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   Abstract 
 

The undetermined coefficients method is presented for nonhomogeneous sequential fractional 

differential equations involving Caputo fractional derivative of order 𝑛𝛼 where 𝑛 − 1 < 𝑛𝛼 ≤ 𝑛 

and 𝑛 ∈ ℕ. By employing the proposed method, a particular solution of the considered equation is 

obtained. Some details about estimating the particular solution required to apply this method are 

explained. This method is shown to be particularly effective for nonhomogeneous fractional 

differential equations when the fractional differential equations involve some specific right-hand 

side functions. 

 
 

 

 

1. Introduction* 

 

Fractional calculus has attracted the attention of 

researchers in recent decades, as modeling using fractional 

differential equations is convenient for estimating the 

evolutionary tendency of the systems affected by past 

memories. 

This paper deals with the following nonhomogeneous 

sequential fractional differential equation  

 

∑𝑛𝑖=0 𝑏𝑖𝐷
𝑖𝛼𝑢(𝑡) = 𝑓(𝑡), (1) 

 

where 𝑛 − 1 < 𝑛𝛼 ≤ 𝑛, 𝑏𝑖 ∈ ℝ, 𝑛 ∈ ℕ , and 𝑓(𝑡) ∈

𝐶∞(0, 𝑡). 𝐷𝑛𝛼  is called sequential fractional derivative 

operator and it is defined as follows 

 

 𝐷𝑛𝛼𝑢(𝑡) = 𝐷(𝑛−1)𝛼(𝑐𝐷𝛼𝑢(𝑡)), 

 

where  𝑐𝐷𝛼 is the Caputo derivatives. 

The sequential fractional derivative equation is first 

investigated in the monograph [1]. Its generalized version 

                                                           
* Corresponding Author: sertacerman@subu.edu.tr 

 

is then studied in [2]. Recently, many studies have been 

considered on the solutions of sequential fractional 

differential equations. These studies include different types 

of fractional derivatives, initial values, and boundary 

values. The uniqueness and existence of the solution of the 

periodic boundary value and the initial value problem for 

Riemann-Liouville (R-L) sequential fractional differential 

equations are considered in [3,4]. Similarly, solutions of 

impulsive R-L sequential fractional differential equations 

are studied in [5] and some specific solutions of sequential 

fractional differential equations with R-L derivatives are 

investigated in [6]. In [7] and [8], the uniqueness and 

existence of the solution are proved for sequential 

fractional differential equations involving the Hadamard 

derivative and Caputo–Hadamard derivative, respectively. 

Some existing results are obtained for Caputo-type 

sequential fractional differential equations with three-point, 

semi-periodic non-local, and mixed-type boundary 

conditions [9-11]. The uniqueness and Ulam-stability of 

solutions for specific sequential fractional differential 

equations involving Caputo derivative are studied in [12]. 

Additionally, in [13], the solution of Equation (1) is 

considered for 𝑛 = 2 and 𝑓(𝑡) = 0. We refer the reader to 

the papers [14-20] for some recent work on this subject. 
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The purpose of this article is to examine the method 

of uncertain coefficients to obtain particular solutions to 

Equation (1) with some specific functions 𝑓(𝑡). The 

method is a generalization of the well-known method of 

nonhomogeneous linear ordinary differential equations for 

sequential fractional differential equations with Caputo 

derivative. A similar method has been used for 

nonhomogeneous differential equations involving 

conformable fractional derivatives in [21], whereas there is 

no study in the literature for the Caputo derivative. 

The layout of this article is as follows. In Section 2, 

some definitions and applications of fractional calculus are 

presented. The method for the solution to the related 

problem is proposed in Section 3, and an illustrative 

example is given to present the application of the method 

in Section 4. Finally, some conclusions are described in the 

last section. 

 

2. Preliminaries 

 

Definition 1: The Caputo fractional derivative of 

order 𝛼 is defined as [22]: 

 

 𝑐𝐷𝛼𝑢(𝑡)

=

{
 
 

 
 1

Γ(𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)𝑛−𝛼−1 (
𝑑𝑛𝑢(𝑠)

𝑑𝑠𝑛
) 𝑑𝑠, 𝑛 − 1 < 𝛼 < 𝑛,

𝑑𝑛𝑢(𝑠)

𝑑𝑠𝑛
, 𝛼 = 𝑛.

 

 

For 0 < 𝛼 < 1, the Caputo fractional derivative is 

formed as: 

 

  𝑐𝐷𝛼𝑢(𝑡) = {
1

Γ(1−𝛼)
∫
𝑡

0

𝑢′(𝑠)

(𝑡−𝑠)𝛼
𝑑𝑠, 0 < 𝛼 < 1,

𝑢′(𝑡), 𝛼 = 1.
 

 

Definition 2: The sequential Caputo fractional 

derivative operator of order 𝑛 − 1 < 𝑛𝛼 ≤ 𝑛 is defined as 

[13]: 

 

 𝐷𝑛𝛼𝑢(𝑡) = 𝐷(𝑛−1)𝛼(𝑐𝐷𝛼𝑢(𝑡)). 

 

Definition 3: The Mittag-Leffler function is defined 

as: 

 

 𝐸𝛼(𝑧) = ∑
∞
𝑘=0

𝑧𝑘

Γ(𝛼𝑘+1)
, 

 

where 𝑅𝑒(𝛼) > 0 [23].  

 

Definition 4: The Mittag-Leffler function with 2-

parameters is defined as: 

 𝐸𝛼,𝛽(𝑧) = ∑
∞
𝑘=0

𝑧𝑘

Γ(𝛼𝑘+𝛽)
, 

 

where 𝛼, 𝛽 ∈ ℂ and 𝑅𝑒(𝛼) > 0 [23].  

 

Definition 5: The Mittag-Leffler function with 3-

parameters is defined as: 

 

 𝐸𝛼,𝛽
𝛾
(𝑧) =

1

Γ(𝛾)
∑∞𝑘=0

Γ(𝛾+𝑘)𝑧𝑘

𝑘!Γ(𝛼𝑘+𝛽)
, 

 

where 𝛼, 𝛽 and 𝛾 ∈ ℂ and 𝑅𝑒(𝛼) > 0 [23].  

 

Since (𝛾)𝑘: =
Γ(𝛾+𝑘)

Γ(𝛾)
= 𝛾(𝛾 + 1)⋯ (𝛾 + 𝑘 − 1) for 

𝛾 ∈ ℕ, Mittag-Leffler with 3-parameters is rewritten as  

 

 𝐸𝛼,𝛽
𝛾 (𝑧) = ∑∞𝑘=0

(𝛾)𝑘𝑧
𝑘

𝑘!Γ(𝛼𝑘+𝛽)
, 

 

and holds the following property  

 

 𝐸𝛼,𝛽
𝛾 (𝑧) =

1

𝛼𝛾
(𝐸𝛼,𝛽−1

𝛾−1 (𝑧) + (1 − 𝛽 + 𝛼𝛾)𝐸𝛼,𝛽
𝛾−1(𝑧)), 

 

which yields to reduce in the third parameter [24]. By 

repeatedly applying the property, the third parameter can 

be reduced to one. That is, a relation can be established 

between the Mittag-Leffler function with 3-parameters and 

the Mittag-Leffler function with 2-parameters when 𝛾 ∈ ℕ. 

We refer the reader to the paper [25] for more detail on the 

Mittag-Leffler function with 3-parameters. 

 

Definition 6: The parametrized form of 𝑓(𝑡) ∈

𝐶∞(0, 𝑡) is defined as follows:  

 

 𝑓𝛼(𝑡) = ∑
∞

𝑘=0

𝑑𝑘𝑓(𝑡)

𝑑𝑡𝑘
|
𝑡=0

𝑡𝑘

Γ(𝛼𝑘+1)
, (2) 

 

where 𝛼 > 0.  

 

Definition 7: The 2-parametrized form of 𝑓(𝑡) ∈

𝐶∞(0, 𝑡) is defined as follows:  

 

 𝑓𝛼,𝛽(𝑡) = ∑
∞

𝑘=0

𝑑𝑘𝑓(𝑡)

𝑑𝑡𝑘
|
𝑡=0

𝑡𝑘

Γ(𝛼𝑘+𝛽)
, (3) 

 

where 𝛼, 𝛽 > 0.  

 

Remark 1: Parametrized and 2-parametrized forms 

of function 𝑓(𝑡) = 𝑒𝑡 are Mittag-Leffler function 𝐸𝛼(𝑡) 

and Mittag-Leffler function with two parameters 

𝐸𝛼,𝛽(𝑡),respectively. Moreover, the following notations are 

used for parametrized and 2-parametrized forms of 
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functions 𝑓(𝑡) = 𝑠𝑖𝑛(𝑡) and 𝑓(𝑡) = 𝑐𝑜𝑠(𝑡)  

 

 

sin𝛼(𝑡) = ∑
∞

𝑘=0
(−1)𝑘

𝑡2𝑘+1

Γ((2𝑘+1)𝛼+1)
,

sin𝛼,𝛽(𝑡) = ∑
∞

𝑘=0
(−1)𝑘

𝑡2𝑘+1

Γ((2𝑘+1)𝛼+𝛽)
,

cos𝛼(𝑡) = ∑
∞

𝑘=0
(−1)𝑘

𝑡2𝑘

Γ(2𝑘𝛼+1)
,

cos𝛼,𝛽(𝑡) = ∑
∞

𝑘=0
(−1)𝑘

𝑡2𝑘

Γ(2𝑘𝛼+𝛽)
.

 

 

Theorem 1: Let 𝑓(𝑡) ∈ 𝐶∞(0, 𝑥), 
𝛼

𝜌
= 𝑚 ∈ ℕ and 

𝑟 ∈ ℂ. If 
𝑑𝑘

𝑑𝑡𝑘
𝑓(𝑡)|

𝑡=0
= 

𝑑𝑚𝑘

𝑑𝑡𝑚𝑘
𝑓(𝑡)|

𝑡=0
 for all 𝑘 ∈ ℕ, then  

 

 𝑓𝛼,𝛽(𝑟𝑡
𝛼) =

1

𝑚
∑𝑚𝑖=1 𝑓𝜌,𝛽(𝑠𝑖𝑡

𝜌), 

 

where 𝑠𝑖 are roots of 𝑠𝑚 = 𝑟.  

 

Proof. By definition of the 2-parametrized form of 

𝑓(𝑡), we have  

 

 ∑𝑚𝑖=1 𝑓𝜌,𝛽(𝑠𝑖𝑡
𝜌) = ∑

∞

𝑘=0
∑𝑚𝑖=1 𝑐𝑘

𝑠𝑖
𝑘𝑡𝜌𝑘

𝛤(𝜌𝑘+𝛽)
, (4) 

 

where 𝑐𝑘 =
𝑑𝑘𝑓(𝑡)

𝑑𝑡𝑘
|
𝑡=0

. On the other hand, the roots 𝑠𝑖 of 

the equation 𝑠𝑚 = 𝑟 satisfy following sum:  

 

 ∑𝑚𝑖=1 (𝑠𝑖)
𝑗 =

{𝑚𝑟
𝑘 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑘 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 = 𝑘𝑚,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (5) 

 

By plugging equation (5) into equation (4), we have  

 

 ∑
∞

𝑘=0
∑𝑚𝑖=1 𝑐𝑘

𝑠𝑖
𝑘𝑡𝜌𝑘

𝛤(𝜌𝑘+𝛽)
= ∑

∞

𝑘=0
𝑐𝑘

𝑚𝑟𝑘𝑡𝛼𝑘

𝛤(𝜌𝑘+𝛽)
= 𝑚𝑓𝛼,𝛽(𝑟𝑡

𝛼) 

 

Theorem 1 shows that the first parameter of a 2-

parametrized form of 𝑓(𝑡) can be changed under 

appropriate conditions. Moreover, the following equations 

are the direct result of theorem 1 for some specific 

functions 𝑓(𝑡). 

 

 𝐸𝛼,𝛽(𝑟𝑡
𝛼) =

1

𝑚
∑𝑚𝑖=1 𝐸𝜌,𝛽(𝑠𝑖𝑡

𝜌), (6) 

 

 sin𝛼,𝛽(𝑟𝑡
𝛼) =

{

1

𝑚
∑𝑚𝑖=1 sin𝜌,𝛽(𝑠𝑖𝑡

𝜌) if 𝑚 = 4𝑘 + 1, 𝑘 ∈ ℕ,

−
1

𝑚
∑𝑚𝑖=1 sin𝜌,𝛽(𝑠𝑖𝑡

𝜌) if 𝑚 = 4𝑘 + 3, 𝑘 ∈ ℕ,
 (7) 

 

 sin𝛼,𝛽(𝑟𝑡
𝛼) =

1

𝑚
∑𝑚𝑖=1 cos𝜌,𝛽(𝑠𝑖𝑡

𝜌) if 𝑚 = 2𝑘 + 1, 𝑘 ∈ ℕ, (8) 

 

where 
𝛼

𝜌
= 𝑚 ∈ ℕ. 

 

3. Undetermined Coefficient Method 

 

In this section, we introduce undetermined coefficient 

method to find a particular solution to the following 

nonhomogeneous sequential fractional differential equation 

for specific classes of right-hand side function  

 

 ∑𝑛𝑖=0 𝑏𝑖𝐷
𝑖𝛼𝑢(𝑡) = 𝑓(𝑡), (9) 

 

where 𝑛 − 1 < 𝑛𝛼 ≤ 𝑛, 𝑏𝑖 ∈ ℝ, and 𝑓(𝑡) ∈ 𝐶∞(0, 𝑡). 

For 𝑓(𝑡) = 0, the solutions of homogeneous equation 

(9) are in the form of 𝐸𝛼(𝑟𝑡
𝛼) where 𝑟 is the root of the 

corresponding characteristic equation  

 

 𝑃(𝑟) = ∑𝑛𝑖=0 𝑏𝑖𝑟
𝑖 . (10) 

 

If the characteristic equation (10) has 𝑘 distinct roots 

𝑟𝑖, a solution of equation (9) with 𝑓(𝑡) = 0 is as follows: 

 

 𝑢ℎ1 = ∑
𝑘
𝑖=1 𝑐𝑖𝐸𝛼(𝑟𝑖𝑡

𝛼), 

 

where 𝑐𝑖 ∈ ℝ. Moreover, in [26], the following solutions of 

the equation (9) with 𝑓(𝑡) = 0 are obtained if the 

characteristic equation (10) has 𝑘 coincident roots 𝑟0 

 

 𝑢ℎ2 = 𝑐0𝐸𝛼(𝑟0𝑡
𝛼) + ∑𝑘−1𝑖=1 𝑐𝑖

𝑡𝑖𝛼

𝑖𝛼
𝐸𝛼,𝑖𝛼
𝑖 (𝑟0𝑡

𝛼). 

 

Theorem 2: Let 𝑓(𝑡) = ∑𝑚𝑖=0 𝑐𝑖
𝑡𝑖𝛼

𝛤(𝑖𝛼+1)
 in equation 

(9) where 𝑐𝑖 ∈ ℝ. If the corresponding characteristic 

equation has no root at 𝑟 = 0, then there are real constants 

𝑎0, 𝑎1, ⋯ , 𝑎𝑚 such that  

 

 𝑢𝑝 = ∑𝑚𝑖=0 𝑎𝑖
𝑡𝑖𝛼

Γ(𝑖𝛼+1)
, (11) 

 

is a particular solution of equation (9).  

 

Proof. By plugging equation (11) into equation (9), 

we have the following linear algebraic system 

 

 

[
 
 
 
 
𝑏0 𝑏1 𝑏2 ⋯ 𝑏𝑚
0 𝑏0 𝑏1 ⋯ 𝑏𝑚−1
0 0 𝑏0 ⋯ 𝑏𝑚−2
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑏0 ]

 
 
 
 

[
 
 
 
 
𝑎0
𝑎1
𝑎2
⋮
𝑎𝑚]
 
 
 
 

=

[
 
 
 
 
𝑐0
𝑐1
𝑐2
⋮
𝑐𝑚]
 
 
 
 

. (12) 

 

Here 𝑏0 ≠ 0 since the characteristic equation has no 
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root at 𝑟 = 0. Thus, the linear algebraic system has a 

unique solution. 

 

Remark 2: If the characteristic equation has 𝑘 

coincident root at 𝑟 = 0, the particular solution (11) is 

formed as follows 

 

 𝑢𝑝 = ∑𝑚+𝑘𝑖=𝑘 𝑎𝑖
𝑡𝑖𝛼

Γ(𝑖𝛼+1)
, 

 

and the linear algebraic system (12) is reobtained as 

follows 

 

[
 
 
 
 
 
 
 
 
𝑏𝑘 𝑏𝑘+1 𝑏𝑘+2 ⋯ 𝑏𝑚 0 0 ⋯ 0
0 𝑏𝑘 𝑏𝑘+1 ⋯ 𝑏𝑚−1 𝑏𝑚 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑏𝑘 𝑏𝑘+1 𝑏𝑘+2 ⋯ 𝑏𝑚 0
0 ⋯ 0 0 𝑏𝑘 𝑏𝑘+1 ⋯ 𝑏𝑚−1 𝑏𝑚
0 ⋯ 0 0 0 𝑏𝑘 ⋯ 𝑏𝑚−2 𝑏𝑚−1
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 0 0 0 ⋱ 𝑏𝑘 𝑏𝑘+1
0 0 0 0 0 0 ⋯ 0 𝑏𝑘 ]

 
 
 
 
 
 
 
 

[
 
 
 
 
𝑎𝑘
𝑎𝑘+1
𝑎𝑘+2
⋮
𝑎𝑚+𝑘]

 
 
 
 

=

[
 
 
 
 
𝑐0
𝑐1
𝑐2
⋮
𝑐𝑚]
 
 
 
 

. 

 

Remark 3: Let 𝑞0 < 𝑞1 < ⋯ < 𝑞𝑚 be positive real 

numbers and 𝐺𝐶𝐷(𝛼, 𝑞0, 𝑞1, ⋯ , 𝑞𝑚) = 𝛽. In Theorem 2, 

the right-hand side function is taken as 𝑓(𝑡) = 𝑃(𝑡𝛼), 

where 𝑃(𝑡) is a polynomial. However, more generally, if 

the right-hand side function is of the form 𝑓(𝑥) =

∑𝑚𝑖=0 𝑐𝑖𝑡
𝑞𝑖, the particular solution of the equation is 

considered as follows 

 

 𝑢𝑝 = ∑𝑘𝑖=0 𝑎𝑖
𝑡𝑖𝛽

Γ(𝑖𝛽+1)
, 

 

where 𝑞𝑚 = 𝑘𝛽, 𝑘 ∈ ℕ. In this case, the characteristic 

equation is established by using 𝐸𝛽(𝑟𝑡
𝛽)  

 

Theorem 3: Let 𝑓(𝑡) = 𝐸𝑞(𝑐𝑡
𝑞) in equation (9) and 

𝐺𝐶𝐷(𝛼, 𝑞) = 𝛽. If the characteristic equation formed 

using 𝐸𝛽(𝑟𝑡
𝛽) has no root at 𝑟 = 𝑠𝑖 where 𝑠𝑖 are roots of 

𝑠𝑚 = 𝑐 for 
𝑞

𝛽
= 𝑚 ∈ ℕ, then there are real constants 

𝑎0, 𝑎1, ⋯ , 𝑎𝑚 such that 

  

 𝑢𝑝 = ∑𝑚𝑖=1 𝑎𝑖𝐸𝛽(𝑠𝑖𝑡
𝛽), (13) 

 

is a particular solution of equation (9).  

 

Proof. From equation (6), we have 

 

 𝑓(𝑡) = 𝐸𝑞(𝑐𝑡
𝑞) =

1

𝑚
∑𝑚𝑖=1 𝐸𝛽(𝑠𝑖𝑡

𝛽). 

 

On the other hand, by plugging equation (13) into 

equation (9), we obtain the following equality for 𝑖 =

1,2,⋯ ,𝑚,  

 

𝑎𝑖(∑
𝑛
𝑘=0 𝑏𝑘(𝑠𝑖)

𝑘) ∑𝑚𝑖=1 𝐸𝛽(𝑠𝑖𝑡
𝛽) =

1

𝑚
∑𝑚𝑖=1 𝐸𝛽(𝑠𝑖𝑡

𝛽), 

 

which gives  

 

 𝑎𝑖 =
1

𝑚∑𝑛𝑘=0𝑏𝑘(𝑠𝑖)
𝑘. 

 

Since the characteristic equation has no root at 𝑟 =

𝑠𝑖, ∑
𝑛
𝑘=0 𝑏𝑘(𝑠𝑖)

𝑘 ≠ 0. 

 

Remark 4 Let 𝑠 be a root of 𝑠𝑚 = 𝑐 in Theorem 3. If 

the characteristic equation has 𝑘 coincident root at 𝑟 = 𝑠, 

a particular solution (13) is formed as follows: 

 

 𝑢𝑝 =
𝑡𝑘𝛽

𝑘𝛽
𝐸𝛽,𝑘𝛽
𝑘 (𝑠𝑡𝛽). 

 

Theorem 4 Let 𝑓(𝑡) = 𝑠𝑖𝑛𝑞(𝑐𝑡
𝑞) + 𝑐𝑜𝑠𝑞(𝑐𝑡

𝑞) in 

equation (9), 𝐺𝐶𝐷(𝛼, 𝑞) = 𝛽 and 
𝑞

𝛽
= 𝑚 be odd number. If 

the corresponding characteristic equation has no root at 

𝑟 = 𝑠𝑖 where 𝑠𝑖 are roots of 𝑠𝑚 = 𝑐, then there are real 

constants 𝑎0, 𝑎1, ⋯ , 𝑎𝑚 and 𝑑0, 𝑑1,⋯ , 𝑑𝑚 such that  

 

 𝑢𝑝 = ∑𝑚𝑖=1 𝑎𝑖sin𝛽(𝑐𝑡
𝛽) + 𝑑𝑖cos𝛽(𝑐𝑡

𝛽), (14) 

 

is a particular solution of equation (9).  

 

By the principle of superposition, if the right-hand 

side function 𝑓(𝑡) is a linear combination of the functions 

in Theorem 1-4, a particular solution of equation (9) is a 

linear combination of the particular solutions defined in the 

related theorems. Additionally, the general solution is 𝑢𝑔 =

𝑢ℎ + 𝑢𝑝 where 𝑢ℎ is the solution of homogeneous equation 

(9) with 𝑓(𝑡) = 0, and 𝑢𝑝 is the particular solution of 

equation (9). 

 

4. Illustrative Example  

 

Example: Let us consider the general solution of the 

following equation 

 

 𝐷
6

4𝑢(𝑡) + 𝐷
3

4𝑢(𝑡) − 2𝑢(𝑡) = 𝑒𝑡 + 𝑡. (15) 

 

The characteristic equation 𝑟2 + 𝑟 − 2 = 0 of 

equation (15) is formed using 𝐸3
4

(𝑟𝑡
3

4), so 𝑟 = 1 and 𝑟 =

−2 are 1-fold roots. Hence, the homogeneous solution is 

obtained as follows 

 

 𝑢ℎ = 𝑐1𝐸3
4

(𝑡
3

4) + 𝑐2𝐸3
4

(−2𝑡
3

4), (16) 
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where 𝑐1, 𝑐2 ∈ ℝ. 

Since 𝐺𝐶𝐷(
3

4
, 1) =

1

4
, the characteristic equation is 

formed using 𝐸1
4

(𝜆𝑡
1

4) as follows 

 

 𝜆6 + 𝜆3 − 2 = 0, (17) 

 

and the roots of the equation are  

 

𝜆1 = 1, 𝜆2,3 = −
1

2
± 𝑖

√3

2
, 𝜆4 = −√2

3
, 𝜆5,6 = 2−

2

3(1 ± 𝑖√3) 

 

In order to determine the form of the particular 

solution, we use the following equality from equation (6) 

 

 𝑒𝑡 =
1

4
[𝐸1

4

(𝑡
1

4) + 𝐸1
4

(−𝑡
1

4) + 𝐸1
4

(𝑖𝑡
1

4) + 𝐸1
4

(−𝑖𝑡
1

4)] 

      =
1

4
[𝐸1

4

(𝑡
1

4) + 𝐸1
4

(−𝑡
1

4) + 2cos1
4

(𝑡
1

4)]. 

 

Therefore, the particular solution is considered as 

follows 

 

𝑢𝑝 = 𝑎0 + 𝑎1
𝑡
1
4

Γ(
5
4
)
+ 𝑎2

𝑡
1
2

Γ(
3
2
)
+ 𝑎3

𝑡
3
4

Γ(
7
4
)
+ 𝑎4𝑡

+ 𝑎5
𝑡
1
4

1
4

𝐸1
4
,
1
4
(𝑡
1
4) + 𝑎6𝐸1

4
(−𝑡

1
4)

+ 𝑎7cos1
4
(𝑡
1
4) + 𝑎8sin1

4
(𝑡
1
4). 

 

The particular solution contains the term 
𝑡
1
4

1

4

𝐸1
4
,
1

4

(𝑡
1

4) 

because the characteristic equation has a 1-fold root of 𝜆 =

1. Substituting 𝑢𝑝 in equation (15), we have  

 

𝑎0 = 𝑎2 = 𝑎3 = 0, 𝑎1 =
1

4
, 𝑎4 = −

1

2
, 𝑎5 =

1

36
, 𝑎6 =

−
1

8
, 𝑎7 = −

3

5
, 𝑎8 = −

1

5
. 

 

Hence, the general solution of the equation (15) is 

obtained as follows 

 

𝑢𝑔 = 𝑐1𝐸3
4
(𝑡
3
4) + 𝑐2𝐸3

4
(−2𝑡

3
4) +

𝑡
1
4

4Γ(
5
4
)
−
𝑡

2
+
𝑡
1
4

9
𝐸1
4
,
1
4
(𝑡
1
4)

−
1

8
𝐸1
4
(−𝑡

1
4)

−
1

5
[3cos1

4
(𝑡
1
4) + sin1

4
(𝑡
1
4)]. 

 

It is clear from equation (6) that the homogeneous 

solution (16) is equal to the homogeneous solution 

obtained from the roots of the characteristic equation (17). 

 

5. Conclusions  

 

The particular solution to Equation (1) is constructed 

when Equation (1) involves the right-hand side functions 

𝑓(𝑡) = ∑𝑚𝑘=0 𝑐𝑘
𝑡𝑘

𝑘!
, 𝑓(𝑡) = 𝑒𝑡, 𝑓(𝑡) = sin (t), and 𝑓(𝑡) =

cos(t) or their parametrized forms or linear combinations 

of them. To obtain the particular solution, the method of 

uncertain coefficients is presented for Caputo sequential 

fractional derivative equation of order 𝑛𝛼 where 𝑛 − 1 <

𝑛𝛼 ≤ 𝑛 and 𝑛 ∈ ℕ. This method is based on the 

appropriate particular solution estimation. The necessary 

details for proper estimation have been obtained. It is 

shown that Equation (1) is transformed into a linear 

algebraic equation with the benefit of proper solution 

estimation. Therefore, the method discussed is particularly 

effective for nonhomegeneous fractional differential 

equations. 
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