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INTEGRAL TRANSFORM METHOD FOR SOLVING
DIFFERENT F.S.I.ES AND P.F.D.ES

A. AGHILI* AND M.R. MASOMI

Abstract. In this work, the authors used Laplace transform to obtain formal
solution to some systems of singular integral equations of fractional type. In
the last section, the authors considered certain non homogeneous fractional
system of heat equations with different orders which is a generalization to the
problem of heat transferring from metallic bar through the surrounding media.
Illustrative examples are also provided.

1. Introduction and Definitions

Fractional differential equations have been the focus of many studies due to their
frequent appearance in various fields such as chemistry and engineering, physics.
The main reason for success of applications fractional calculus is that these new
fractional order models are more accurate than integer order models, i.e. there are
more degrees of freedom in the fractional order models. The Laplace transform
technique is one of most useful tools of applied mathematics. Typical applications
include heat transfer, diffusion, waves, vibrations and fluid motion problems. How-
ever, contrary to expectations, it is surprising to find that the popularity of Laplace
transforms, in comparison to numerical or other methods, is gradually diminishing
and Laplace transform is less fashionable today than they were a few decades ago.
Nevertheless, the applications of Laplace transforms continue to be an important
part of the mathematical education received by students in various fields of natu-
ral sciences and engineering. The fractional diffusion equation, the fractional wave
equation, the fractional advection-dispersion equation, the fractional kinetic equa-
tion and other fractional PDEs have been studied and explicit solutions have been
achieved by Mainardi, Pagnini and Saxena [18], Langlands [13], Mainardi, Pagnini
and Gorenflo [17], Mainardi and Pagnini [15,16], Yu and Zhang [25], Liu, Anh,
Turner and Zhang [14], Saichev and Zaslavsky [21], Saxena, Mathai and Haubold
[22], Wyss [24] and several other research works can be found in other literatures.
In these works, the techniques of using integral transforms were used to obtain the

1991 Mathematics Subject Classification. 26A33; 34A08; 34K37; 35R11.
Key words and phrases. Caputo fractional derivative; Time fractional heat equation; Laplace

transform; Fractional order singular integral equation system; Kelvin’s functions.
The author is supported by university of Guilan.

45



46 A. AGHILI* AND M.R. MASOMI

formal solutions of fractional PDEs. Integral transforms are extensively used in
solving boundary value problems and integral equations. The problem related to
partial differential equations can be solved by using a special integral transform
thus many authors solved the boundary value problems by using single Laplace
transform. Laplace transform is very useful in applied mathematics, for instance
for solving some differential equations and partial differential equations, and in
automatic control, where it defines a transfer function.

The Caputo fractional derivatives of order α > 0 (n − 1 < α ≤ n, n ∈ N) is
defined by

C
a Dα

t f(t) =
1

Γ(n− α)

∫ t

a

f (n)(x)
(t− x)α−n+1

dx.

The Laplace transform of a function f(t) denoted by F (s), is defined by the
integral equation

L{f(t)} =
∫ ∞

0

e−stf(t)dt := F (s).

Definition 1.1. The inverse Laplace transform is given by the contour integral

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds,

where F (s) is analytic in the region Re(s) > c.

Theorem 1.1. For n− 1 < α ≤ n, we can get

L{C
0 Dα

t f(t)} = sαF (s)−
n−1∑

k=0

sα−k−1f (k)(0).

Two-parameter Mittag-Leffler function and Wright function is given by

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
,

W (α, β; z) =
∞∑

n=0

zn

n!Γ(αn + β)
.

when α, β, z ∈ C.

Theorem 1.2. Schouten-Van der Pol Theorem: Consider a function f(t)
which has the Laplace transform F (s) which is analytic in the half-plane Re(s) >
s0. We can use this knowledge to find g(t) whose Laplace transform G(s) equals
F (φ(s)), where φ(s) is also analytic for Re(s) > s0. This means that if

G(s) = F (φ(s)) =
∫ ∞

0

f(τ) exp(−φ(s)τ)dτ,

and

g(t) =
1

2πi

∫ c+i∞

c−i∞
F (φ(s)) exp(ts)ds,

then
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g(t) =
∫ ∞

0

f(τ)
(

1
2πi

∫ c+i∞

c−i∞
exp(−φ(s)τ) exp(ts)ds

)
dτ.

Proof. See [10]

2. Fractional Order Singular Integral Equations

The mathematical formulation of physical phenomena often involves Cauchy
type, or more severe, singular integral equations. There are many applications in
many important fields, like fracture mechanics, elastic contact problems, the theory
of porous filtering contain integral and integro- differential equation with singular
kernel. In following section, Laplace transform has been used to solve certain types
of singular integral equations of fractional order. We solve a fractional order singular
integral equation system. Special examples are mentioned.

Lemma 2.1. The fractional Fredholm singular integro-differential equation of the
form

(2.1) C
0 Dα

x ϕ(x) = f(x) + λ

∫ ∞

0

(
x

t
)

ν
2 Jν(2

√
xt)ϕ(t)dt,

where ϕ(0) = 0, 0 ≤ α ≤ 1 and ν > −1 has the formal solution as

(2.2) ϕ(x) =
1

2πi

∫ c+i∞

c−i∞

s−αF (s) + λ
sν+1 F ( 1

s )
1− λ2

esxds.

Proof. Let L(ϕ(x)) = Φ(s) and L(f(x)) = F (s), then by using the Laplace
transform of (2-1) we have the following relation

(2.3) sαΦ(s) = F (s) + λ
1

sν+1
Φ(

1
s
).

In relation (2-3) we replace s by 1
s , to obtain

(2.4) s−αΦ(
1
s
) = F (

1
s
) + λsν+1 Φ(s).

Combination of (2-3) and (2-4), Φ(s) can be obtained as

(2.5) Φ(s) =
s−αF (s) + λ

sν+1 F (1
s )

1− λ2
.

By using the complex inversion formula, relation (2-5) leads to the following,

ϕ(x) =
1

2πi

∫ c+i∞

c−i∞

s−αF (s) + λ
sν+1 F ( 1

s )
1− λ2

esxds.

Example 2.1. Solve the following fractional singular integral equation

C
0 D

2
3
x ϕ(x) =

1√
πx

+ λ

∫ ∞

0

(
x

t
)

1
4 J 1

2
(2
√

xt)ϕ(t)dt,

Solution. By using the formula (2-2), we get
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ϕ(x) =
1

2πi

∫ c+i∞

c−i∞

s−
2
3 F (s) + λ

s
3
2
F ( 1

s )

1− λ2
esxds =

1
2πi

∫ c+i∞

c−i∞

1

s
7
6

+ λ
s

1− λ2
esxds

=
1

1− λ2
(

x
1
6

Γ( 7
6 )

+ λ).

Lemma 2.2. The system of fractional Fredholm singular integro-differential equa-
tion of the form

C
0 Dα

x ϕ1(x) = f(x) + λ

∫ ∞

0

(
x

t
)

ν
2 Jν(2

√
xt)ϕ2(t)dt,

C
0 Dα

x ϕ2(x) = g(x) + λ

∫ ∞

0

(
x

t
)

µ
2 Jµ(2

√
xt)ϕ2(t)dt,

where ϕ1(0) = ϕ2(0) = 0 and 0 < α, β ≤ 1 has the formal solutions

(2.6)

ϕ1(x) =
1

2πi

∫ c+i∞

c−i∞

(
s−α

(
F (s) +

λ2

1− λ2

G(s)
sν−µ

)
+

λ

1− λ2

1
sν+1

G(
1
s
)
)

exsds,

(2.7) ϕ2(x) =
1

2πi

∫ c+i∞

c−i∞

s−αG(s) + λ
sµ+1 G( 1

s )
1− λ2

exsds.

Proof. Applying the Laplace transform term wise to both equations and using
the initial conditions yields

(2.8) sαΦ1(s) = F (s) +
λ

sν+1
Φ2(

1
s
),

(2.9) sαΦ2(s) = G(s) +
λ

sµ+1
Φ2(

1
s
).

Following the same procedure as in lemma 2.1, we get Φ2(s) as

Φ2(s) =
s−αG(s) + λ

sµ+1 G( 1
s )

1− λ2
,

then, changing s to 1
s leads to

Φ2(
1
s
) =

sαG( 1
s ) + λsµ+1G(s)

1− λ2
.

By replacing Φ2(1
s ) in (2-8), we will have

Φ1(s) = s−α

(
F (s) +

λ2

1− λ2

G(s)
sν−µ

)
+

λ

1− λ2

1
sν+1

G(
1
s
).

At this point, using the complex inversion formula, the final solutions are as
follows

ϕ1(x) =
1

2πi

∫ c+i∞

c−i∞

(
s−α

(
F (s) +

λ2

1− λ2

G(s)
sν−µ

)
+

λ

1− λ2

1
sν+1

G(
1
s
)
)

ex sds,
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ϕ2(x) =
1

2πi

∫ c+i∞

c−i∞

s−αG(s) + λ
sµ+1 G( 1

s )
1− λ2

exsds.

Example 2.2. Let us solve the system

C
0 D

1
2
x ϕ1(x) =

e−
1
4x

2
√

πx3
+ λ

∫ ∞

0

(
x

t
)

3
4 J 3

2
(2
√

xt)ϕ2(t)dt,

C
0 D

1
2
x ϕ2(x) = 1 + λ

∫ ∞

0

(
x

t
)

1
4 J 1

2
(2
√

xt)ϕ2(t)dt,

where ϕ1(0) = ϕ2(0) = 0 and 0 < α, β ≤ 1. Direct use of relations (2-6) and
(2-7), leads to

ϕ1(x) = L−1

{
e−
√

s

√
s

+
λ2

1− λ2

1
s

5
2

+
λ

1− λ2

1
s

3
2

}

=
e−

1
4x√
πx

+
4λ2x

3
2

3
√

π(1− λ2)
+

2λx
1
2√

π(1− λ2)
,

ϕ2(x) = L−1

{
s−

3
2 + λs−

1
2

1− λ2

}
=

2√
π
x

1
2 + λ√

πx

1− λ2
.

2.1. Evaluation of the Integrals. In applied mathematics, the Kelvin func-
tions Berν( x ) and Beiν( x ) are the real and imaginary parts, respectively, of
Jν(xe3πi/4),where x is real, and Jν(z) is the ν-th order Bessel function of the first
kind. Similarly, the functions Kerν(x ) and Keiν( x ) are the real and imaginary
parts, respectively, of Kν(xeπi/4), where Kν(z)is the ν-th order modified Bessel
function of the second kind. These functions are named after William Thomson,
1st Baron Kelvin. The Kelvin functions were investigated because they are involved
in solutions of various engineering problems occurring in the theory of electrical cur-
rents, elasticity and in fluid mechanics. One of the main applications of Laplace
transform is evaluating the integrals as discussed in the following.

Lemma 2.3. The following integral relationship holds true

∫ ∞

1

bei(
√

2λ)dλ√
λ2 − 1

=
π

2
J0(1)I0(1).

Proof. Let us define the following function

I(x) =
∫ ∞

1

bei(
√

2xλ)dλ√
λ2 − 1

.

Laplace transform of I(x) leads to

L{I(x)} =
∫ ∞

0

e−sx

(∫ ∞

1

bei(
√

2xλ)dλ√
λ2 − 1

)
dx.

By changing the order of integration, which is permissible, we obtain
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L{I(x)} =
∫ ∞

1

1√
λ2 − 1

(∫ ∞

0

e−sxbei(
√

2xλ)dx

)
dλ,

or

L{I(x)} =
∫ ∞

1

1√
λ2 − 1

(
1
s

sin
λ

2s
)dλ.

At this point, let us introduce the new variable λ = cosh ξ, we get the following

L{I(x)} =
1
s

∫ ∞

0

sin((2s)−1 cosh ξ)dξ,

using the following well-known integral representation for J0(ϕ)

J0(ϕ) =
2
π

∫ ∞

0

sin(ϕ cosh ϑ)dϑ.

One gets finally

L{I(x)} =
π

2s
J0(

1
2s

),

now, taking inverse Laplace transform of the above relationship leads to

I(x) = L−1{ π

2s
J0(

1
2s

)} =
π

2
J0(
√

x)I0(
√

x).

Letting x = 1 we get

∫ ∞

1

bei(
√

2λ)dλ√
λ2 − 1

=
π

2
J0(1)I0(1).

Lemma 2.4. The following integral relations hold true
∫ 1

0

xµ−1ber(2
√

ln x)dx =
1
µ

cos
1
µ

,

∫ 1

0

ber(2
√

ln x)√
x

dx = 2 cos 2.

Proof. Let us define the following function

I(ξ) =
∫ 1

0

xµ−1ber(2
√

(lnx)ξ)dx.

Laplace transform of I(ξ) leads to

L{I(ξ)} =
∫ ∞

0

e−sξ

(∫ 1

0

xµ−1ber(2
√

(lnx)ξ)dx

)
dξ.

By changing the order of integration, which is permissible, we will have

L{I(ξ)} =
∫ 1

0

xµ−1

∫ ∞

0

e−sξber(2
√

(lnx)ξ)dξdx.

But the value of inner integral is as following
∫ ∞

0

e−sξber(2
√

(lnx)ξ)dξ =
1
s

cos
(lnx)

s
.
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To prove the second relationship, by setting this value in the integral, one gets

L{I(ξ)} =
∫ 1

0

xµ−1 1
s

cos
(lnx)

s
dx =

1
s

∫ 1

0

xµ−1 cos
(lnx)

s
dx.

At this point, we introduce the new variable ln x = −w. One gets after easy
calculation

L{I(ξ)} =
1
s

∫ ∞

0

e−µw cos(
w

s
)dw =

1
µ
{ s

s2 + (µ−1)2
}.

Taking inverse Laplace transform to obtain

I(ξ) =
∫ 1

0

xµ−1ber(2
√

(lnx)ξ)dx =
1
µ

cos
ξ

µ
,

from the above relationship, we get

I(1) = I0(µ) =
∫ 1

0

xµ−1ber(2
√

ln x)dx =
1
µ

cos
1
µ

.

In the above integral, by setting 0.5 for the parameter,we obtain the second
assertion

I0(0.5) =
∫ 1

0

ber(2
√

ln x)dx√
x

= 2 cos 2.

3. Bobylev-Cercignani Theorem and Their Applications

Bobylev and Cercignani developed a theorem [8] concerning the inversion of
multivalued transforms that are analytic everywhere in the s− plane except along
the negative real axis. The theorem is as follows:

Theorem 3.1. Bobylev-Cercignani Theorem: Let f(t) denote a real-valued
function, where its Laplace transform F (s) exists. Let F (s) satisfy the following
hypothesis:

1) F (s) is a multi-valued function which has no singularities in the cut s− plane.
The branch cut lies along the negative real axis (−∞, 0].

2) F ∗(s) = F (s∗), where the star denotes the complex conjugate.
3) F±(η) = lim

φ→π−
F (ηe±φi ) and F+(η) = (F−(η))∗.

4) F (s ) = o(1) as |s| → ∞ and F (s) = o( 1
|s| ) as |s| → 0, uniformly in any

sector | arg(s)| < π − η, 0 < η < π.
5) There exists ε > 0, such that for every π − ε < φ ≤ π, F (re±φi)

1+r ∈ L1(R+)
and |F (re±φi)| < a(r), where a(r) does not depend on φ and a(r)e−δr ∈ L1(R+)
for any δ > 0.Then

f(t) =
1
π

∫ ∞

0

Im( F−(η))e−tηdη.

In following lemma, we apply this theorem.
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Lemma 3.1. The following relationship holds true

L−1

{
1

s + 1
exp

(
−x

√
µ + sα

λ + sα

)}
=

1
π

∫ ∞

0

Im(F−(η))e−tηdη.

where 0 < α < 1, λ, µ > 0 and

Im(F−(η)) =
e
−x

√
ρ1
ρ2

cos(
θ1−θ2

2 )

η − 1
sin

(
x

√
ρ1

ρ2
sin(

θ1 − θ2

2
)
)

.

Proof. F (s) satisfies all of the conditions listed in the theorem 3.1. Then

F−(η) = lim
φ→π

F (ηe−φi) =
1

ηe−πi + 1
exp

(
−x

√
ηαe−παi + µ

ηαe−παi + λ

)

=
1

1− η
exp

(
−x

√
ρ1

ρ2
e

i(θ1−θ2)
2

)

=
1

1− η
exp

(
−x

√
ρ1

ρ2
(cos(

θ1 − θ2

2
) + i sin(

θ1 − θ2

2
))

)
,

where

ρ1 =
√

η2α + 2µηα cosπα + µ2, ρ2 =
√

η2α + 2ληα cos πα + λ2,

θ1 = − tan−1

(
ηα sin απ

ηα cosαπ + µ

)
, θ2 = − tan−1

(
ηα sin απ

ηα cosαπ + λ

)
(0 < θ < π).

Image part of F−(η) is founded as

Im(F−(η)) =
e
−x

√
ρ1
ρ2

cos(
θ1−θ2

2 )

η − 1
sin

(
x

√
ρ1

ρ2
sin(

θ1 − θ2

2
)
)

.

Finally, the inverse Laplace transform is as

f(t) =
1
π

∫ ∞

0

Im(F−(η))e−tηdη.

Problem 1. Let us consider the following four terms partial fractional differential
equation

∂

∂x
{∂αu(x, t)

∂tα
}+ a

∂βu(x, t)
∂tβ

= λu(x, t)− b
∂u(x, t)

∂x
,

where 0 < α < 1, 0 < β ≤ 1, 0 < x < ∞, t, a, b > 0 with the boundary conditions

u(0, t) =
tγ−1

Γ(γ)
(γ > 0), lim

x→∞
|u(x, t)| < ∞,

and the initial conditions u(x, 0) = ux(x, 0) = 0.
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Solution. Applying the Laplace transform of the equation and using the bound-
ary and initial conditions leads to differential equation with respect to x as

Ux(x, t) +
asβ − λ

sα + b
U(x, t) = 0,

when L{u(x, t)} = U(x, s). Solution of the above equation yields

U(x, s) =
1
sγ

exp
(
−x

asβ − λ

sα + b

)
.

U(x, s) satisfies all of the conditions explained in the theorem 3.1. Hence

U−(x, η) = lim
φ→π

U(x, ηe−φi) =
1

ηγe−πγi
exp

(
−x

aηβe−πβi − λ

ηαe−παi + b

)

=
eπγi

ηγ
exp

(
−x

(aηβe−πβi − λ)(ηαeπαi + b)
ρ

)
,

where ρ = η2α + 2bηα cos πα + b2. Therefore

Im(U−(x, η)) =

1
ηγ

exp
{
−x

abηβ cosβπ + aηα+β cos(α− β)π − ληα cos απ − λb

ρ

}

× sin
{

πγ − x
aηα+β sin(α− β)π − abηβ sin βπ − ληα sinαπ

ρ

}
.

Finally, u(x, t) is found to be

u(x, t) =
1
π

∫ ∞

0

Im(U−(x, η))e−tηdη.

4. Partial Fractional Differential Equation (PFDE) with Moving
Boundary

In PFDE problems, Laplace transforms are particularly useful when the bound-
ary conditions are time dependent. We consider now the case when one of the
boundaries is moving. This type of problem arises in combustion problems where
the boundary moves due to the burning of the fuel [10]. Such fractional partial
differential equations have not been studied in the literature.

Problem 2. Let us solve the following three terms time-fractional heat equation
with moving boundaries

(4.1)
∂αu(x, t)

∂tα
= a2 ∂2u(x, t)

∂x2
+ λ

∂u(x, t)
∂x

(0 < α ≤ 1),

where λ ∈ R, βt < x < ∞, t > 0 and subject to the boundary conditions

u(x, t)
∣∣∣∣ x = βt

=
1√
πt

exp(− 1
4t

), lim
x→∞

|u(x, t)| < ∞,

and the initial condition u(x, 0) = 0 (0 < x < ∞).
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Solution: We introduce the change of variable η = x− βt. The above equation
can be reformulated as

(4.2)
∂αw(η, t)

∂tα
− β

∂

∂η

(
0I

1−α
t w(η, t)

)
= a2 ∂2w(η, t)

∂η2
+ λ

∂w(η, t)
∂η

,

where 0 < η < ∞, t > 0 subject to the boundary conditions

w(0, t) =
1√
πt

exp(− 1
4t

), lim
η→∞

|w(η, t)| < ∞,

and the initial condition w(η, 0) = 0 (0 < η < ∞). By applying the Laplace
transform of the equation (4-2), we obtain

(4.3)
∂2W (η, s)

∂η2
+

1
a2

(
β

s1−α
+ λ)

∂W (η, s)
∂η

− sα

a2
W (η, s) = 0,

with conditions

W (0, s) =
e−
√

s

√
s

, lim
η→∞

|W (η, t)| < ∞.

Differential equation (4-3) has the solution as

W (η, s) =
e−
√

s

√
s

exp

(
− λη

2a2
− βη

2a2s1−α
− η

2

√
1
a4

(
β

s1−α
+ λ)2 +

4sα

a2

)
.

Case 1: If α = 1, then

W (η, s) = e−(λ+β) η

2a2
e−
√

s

√
s

exp

(
−η

a

√
1

4 a2
(β + λ)2 + s

)
.

Using the fact that

L−1

{
exp

(
−η

a

√
1

4a2
(β + λ)2 + s

)}
= e−

1
4a2 (β+λ)2t η

2a
√

πt3
e−

η2

4 a2t ,

and using the Laplace transform inversion and then applying the convolution
theorem in this transform, we get w(η, t) as

w(η, t) = L−1{W (η, s)}

=
η

2aπ
e−(λ+β) η

2a2

∫ t

0

e−
1

4(t−τ)

√
τ3(t− τ)

e−
1

4a2 β+λ)2τe−
η2

4 a2τ dτ.

Therefore we obtain u(x, t) as following

u(x, t) =
x− βt

2aπ
e−(λ+β) x−βt

2a2

∫ t

0

e−
1

4(t−τ)

√
τ3(t− τ)

e−
1

4a2 (β+λ)2τe−
(x−βt)2

4a2τ dτ.

Case 2: If α 6= 1, then
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W (η, s) = e−
λη

2a2
1√
s

exp

(
−√s− βη

2a2s1−α
− η

2

√
β2

a4s2−2α
+

2βλ

a4s1−α
+

4sα

a2
+ λ2

)
,

and we can use the theorem 3.1, hence

W−(η, ξ) = lim
φ→π

W (η, ξe−φi) =
e−

λη

2a2 e
√

ξe−
πi
2

√
ξe−

πi
2

×

exp

(
− βη

2a2ξ1−αe(α−1)πi
− η

2

√
β2

a4ξ2−2αe(2α−2)πi
+

2βλ

a4ξ1−αe(α−1)πi
+

4ξαe−απi

a2
+ λ2

)

=
e−

λη

2a2 ei( π
2−

√
ξ)

√
ξ

exp

(
βηe−απi

2a2ξ1−α
− η

2

√
β2e−2απi

a4ξ2−2α
+ (

4ξα

a2
− 2βλ

a4ξ1−α
)e−απi + λ2

)

=
e−

λη

2a2 ei( π
2−

√
ξ)

√
ξ

×

e
βη(cos απ−i sin απ)

2a2ξ1−α − η
2

√[
β2 cos 2απ

a4ξ2−2α +( 4ξα

a2 − 2βλ

a4ξ1−α ) cos απ+λ2
]
−i

[
β2 sin 2απ

a4ξ2−2α +( 4ξα

a2 − 2βλ

a4ξ1−α ) sin απ
]

=
e−

λη

2a2 ei( π
2−

√
ξ)

√
ξ

e
βη(cos απ−i sin απ)

2a2ξ1−α − η
2
√

ρe
θi
2

,

where

ρ =

√{
β2 cos 2απ

a4ξ2−2α
+ (

4ξα

a2
− 2βλ

a4ξ1−α
) cos απ + λ2

}2

+
{

β2 sin 2απ

a4ξ2−2α
+ (

4ξα

a2
− 2βλ

a4ξ1−α
) sin απ

}2

θ = − tan−1




β2 sin 2απ
a4ξ2−2α + ( 4 ξα

a2 − 2βλ
a4ξ1−α ) sin απ

β2 cos 2απ
a4ξ2−2α + ( 4ξα

a2 − 2βλ
a4ξ1−α ) cos απ + λ2


 (0 < θ < π).

Then imaginary part of W−(η, ξ) is

Im(W−(η, ξ)) =
e−

λη

2a2

√
ξ

e
βη cos απ

2a2ξ1−α− η
2
√

ρ cos θ
2 cos(

√
ξ +

βη

2a2ξ1−α
sin απ +

η

2
√

ρ sin
θ

2
).

The formal solution will be as follows,

u(x, t) =
1
π

∫ ∞

0

Im(W−(x− βξ, ξ))e−tξdξ.
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5. A Non-Homogenous System of Fractional Heat equations with
different orders

In this section, we consider certain non-homogeneous fractional system of heat
equations (different orders) which is a generalization to the problem of heat trans-
ferring from metallic bar through the surrounding media studied by V.A. Ditkin,
P.A. Prudnikov [9]. The basic goal of this work has been to implement the Laplace
transform method for studying the above mentioned problem. The goal has been
achieved by formally deriving exact analytical solution.

Problem 3. We consider the following system of fractional PDE with different
orders in Caputo sense

(5.1) cDα
t u + γu = 1 +

∂2u

∂x2
+ λa

∂v

∂r

∣∣∣∣ r = a
,

(5.2) cDδ
t v − βv =

∂2v

∂r2
+

1
r

∂v

∂r
,

where 0 < α, δ < 1, t > 0, −l ≤ x ≤ l, r ≥ a and β, γ ∈ R with the boundary
conditions

u(x, 0) = v(x, r, 0) = 0, u(−l, t) = u(l, t) = 0,

and

v(x, a, t) = u(x, t), lim
r→∞

v(x, r, t) = 0.

Solution: By taking the Laplace transform of relation (5-2), we get

r2Vrr + rVr + (i
√

sδ − β)2r2V = 0.

Let us assume that L{v(x, r, t)} = V (x, r, s), then one has

V (x, r, s) = c1J0(i
√

sδ − βr) + c2Y0(i
√

sδ − βr),
where J0 and Y0 are Bessel functions of the first and second kind of order zero,

respectively. Using this fact that lim
r→∞

v(x, r, t) = 0, we get

V (x, r, s) = c1J0(i
√

sδ − βr).
But v(x, a, t) = u(x, t), therefore

V (x, r, s) =
J0(i

√
sδ − βr)

J0(i
√

sδ − βa)
U(x, s),

where L{u(x, t)} = U(x, s). On the other hand, we have

∂V

∂r

∣∣∣∣ r = a
= U(x, s)

(
−i

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)
.

Applying the Laplace transform term wise to relation (5-1), we obtain

sαU = Uxx − iλa
√

sδ − β
J1(i

√
sδ − βa)

J0(i
√

sδ − βa)
U +

1
s
− γU,
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or

(5.3) Uxx − h(s)U = −1
s
,

where

h(s) = sα + γ + iλa
√

sδ − β
J1(i

√
sδ − βa)

J0(i
√

sδ − βa)
.

Differential equation (5-3) has the following solution

U(x, s) = c1 cosh(
√

h(s)x) + c2 sinh(
√

h(s)x) +
1

sh(s)
.

Using the boundary conditions u(−l, t) = u(l, t) = 0 leads to

U(x, s) =
1

sh(s)

(
1− cosh(

√
h(s)x)

cosh(
√

h(s)l)

)
.

Let us assume that

F (x, h(s)) = 1− cosh(
√

h(s)x)
cosh(

√
h(s)l)

,

then we get

U(x, s) =
F (x, h(s))

sh(s)
.

Now, if

Lt{φ(x, t)} =
F (x, s)

s
, Lt{ψ(ξ, t)} =

e−ξh(s)

s
,

then

u(x, t) = L−1
t {U(x, s)} = L−1{F (x, h(s))

sh(s)
} =

∫ ∞

0

ψ(ξ, t)φ(x, ξ)dξ.

Finally, we will have

φ(x, t) = L−1
t {F (x, s)

s
} = L−1

t

{
1
s
(1− cosh(

√
sx)

cosh(
√

sl)
)
}

= 1− L−1
t

{
cosh(

√
sx)

s cosh(
√

sl)

}
= 1− L−1

t

{
e
√

s(x−l) 1 + e−2
√

sx

s(1 + e−2
√

sl)

}

= 1−
∞∑

n=0

L−1
t

{
exp(−((2n + 1)l − x)

√
s)

s
− exp(−((2n + 1)l + x)

√
s)

s

}

= 1−
∞∑

n=0

(
erfc(

(2n + 1)l − x

2
√

t
)− erfc(

(2n + 1)l + x

2
√

t
)
)

.

Also,
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Figure 1

h(s) = sα + γ + iλa
√

sδ − β
J1(i

√
sδ − βa)

J0(i
√

sδ − βa)
,

hence

ψ(ξ, t) = L−1
t {e−ξh(s)

s
}

= L−1
t

{
e−ξγ e−ξsα

s
exp

(
−iξλa

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)}

= e−ξγL−1
t

{√
sδ − β

s

e−ξsα

√
sδ − β

exp

(
−iξλa

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)}
.

Case 1: Assume that δ = 1, therefore

f1(ξ, t) = L−1
t

{
1√

s− β
exp

(
−iξλa

√
s− β

J1(i
√

s− βa)
J0(i

√
s− βa)

)}

= eβtL−1
t

{
1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)}
.

The inverse Laplace transform is given by

L−1
t

{
1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)}
=

1
2πi

∫ c+i∞

c−i∞

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds.

The integrand has a branch point at the origin and it is thus necessary to choose
a contour which does not contain the origin. We deform the Bromwich contour so
that the circular arc BDE is terminated just short of the horizontal axis and the
arc LNA starts just below the horizontal axis. In between the contour follows an
inclined path EH followed by a circular arcHJK enclosing the origin and a return
section KL meeting the arc LNA (see figure). As there are no singularities inside
this contour C, we have

∫

C

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds = 0.
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Now on BDE and LNA, we get
∣∣∣∣

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)∣∣∣∣ ≤
1√
s
,

so that the integrals over these arcs tend to zero as R → ∞. Over the circular
arc HJK as its radius ε → 0, we have s = εeiθ , φ ≤ θ ≤ −φ. Thus

lim
R →∞
ε → 0

∫

HJK

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds = 0.

Along EH, s = ueiφ,
√

s =
√

ue
iφ
2 , hence

lim
R →∞
ε → 0, φ → π

∫

EH

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

∫ ∞

0

1
i
√

u
exp

(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

Similarly, along KL, s = ue−iφ,
√

s =
√

ue−
iφ
2 , then

lim
R →∞
ε → 0, φ → π

∫

KL

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

∫ ∞

0

1
i
√

u
exp

(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

Consequently, we have

1
2πi

∫

C

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

1
2πi

∫

AB

ds +
1

2πi

∫

BDE

ds

+
1

2πi

∫

EH

ds +
1

2πi

∫

HJK

ds +
1

2πi

∫

KL

ds +
1

2πi

∫

LNA

ds = 0.

The final result is as

1
2πi

∫ c+i∞

c−i∞

1√
s

exp
(
−iξλa

√
s
J1(i

√
sa)

J0(i
√

sa)

)
etsds =

1
π

∫ ∞

0

1√
u

exp
(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

Thus we obtain

f1(ξ, t) = L−1
t

{
1√

s− β
exp

(
−iξλa

√
s− β

J1(i
√

s− βa)
J0(i

√
s− βa)

)}

=
1
π

eβt

∫ ∞

0

1√
u

exp
(
−ξλa

√
u

J1(
√

ua)
J0(
√

ua)

)
e−tudu.

In case of 0 < δ < 1, we get
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f2(ξ, t) = L−1
t

{
1√

sδ − β
exp

(
−iξλa

√
sδ − β

J1(i
√

sδ − βa)

J0(i
√

sδ − βa)

)}

=
1
t

∫ ∞

0

f1(ξ, τ)W (−δ, 0;−τt−δ)dτ.

Also, for 0 < δ < 1,

f3(t) = L−1
t

{√
sδ − βe−ξsα

s

}
= L−1

t

{
s

δ
2−1(1− βs−δ)

1
2 e−ξsα

}

=
∞∑

n=0

(−β)n

(
1
2
n

)
L−1

t {s−δn+ δ
2−1e−ξsα}

=
∞∑

n=0

(−β)n

(
1
2
n

)
L−1

t

{
s−δn+ δ

2−1
∞∑

k=0

(−ξ)ksαk

k!

}

=
∞∑

n=0

(−β)n

(
1
2
n

) { ∞∑

k=0

(−ξ)k

k!
tδn−αk− δ

2

Γ(δn− αk − δ
2 + 1)

}
.

Consequently

ψ(ξ, t) = L−1
t {1

s
exp(−ξh(s))} = e−ξγ

∫ t

0

f2(ξ, η)f3(t− η)dη : 0 < α, δ < 1

Finally, we obtain u(x, t) as follows

u(x, t) =
∫ ∞

0

ψ(ξ, t)φ(x, ξ)dξ

=
∫ ∞

0

e−ξγ

(∫ t

0

f2(ξ, η)f3(t− η)dη

)

×
(

1−
∞∑

n=0

(
erfc(

(2n + 1)l − x

2
√

ξ
)− erfc(

(2n + 1)l + x

2
√

ξ
)
))

dξ.

Now, we should determine the inverse Laplace transform of the following term

V (x, r, s) = U(x, s)
J0(i

√
sδ − βr)

J0(i
√

sδ − βa)
.

If δ = 1, we obtain

g1(r, t) = L−1
t

{
J0(i

√
s− βr)

J0(i
√

s− βa)

}
=

2
a2

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

exp(−(
λ2

k

a2
− β)t),

where λ1, λ2, λ3, . . . are roots of J0(i
√

s− βa). For 0 < δ < 1, we conclude that
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g2(r, t) = L−1
t

{
J0(i

√
sδ − βr)

J0(i
√

sδ − βa)

}

=
2

a2t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

∫ ∞

0

exp(−(
λ2

k

a2
− β)τ)W (−δ, 0;−τt−δ)dτ

=
2

a2t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

L
{
W (−δ, 0;−τt−δ); τ → s

}
∣∣∣∣∣ s = λ2

k

a2 − β

=
2
t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)

( ∞∑
n=0

(−a2)nt−δn

Γ(−δn)(λ2
k − a2β)n+1

)

=
2
t

∞∑

k=0

λkJ0(λk

a r)
J1(λk)(λ2

k − a2β)
E−δ,0(− a2t−δ

λ2
k − a2β

).

Therefore,

v(x, r, t) = L−1
t {V (x, r, s)} = L−1

t

(
U(x, s)

J0(i
√

sδ − βr)

J0(i
√

sδ − βa)

)

=
∫ t

0

u(x, η)g2(r, t− η)dη : 0 < α, δ < 1.
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7. Conclusion

The paper is devoted to study and applications of Laplace transform. The main
purpose of this work is to develop a method for finding formal solution of certain
systems of Fredholm fractional singular integral equations of second kind, analytic
solution of the time fractional heat equation and system of partial fractional differ-
ential equations with different orders, which is a generalization to certain types of
problems in the literature. Numerous non trivial examples and exercises provided
throughout the paper. We hope that it will also benefit many researchers in the
disciplines of applied mathematics, mathematical physics and engineering.
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