous. Let V' be any oz g/)-
open set in Y. To show that f~1(V) is an o, /|-Semiopen set in X, if f7HV) = ¢,
then f~1(V) is an o, ,/j-semiopen set in X, if f~YV) # ¢, then there exists
x € f~YV) which implies f(z) € V. Since f is (41> p,577)-semicontinuous,
there exists an @, /1-semiopen set U in X containing x such that f(U) C V. This
implies that z € U C f~1(V). This shows f~1(V) is o, /-Semiopen.

(2) = (3): Let F' be any o g)-closed set of Y. Then Y \ F is an ayg g-open
set of Y. By (2), f7Y(Y\F) =X\ f71(F) is an o, /p-Semiopen set in X and

hence f~1(F) is an @, /1-semiclosed set in X.

']
(3) = (4): Let A be any subset of X. Then, f(A) C a5 4-Cl(f(A)) and oz g)-
CI(f(A)) is an ag g)-closed set in Y. Hence A C f~' (a5 51-Cl(f(A))). By (3),

we have f’l(aw,ﬁ/]—Cl(f(A))) is an o, ,v)-semiclosed set in X. Therefore, o, /)=
sCI(A) C f’l(a[ﬂﬁ/]—Cl(f(A))). Hence, f(ay, ,/1-sCU(A)) C ag 5-CL(f(A)).

(4) = (5): Let B be any subset of Y. Then f~!(B) is a subset of X. By (4),
we have f(ay, 1-sCU(fH(B))) € aygz-CUf(f~1(B))) C oz 5)-Cl(B). Hence,

o]
gy 1=sCUSTH(B)) € f 7 g 5-CUB)).
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(5) & (6): Let B be any subset of Y. Then apply (5) to Y \ B we obtain
05U MY\ B) € ey -CUY \ B) & g sCIX | f74(B)) €
iy \ g, 5-Int(B)) & X\ ahﬂ/]—sfnt(f* (B)) C X \ ! (o, Int(B)) <
f- 1(a[575/]—1nt(3)) - ah’,yl]—sfnt(f_l(B)) Therefore, f~ ( 5,5 Int(B)) C o
sInt(f~1(B)).

Ve
7'

(6) = (1): Let z € X and V be any a4 51-open set of Y containing f(z). Then, z €
71 (V) and f~1(V) is a subset of X. By (6), we have f~'(ag g)-Int(V)) C o, /-
sInt(f~1(V)). Since V is an a5 5'1-0pen set, then f71(v)c ahﬁ/]—slnt(ffl(V)).
Therefore, f~1(V) is an a[%,y/}—semiopen set in X which contains x and clearly
f(f~Y(V)) C V. Hence, f is (/1> p,577)-Semicontinuous. O

Theorem 4.2. Let f : (X,7) — (Y,0) be an (o, 1, g g11)-semicontinuous

s

function. Then, for each subset B of Y, f~ ( 8.5 Int(B)) C oy, -Cllay, -
Int(f~1(B)))-

Proof. Let B be any subset of Y. Then, a[ﬁﬂl]—lnt(B) is g, 5')-open in Y and so by
Theorem 4.1, f_l(a[ﬁ 5 ]—Int(B)) is a, ;-semiopen in X. Hence, Theorem 3.3, we

have f~(a Bm—lnt(B)) apy - Cllag, - Int(f~ (a[57ﬁ/]-lnt(3)))) C ap
Cl(ay, - Int(f~ L(B))). O

Corollary 4.1. Let f : (X,7) = (Y,0) be an (o, /), @[5 51) -semicontinuous func-
tion. Then, for each subset B of Y, ahﬁ/]—Int(oz[%vf]—C’l(f_l(B))) - f_l(a[ 8
Cl(B)).

Proof. The proof is obvious. O

Theorem 4.3. Let f: (X, 7) — (Y, 0) a bijective function. Then, f is (o, /1 @5 51)-
semicontinuous if and only if ajg gr-Int(f(A)) C foy, ,-sInt(A)) for each subset

A of X.

Proof. Let A be any subset of X. Then, by Theorem 4.1, f~(« 5,57 Int(f(A4))) €
ahﬁ% sInt(f~1(f(A))). Since f is a bijective function, then oz, Int(f(A4)) =
(g g-Int(f(A)))) € floy, yy-sInt(A)).

Conversely, let B be any subset of Y. Then, ag g-Int(f(f~ YB)
sInt(f~1(B))). Since f is a bijection, so, g5 Int(B) = ayg gr-Int(
f(ozhﬁr]—slnt(f_l(B))) Hence, f~(a 8,57 Int(B)) C oy, -sInt(f
fore, by Theorem 4.1, f is (o, /1, @5 7))-semicontinuous. O

I%:/

Proposition 4.1. A function f : (X,7) — (Y, 0) is (o, /1, @[ g1) -semicontinuous
if and only if a[,wl]-sBd(f_l(B)) C f_l(a[ﬂﬁ/]-Cl(B) \ aig g1-Int(B)), for each
subset B in'Y.

Proof. Let B be any subset of Y. By Theorem 4.1 (2) and (5), we have f_l(a[ﬂﬁ/]—
Cl(B)\oyg,5-Int(B)) = f_l(a[B,ﬁ’]'Cl( AV AR T ]'Int(B)) 2 ap, -sCUfH(B))\
F~Hagg py-Int(B)) = ap, y-sCUf~H(B)\ey, , s Int(/- Hayg g Int(B))) 2 apy -
sC’l(f_l(B))\ahﬂ/]—slnt(f_l(B)) = oy, -sBd(f~ L(B)), and hence f~ 1(04[5’5/}—
ClU(B) \ g ;- Int(B)) 2 oz[%wz]—sBd(ffl(B)).
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Conversely, let V' be a3 g-openin Y and F' = Y'\V. Then by (2), we obtain a, /-
SBA(f 1 (F)) € fHays 5-CUF)\ays g-Int(F)) C F (g 5-CUF)) = £~ 1(F)
and hence by Theorem 3.12 (1), ahﬁ/]—sCl(ffl(F)) = ap, sInt(f~ YF) u

a[,w/]—s.Bd(f_l(F)) C f7YF). Thus, f~%F) is [,,,/)-semiclosed and hence
V) isa,

-semiopen in X. Therefore, by Theorem 4.1 (2), f is (a},, ), 5, 57))-
semicontinuous. (]

Proposition 4.2. A function f : (X,7) = (Y, 0) is (o, /1, @ 51) -semicontinuous
if and only if f(oy, ,-sD(A)) C oz 5-CU(f(A)), for any subset A of X.

Proof. Let A be any subset of X. By Theorem 4.1 (4), and by the fact that a, /-
sCl(A) = AUay, -sD(A), we get f(ay, ,-sD(A4)) C f(ayp, ., -sCU(A)) C ag 51
CI(f(A)).

Conversely, let F' be any o g-closed set in Y. By (2), we obtain f(ay, /-
SD(fil(F))) g Q[B’ﬁ’]—ol(f(fil(F))) g Oé[ﬁ)ﬁl]—cl(F) = F ThiS implies OL[,Y),Y/]—
sD(f~Y(F)) C f~%(F). Hence, by Theorem 3.13 (7), f~1(F) is oy ' )-semiclosed
in X. Therefore, by Theorem 4.1 (3), f is (a, /), o 57))-semicontinuous. O

Definition 4.2. A function f : (X,7) — (Y,0) is said to be (a}, .}, o5,4)-
semiopen if and only if for each o, ,/-open set U in X, fU) is g, 5'-Semiopen
set in Y.

Theorem 4.4. A function f: (X,7) = (Y,0) is (q[, /), &g g1)-semiopen if and
only if for every subset E C X, we have f(ap, ., ]—Int( ) € aigg-Cllag g
Int(f(E))).

Proof. Let f be (ahﬂ’ 8,8 ]) semiopen. Since f(oy, ,/j-Int(E )) C f(E), and
flap, - Int(E)) is ajg z-semiopen. Then, f(oy, /- Int(E)) C a5 Cllag g1
Int(f(ap, -Int(E)))) € oz 5-Cllag 5 ]—Int(f(E))).

Conversely, let G be any a,, _-openset in X. Then, a5 51-Int(f(G)) C f(G)
flapy - Int(G)) € ag g1-Cllag g-Int(f(G))). Therefore, f(G)is oz )-semiopen
and consequently f is (a[%v L [5,6/])—semiopen. O

Theorem 4.5. Let f: (X,7) — (Y,0) be an (a[%,yl]7a[/@ﬁ/])—semiopen function,
then for every subset G of Y, a[,yy,y/]-lnt(f_l(G)) - ahﬁ/]-Cl(f_ (o5,5-CUG))).

Proof. Let f be (a[%,y/],amﬁ/])—semiopen. By Theorem 4.4, we have f( /

']
Int(f~4@))) C a[ﬁyﬂ/]-Cl(a[ﬁﬁ/]_Int(f(f_l(G)))) C aﬁﬁ -Cl(ag —Int( )) C
a[ﬁﬁﬁ/]—Cl(G) implies that ah’A/]—Int(f_l(G)) C f_l( CZ(G)) i -CI(f~ 1(a[ﬁ,ﬁ']_
Cl(@))). O

Theorem 4.6. A function f: (X,7) = (Y,0) is (ap, ), o g)-semiopen if and
only if for every x € X and for every oz[%,y/]—neighborhood U of x, there exists an
o, g1 -semineighborhood V' of f(x) such that V C f(U).

Proof. Let U be an a[,m/]—neighborhood of x € X. Then, there exists an Ay A1
open set O such that x € O C U. By hypothesis, f(O) is awﬁ/]—semineighborhood

in Y such that f(z) € f(O) C f(U).
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Conversely, let U be any o, rj-open set in X. For each y € f(U), by hypothesis
there exists an a[B’B/]-semineighborhood Vy of y in Y such that V,, C f(U). Since
Vy is ajg g-semineighbourhood of y, there exists an a4 4\-semiopen set A, in Y’
such that y € A, C V. Therefore, f(U) = U{A, : y € f(U)} is an oy g-semiopen
in Y. This shows that f is an (o, ./}, o5 g;)-semiopen function.

O

Theorem 4.7. The following statements are equivalent for a bijective function
f:(X,7) = (Y,0):

)ﬁg g 51 -8Int(f(A)), for every A C X.

B f_l(a[ﬁ’ﬁ/]-slnt(B)), for every BCY.
ahﬂ/]-C’l(f_l(B)), for every BCY.
C flapy 4-Cl(A)), for every A C X.

C floyy,4-Cl(A)), for every A C X.

c
c

~

Proof. (1) = (2): Let A be any subset of X. Since f(ay, ./ -Int(A)) is ag 5
semiopen and f(ay, ,-Int(A)) C f(A), and thus f(ap, . -Int(A)) C ap g
sInt(f(A)).

The proof of the other implications are obvious. O

Theorem 4.8. Let f : (X,7) = (Y,0) be (o, 1, g 1) -s€micontinuous and

(41> p,5))-semiopen and let A € aSO(X), 1. Then, f(A) € aSO(Y) 5

Proof. Since A is oz[%wf]—semiopen, then there exists an [y '1-0Pen set O in X such
that O C A C ay, ,/-Cl(O). Therefore, f(O) C f(A) C f(e, ,-CUO)) C a[ﬁ’ﬁg

CI(f(O)). Thus, by Theorem 3.4, f(A) € aSO(Y)[ﬂﬁ/].

Theorem 4.9. Let m and 7 be operations on aO(Z). If f: X — Y is a func-
tion, g 1 Y — Z is (a[ﬁ’m,a[ﬂm/})-semiopen and injective, and gof : X — Z is
(O /1> Qp 1)) -sEmicontinuous. Then, fis (a, ./, g g1)-semicontinuous.

Proof. Let V' be an oz g/;-open subset of Y. Since g is (a[ﬁﬁ/],a[ﬂ’wf])—semiopen,

g(V) is a|, ./;-semiopen subset of Z. Since gof is (v, /|, @[ »/1)-semicontinuous

and g is injective, then f=1(V) = f~Y(g7(g(V))) = (gof)~L(g(V)) is Ay

semiopen in X, which proves that f is (oz[%ﬂ,a[ﬁﬁr])—semicontinuous. O
Definition 4.3. A function f : (X,7) — (Y,0) is said to be (a}, ), o5,4)-

irresolute if the inverse image of every g, 5/)-Semiopen set of YV is y /1-Semiopen

in X.

Proposition 4.3. Every (a[%,y/] , a[ﬁﬁ/])-irresolute function is (a[%,y/], amﬁ/])—semicontmuous.

Proof. Straightforward. |

The converse of the above proposition need not be true in general as it is shown
below.

Example 4.1. Let X = {a,b,c} and 7 = 0 = {¢, {a}, {b}, {a, b}, X} be a topology
on X. For each A € aO(X), define the operations v : aO(X,7) — P(X), v :
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aO(X,7) = P(X),:a0(X,0) = P(X)and 8 : aO(X,0) — P(X), respectively,
by
! A it A={a,b}
T — AY — )
AT=A4 _{X it A £ {a,b}

and

s (A A=
Aﬁ_Aﬁ_{X it A £ {b}.

Define a function f: (X,7) — (X, 0) as follows:
a ifzx=a
flz)=¢ a ifz=0>
c ifzx=c
|)-irresolute be-

Then, f is (o, ;g 7)-semicontinuous, but not (a, ., a5 5
= {c} is not o

cause {b,c} is an o g|-semiopen set of Y but f~t({b,c})
semiopen in X.

,ie
7'

Theorem 4.10. If f : (X,7) — (Y,0) is (o, ), p,5))-s€micontinuous and
fﬁl(awﬁ/]—Cl(V)) - ozhﬁ/]—C'l(ffl(V)) for each subset V€ aO(Y )5 4, then
fis (ap, ), o g))-irresolute.

Proof. Let B be any g z1-semiopen subset of Y. Then, there exists V' € on(Y)[ﬁﬁ/]
such that V' C B C ayg 5)-Cl(V). Therefore, we have f~'(V) C f~'(B) C
f’l(aw’ﬂz]—Cl(V)) C ozhﬁ/}—Cl(ffl(V)). Since f is (ay, /1, 5,))-semicontinuous
and V' € aO(Y)5 g, then f7H(V)isan Ay
rem 3.4, f~1(B) is an [, /j-semiopen set of X. This shows that fis (v, ./}, a5 51)-
irresolute. (]

-semiopen set of X. Hence, by Theo-

Theorem 4.11. A function f: (X,7) = (Y,0) is (a}, 1), o g7))-irresolute if and
only if for each x € X and each g, 5/ -semiopen set V. of Y containing f(x), there
exists an ay, 1 -semiopen set U of X containing x such that f(U) C V.

Proof. Let x € X and V be any g, 5/)-Semiopen set of Y containing f(z). Set
U= f~1(V), then by f is (ahﬂ/],a[ﬁ’ﬁ/])-irresolute, U is an o, /-semiopen subset
of X containing z and f(U) C V.

Conversely, let V be any g 5/)-Semiopen set of Y and x € f~1(V). By hypoth-
esis, there exists an @, /|-Semiopen set U of X containing x such that f(U) C V.
Thus, we have z € U C f~1(f(U)) € f~1(V). By Proposition 3.1, f=1(V) is
o, ,/j-semiopen of X. Therefore, f is (v, ./}, g g1)-irresolute. O

Theorem 4.12. A function f: (X,7) = (Y,0) is (a}, 1), o 57))-irresolute if and

only if for every awﬂ/]—semiclosed subset H of Y, f~1(H) is a[%v/]—semz’closed m
X.

Proof. Let f be (ahﬁ/],a[ﬁ,ﬁf])—irresolute, then for every ag 5-semiopen subset
Qof Y, f71Q) is [y ,,/)-Semiopen in X. Let H be any a[[g’B/]—semiclosed subset
of Y, then Y\ H is ag g-semiopen. Thus, YUY \ H) is [, ,,/j-Semiopen, but
7YY \H)=X\ f~Y(H) so that f~}(H) is o, /-semiclosed.
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Conversely, suppose that for all oz g)-semiclosed subset H of Y, fY(H) is
oz[%,yr]—semiclosed in X and let @) be any a[ﬁwﬁ/]—semiopen subset of Y, then Y\ Q is
(g g-semiclosed. By hypothesis, X \ f~1(Q) = f~1(Y'\ Q) is o, ./-semiclosed.
Thus, f~1(Q) is ay, /j-semiopen. O

Theorem 4.13. Let f : (X,7) = (Y,0) be function. Then, the following state-
ments are equivalent:

(1) fis (ap, )y o, -irresolute.

(2) oz[,yy,/]-sC’l(f_l(B)) - f_l(a[ﬁﬁ/]-sCl(B)), for each subset B of Y.

(3) flay,,,)sClU(A)) C ag 41-sCL(f(A)), for each subset A of X.

Pmof (1) (2): Let B be any subset of Y. Then, B C g 5-sCI(B) and
-1(B) C (a[ﬁﬂl]—sCl(B)). Since f is (ay, ./, o, 5/))-irresolute, so, f’l(a[ﬁﬁ/]—
sCl( )) is an a, s -semiclosed subset of X. Hence, a[%,yf]—sCl(f_l(B)) Cap
—1

sCIU(f (a[ﬁm—;g'l( B))) = f_l(oz[ﬁyﬁl]—sC’l(B))

(2) = (3): Let A be any subset of X. Then, f(A) C o5 4-sCI(f(A)) and
O‘[%W']'SCZ(A) - 0‘[%7/]'301(f71(f(14))) c s (O‘[ﬁﬂ] -sCI(f(A))). This implies
that f(ayp, ,-sCU(A)) C f(f~ (ags 5-sCUF(A))) C s 51-5sCUF(A)).

(3) = (1): Let V' be an ag 5y-semiclosed subset of Y. Then, f(a[,w/]—sC’l(f_l(V)))
oz[ﬁ’ﬁ/]—sC'l(f(f_l(V))) C ajg 51-sCI(V)) = V. This implies that ozhﬁ/}—sC'l(f_l(V))
FH(fay, =sCUf~1(V))) € f~1(V). Thus, f~1(V) is an ay, /j-semiclosed sub-
set of X and consequently f is an (ozhﬁf],a[ﬂ’ﬁr])—irresolute function. O

-
c

Theorem 4.14. A function f : (X,7) = (Y,0) is (a}, 1), o g7))-irresolute if and
only if f_l(a[ﬁﬁ/]-slnt(B)) C oz[,wf]-slnt(f_l(B)) for each subset B of Y.

Proof. Let B be any subset of Y. Then, aw’ﬁ/]—slnt(B) C B. Since fis (a[ﬂm/], a[ﬁﬁ'])'
irresolute, f_l(a[,gﬁ/]-slnt(B)) isan a7 )-semiopen subset of X. Hence, f_l(a[ﬁﬁf]-
sInt(B)) = oz[,y’,y/]-slnt(f_l(amwﬁ/]—slnt(B))) - ahﬁr]—slnt(f_l(B)).

Conversely, let V' be an a5 5j-semiopen subset of Y. Then, f~Yv) = f_l(ozw’m-
sInt(V)) C ap, -sInt(f~1(V)). Therefore, f~*(V) is an oy, ,/-semiopen subset
of X and consequently f is an (a[,m/],a[ﬁyﬁ/])-irresolute function. O

Proposition 4.4. A function f : (X,7) = (Y,0) is (a}, ), o g))-irresolute if
and only if o, 7/]-sBd(f_1(B)) C f_l(a[B g'1-sBd(B)), for each subset B of Y.

Proof. Let B be any subset of Y. Then, o, ,/j-sBd(f~ YB)) = o, -SsCUf~ LB))\
oy st (f~ YB)) C f- (a[ﬁﬁ 1=SCUB)) \ oy -sInt(f~ ( )) sed Theorem
4.13. Therefore, by Theorem 4.14, we have o, r-sBd(f~ YB)) C 1(a[5’m—
SCUB)\ S~ (. -5Tnt(B)) = (0, y-5CUB) s yry-sTnt(B)) = [~ gy -

sBd(B)).
Conversely, let V' be a[ﬂyﬁ/]—semiopen inY and F = Y \ V. Then, by hy-

pothesis, we obtain a, ]sBd(f* (F)) C ffl(a[ﬁ g1sBd(F)) = f’l(a[ 8
sCUF) \ ajg gy-sInt(F )) C f~ ( 15,57 5CUF)) = f71(F) and hence by Theo-
rem 3.12 (1), a, /-sCU(f~ HF)) = o, -sInt(f~ HF) U a[,m/]—sBd(f_l(F)) C
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f7H(F). Thus, f~'(F) is a, ,/-semiclosed and hence f~'(V) is ay, ,/-semiopen

in X. Therefore, f is (a, /), oz g)-irresolute. O
Corollary 4.2. Let f : (X,7) — (Y, 0) be a function. If f is (o, ./, g g11)-closed
and (oz[,w/],amﬁ/])—irresolute then f(oy, 11-sCUA)) = oy g1 -sCl( (A)) for every

subset A of X.

Proof. Since for any subset A of X, A C a, ./ -sCI(A). Therefore, f(A) C
flap, ,-sCU(A)). Since fis (o, 11, g g1)-closed, then ayg 51-sCU(f(A)) C oy g
sCl(f(ay, ., -sCl(A))) = f(ap, ,-sCU(A)). Hence, f(ap, ,-sCl(A)) 2 apg

sCI(f(A)) and by Theorem 4.13, we have f(oy, ./1-sCl(A)) = ag 51-sCIL(f(A)

B
).
[
Corollary 4.3. Let f : (X,7) = (Y,0) be a bijective function. Then, [ is

(a[,y’,y/],a[ﬁﬁ/])-semiopen and (a[%,y/],a[ﬁwﬁ/])-irresolute if f_l(ozmﬁ/]-sCl(V)) =
Oé[%,y/]-SCl(f_l(V)) for every subset V of Y.

Proof. The proof is follows from Remark 3.2, Theorems 4.7 and 4.13. (|

Theorem 4.15. If f : X — Y is (ahﬁ/],a[m@/])—irresolute and g :' Y — Z is
(v 5110 s 577) -irresolute, then g(f) : X — Z is (a, ), o5 51) -irresolute.

Proof. 1f A C Z is o4 5)-semiopen, then g 1(A)is 3,5)-Semiopen and g (4))
is ap, ,/-semiopen. Thus, (g(f)~1A) = fL g7 A)) is o, /-semiopen and
hence g(f) is (e, 1, s, 4))-irresolute. O
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