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ABSTRACT

In this paper we describe a share package XMOD (Alp,
Wensley, 1997) of functions for computing with finite, permutation
crossed modules, their morphisms and derivations; cat'<groups, their
morphisms and their sections, written using the CAP (Schonert, /993)
group theory programming language. We also give the
implementation method of sections to the CAP.

/991 A. M. S. c. 13D99, 16A99, 17899, 17D99, 18D35.
Keywords: Crossed modules, derivation, whitehead multiplication,
Cat'<groups.sections.

DZET

8u makalede CAP programtrun ortak paketi XMod ( Alp,
Wensley, /997) tarumlamantn yam stra Section farm CAP programt-
na uygulanmast incelenmistir.

1. Introduction

A starting point for this paper was to consider the possibility of implementing
functions for doing calculations with crossed modules, derivations, actor crossed
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modules, catl-groups, sections, induced crossed modules and induced cat I-groups in
GAP (Schonert, I993).

We should first explain the importance of crossed modules. The general
points are:

• crossed modules may be thought of as 2-dimensional groups;
• a number of phenomena in group theory are better seen from a crossed

module point of view;
• crossed modules occur geometrically as Tr 2(X,A)~Tr IA when A is

a subspace of X or as Tr IF --7 n IE where F ~ E ~ B IS a
fibration;

• crossed modules are usefully related to forms of double groupoids.

Particular constructions, such as induced crossed modules, are important for
the applications of the 2-dimensional Van-Kampen Theorem of Brown and Higgins
(Brown, Higgins, 1978) , and so for the computation of homotopy 2-types.

For all these reasons, the facilitation of the computations with crossed
modules should be advantageous. It should help to solve specific problems, and it
should make it easier to construct examples and see relations with better known
theories.

The powerful computer algebra system GAP provides a high level
programming language with several advantages for the coding of new mathematical
structures. The GAP system has been developed over the last 15 years at RWTH in
Aachen. Some of its most exciting features are:

• it has a highly developed, easy to understand programming language
incorporated;

• it is especially powerful for group theory;
• it is portable to a wide variety of operating systems on many hardware

platforms.
• it is public domain and it has a lively forum, with open discussion. These

make it increasingly used by the mathematical community.

On the other hand, GAP has some disadvantages, too:

• the built ill programming language is all interpreted language, which
makes GAP programs relatively slow compared to compiled languages such ({.I' Cor
Pascal. GAP source can not be compiled. This will change ill version 4 to be
released during 1997;

• the demands on system resources are quite high for the serious
calculations.

However, the advantages outweigh the disadvantages, and so GAP was
chosen.
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M.ALP-S.PAKISECTIONS IN GAP 3

Our aim in this paper is to describe a share package XMOD (Alp, Wensley,
1997 ) for the GAP group theory language which enables computations with the
equivalent notions of finite, permutation crossed modules and cat J -groups.

The term crossed module was introduced by J. H. C. Whitehead in
(Whitehead,1946) . Most references of crossed modules state the axioms of a
crossed module using left actions, but we shall use right actions since this is the
convention used by most computational group packages.

In (Loday,( 1982) Loday reformulated the notion of a crossed module as a 1-
cat group and showed that the category XMod is equivalent to the category Catl of
cat l-groups, Loday also generalised the notion of cat l-group to that of earn-group,
for all n ~ 1 (although he used the term n-cat-group).Crossed modules and their
higher analogues were considered by Ellis in (Ellis, 1984).

The category XMod is also equivalent to the category GpGpd of group-
groupoids and to the category of l-truncated simplicial groups with trivial Moore
complex.

In section 2 we recall the basic properties of crossed modules and their
derivations and of cat'<groups and their sections. We also gave the implementation
method and implementation algorithms in section 3. .

2. Crossed Modules and Catl-Groups

In this section we recall the descriptions of three equivalent categories:
XMod, the category of crossed modules and their rnorphisms; Catl, the category of
cat'<groups and their morphisms; and

GpGpd, the subcategory of groups in the category Gpd of groupoids. We
also describe functors between these categories which exhibit the equivalences.

A crossed module X = (a : S -7 R) consists of a group homomorphism a ,
called the boundary of X , together with an action a: R -7 Aut ( S ) satisfying, for
all s, S' E Sand r E R,

XMod 1: a (sr)= -:' (a s)r,
XMod 2: su" = s'-J ss' .

The kernel of a is abelian.

The standard examples of crossed modules are:

I. Any homomorphism a: R -7 R of abelian groups with R acting
trivially on S may be regarded as a crossed module.
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2. A conjugation crossed module is an inclusion of a normal subgroup
S_:::J R, where R acts Oil 5 by conjugation.

3. A central extension crossed module has as boundary a surjection
a: R ~ R with central kernel, where r E R acts 011 S by
conjugation with a' r.

4. An automorphism crossed module has as range a subgroup R of the
automorphism group Aut( 5) of 5 which contains the inner
automorphism group of 5. The boundary maps S E 5 to the inner
automorphism of 5 by s.

5. An R -Module crossed module has all R -module as source and a is
the zero map.

6. The direct product X I X X 2 of two crossed modules has source

51 X S2' RI X R2 and boundary a IX a 2' with RI, R2 acting

trivially on 5 I ,52 respectively.

An important motivating topological example of crossed module due to
~hitehead (Whitehead, 1949) is the boundary a: 7r 2 (X, A, x ) ~ 7r I (A, x) from

the second relative homotopy group of a based pair (X, A, x) of topological

spaces, with the usual action of the fundamental group 1C I(A, x).

A morphism between two crossed modules X I and X 2 is a pair (0", P ),
where (j: 51 ~ S2 and p: RI ~ R2 are homomorphisms satisfying

When X 2 XXI and 0", pare automorphisms then (0", p) is an

automorphism of X I . The group of automorphisms is denoted by Aut(X I ).

The Whitehead monoid Der(X) of X was defined in (Whitehead, 1949) to
be the monoid of all derivations

from R to S, that is the set of all maps R ~ 5 . with composition 0, satisfying

Der 1 : X (q r ) = (x q Y (X r)
Der 2 : (X lOX 2 Xr) = (X I r Xx 2 r Xx I a X 2 r ).

Invertible elements in the monoid are called regular. The Whitehead group W (X) is
the group of Der(X). The actor of X is a crossed module (8: W (X) ~ Aut(X»
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Which was shown by Lue and Norrie, in (Lue,1979) and (Norrie,1987), to be the
automorphism object of X in the category XMod.

The standard examples of Whitehead groups (Gilbert, 1990) are:

f. If S is a R - module, then the trivial homomorphism S -7 R IS a
crossed module and Der(X) = W (X) is the usual abelian group of
derivations.

2. Together with the conjugation action of a group R on itself; the
identity map X=(id= R -7 R) IS a crossed module. An
automorphism a of R determines its displacement derivation

(j aE W (X) given by (j a (r ) = a(r )r -I, and the correspondence

a -7 (j a is an isomorphism (j : Aut R -7 W (X).

3. Generalising (ii) we have the inclusion S -7 R of a normal S of a
group R .with. R acting by conjugation. Then W (X) is isomorphic to
the subgroup of Aut R consisting of all those a whose displacement
derivations take values in S ,

W(X) = {aEAutR IV rE R,a(r)r-' E S }
In particular, if S is a characteristic subgroup of R, then W (X) is
the kernel of the canonical map from Aut R to Aut (R/ S).

4. A crossed module X= (d : S -7 R) with surjective boundary map

amounts to a central extension of kerd hy R; so let E be a group
and K a central subgroup of E. Let AutKE be the subgroup of AutE
consisting of those automorphism of E that act trivially on K. The
natural map N = (V : E-7 ElK) is a crossed module and W (N) is
isomorphic to AutKE.

In (Loday , 1982) Loday reformulated the notion of a crossed module as a
cat'<group, namely a group G with a pair of homomorphisms t.li : G -7 G having a
common image R and satisfying certain axioms. We find it convenient to define a
cat-group C=(e;t,h : G -7R ) as having source group G, range group R, and three
homomorphisms: two surjections t,It:G -7 R and an embedding e: R -7 G
satisfying:

Cat 1: te=he=idR,

Cat 2: [kert.kerh]={ Ie [.

The maps t and h are usually referred to as the source and target, but we choose to
call them the tail and head of C, because source is the GAP term for the domain of
a function.

A morphism CI -7 C1 of cat I-groups is a pair (y , p) where y: G I -7 G1

and p: RI -7 R2 are homomorphisms satisfying
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The construction for cat-groups equivalent to the derivation of a crossed
module is the section. The monoid of sections of C is the set of group

homomorphisms g :R -7 C, with composition 0, satisfying:

Sect 1: tg =idR ,

Sect 2 : (g log 2)(r)=(g 2r)(ehg 2rrl(g Ihg 2r)

The embedding e is the identity for this composition, and

h( g log 2)=(h g I)(h g 2)' A section is regular when h g is an automorphism and,

of course, the group of regular sections is isomorphic to the Whitehead group.

The crossed module X associated to C has S = ker t and d = h's . The
cat-group associated to X has C = R oc S, using the action from X, and

t(r,s) = r, ; her,s) = r (d s), ; er = (r, I).

We denote by £ the inclusion of S in C.

The equation g r = (er)( X r) defines a section g of C, given a

derivation X of X, and conversely. Each X or g determines endomorphisms of

R, S, C,X and C, namely

P R-7R,

(5 S-7 S,

Y C-7 C,

((5, p): X-7X,

(y, p): C-7C

rHr(dXr)=hgr,

sHs(Xds),

gH (ehg tg)(g tg-I)g(ehgl)(g hg)

The accompanying diagram shows the relationship between the various groups and
homomorphisms.

Aut(S) ---------- S'----~"T7 C

a X d e h g

id
R
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3. GAP Implementation

7

In order to represent crossed modules, their derivations and actors, catl-
groups and their sections within GAP we utilise the record structure in GAP3. The
standard method in GAP is to represent a new algebraic structure as a record with a
set of fields. All records with the same structure are allocated an operations record,
namely a record whose fields are functions which operate on the structure. Thus the
operations record XModOps contains functions such as DirectProduct,
IsSimplyConnected and Actor. Similarly the operations record
XModMorphismOps contains functions such as Kernel and CompositeMorphism.
We describe algorithms for constructing crossed modules and their derivations in
(Alp, 1998), (Alp, 1997) and (Alp 1999) We also describe algorithms for
constructing sections of cat-groups in section 4.

4. Algorithms for Sections

Sections are group homomorphism which satisfy the section conditions Sectl
and Sect2. In the implementation a section is stored as a Group Homomorphism By
Images. However, sections are provided with a modified set of operations, Catl
Section By Images Ops, which includes a special

Print function to display the section. There are two more functions,
SectionDerivation and DerivationSection, which convert derivations to sections
and vice-versa.

4.1. Record structures for Sections

A section ~ : R ~ G is stored as a record with fields:

xi.source
xi-range
xi.generators
xi.genimages
xi.catl
xi.operations

xi.isSection

the range group R of cal e,
the source group G of cal e,
a fixed generating set for R,
the chosen images of the generators,
the cat-group C,
special set of operations CatlSectionBy
Images Ops,
a boolean tlag normally true.

There are two functions to calculate sections, RegularSections and AIISections.
Both create or modify a record Sec = C.sections with fields:

Sec.areSections,
Sec.isReg,
Sec.isAII,
Sec.generators,
Sec.genimageList,
Sec. regular,
Sec.catl,
Sec.operations,

a boolean tlag, normally true,
true when only the regular sections are known,
true when all the sections have been found,
a emphcopy of R.generators,
a list of .genimages lists for the sections,
the number of regular sections (if known),
the cat'<group cal C,
a special set of operations CatlSectionsOps.
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4.2. Algorithm for CatlSectionByImages

The function CatlSectionByImages is called as:

gap> CatlSectionBylmages( C, im );

The input parameters are a cat'<group and a list of images. As output, the
function returns a record as described in section 4.1.

Step 1
Step 2

Check that the given arguments are of the correct form.
Construct a map ~ : R ---7 G using
GroupHomomorphismByImages(R, G, genR, im);.
Set up the record fields as described in section 4.1.
Call IsSection(xi); to verify axioms SECT I and SECT2.

Step 3
Step 4

5. RegularSections and AIISections

It is easier to test that a prospective ~ is a homomorphism than that a map

X satisfies axiom Der 1. However, since ~ r = (er)( X r), a section ~ is
determined by a choice of X rj for each rj in a generating set {rl, ri. ...} for R.

Since rol( p r) = d X r it follows that X rE d -I (r ol( p r)). In order to
find the regular sections, we use the standard GAP> function
AutomorphismGroup(R) to obtain Aut (R). Then, for each p E Aut (R), we
make a list of preimages

A backtrack procedure is then used to select X rl , X r2 , ... from these
preimage lists, with each selection being tested to see whether it provides a partial
homomorphism R ---7 G.

A similar strategy is used to find emphall the sections, replacing Aut(R) by
the endomorphism monoid End(R). Since no standard GAP> function yet exists for
computing End(R), we have added a function EndomorphismClasses(R). An
endomorphism of R is determined by

a normal subgroup N of R, a permutation
quotient e :RIN ---7 Q, giving a projection
V :R ---7 RIN is the natural homomorphism;

• an automorphism a of Q;
• a subgroup H I in a conjugacy class [HJ of subgroups of R

isomorphic to Q having representative H, an isomorphism ¢ :Q == H,
and a conjugating element rE R such that tr = HI.

• representation of the
eo V :R ---7 Q , where
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Endomorphisms are placed in the same class if they have the same choice of Nand
[H], so the number of endomorph isms is

1 End(R) 1 = L 1 Aut (Q) 1 1 [H] I·
classes

The function returns a record E = RendomorphtsrrrClasses.classes with fields

E.quotient,
E.autoGroup,
E.isomorphism,
E.representative,
E.conj,

the group Q == RIN,
the automorphism group of Q,
the isomorphism phicircthetacircnu,
the subgroup H,
the list of conjugating elements I.

Functions RegularSections and AIISections are called as:

gap> RegularSections( C [, method] );
gap> AIISections( C, [, method] );

where method is one of "endo" or "xmod". The default method is "endo" uses the
method described in the previous section. When "xmod" is specified the following
procedure is used.

Step 1 Call X := XModCatl(C);.
Step 2 Call D := RegularDerivation(X);.
Step 3 For each image im In D.genimageList call

SectionDerivation(C,im); to construct the corresponding section.

6. CatlSectionByImages

CatlSectionBylmages(C, im)

This function takes a list of images in G = C.source for the generators of R
= c.range and constructs a homomorphism ~:R --7 G which is then tested to see
whether the axioms of a section are satisfied.

gap> SC;
cat I-group [c3"2IXc2 == >s3]
gap> irnxi := [( I,2,3), (1,2)(4,6)];;
gap> xi := Cat ISectionBylmages(SC, imxi);
Catl SectionBylmages(s3, c3"2IXc2, [(4,5,6), (2,3)(5,6)],

[( I,2.3), (1.2)(4.6)])

7.IsSection

IsSection( C, im)
IsSection(xi)

This function may be called in two ways, and tests that the section given by the
images of its generators is well-defined.
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gap> imO:= [(1,2,3), 2,3)(4,5)];;
gap> IsSection(SC, imO);
false

8. RegularSections

RegularSections(C {"endo" or "xmod"])

By default, this function computes the set of idempotent automorphisms from
R -t R and takes these as possible choices for h ~ . A backtrack procedure then
calculates possible images for such a section. The result is stored in a sections record
C.sections with fields similar to those of a serivations record. The alternative
strategy, for which "xrnod" option should be specified is to calculate the regular
derivations of the associated crossed module first, and convert the resulting
derivations to sections.

gap> Unbind(XSC.derivations);
gap> regSC := RegularSections(SC);

I

RegularSections record for cat l-group [c3"2IXc2 == >s3],
: 6 regular sections, others not found.

9. AIISections

AIISections( C {,"endo" or "xmod"])

By default, this function computes the set of idempotent endomorph isms
from R -t R and takes these as possible choices for the composite homomorphism
li ~ . A backtrack procedure then calculates possible images for such a section. This
function calculates all the sections of C and overwrites any existing subfields of
C.sections.

gap> allSC := AIISections(SC);
AllSections record for cat I-group rc3"21Xc2 ==> s3],
: 6 regular sections, 3 irregular ones found.
gap> RecFields(aIISC);
r"areSections", "isReg", "isAII", "regular", "genimageList",
"generators", "cat l ", "operations"]
gap> PrintList(aIlSC.genimageList);
[(4,5,6), (2, 3)(5, 6)]
[(4,5,6), (1,3)(4,5)]
[(4,5,6), (1,2)(4,6)]
[( 1,3.2)(4,6,5), (2, 3)'(5, 6)]
[( 1,3,2)(4,6,5), (1,3)(4,5)]
[( 1,3,2)(4,6,5), (1,2)(4,6)]
[( 1,2,3), (2, 3)(5, 6)]
[(1,2,3), (I, 2)(4, 6)]
[( I, 2, 3), (I, 3)(4, 5)]
gap> allXSC := AIIDerivations(XSC, "cat I");
AIIDerivations record for crossed module [c3- >s3],
: 6 regular derivations, 3 irregular ones found.
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10. AreSections

AreSections(S)

This function checks that the record S has the correct fields for a sections
record (regular or all).

gap> AreSections(aIISC);
true

11. SectionDerivation

SectionDerivation(D, i)

This function converts a derivation of X to a section of the associated cat 1-
group C. This function is inverse to DerivationSection. In the following examples
we note that allXSC has been obtained using alISC, so the derivations and sections
correspond in the same order.

gap> chi8 := XModDerivationBylmages(XSC, alIXSC.genimageList[8]);
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)),

[( I,2,3)(4,6,5), (1,2,3)(4,6,5)])
gap> xi8 := SectionDerivation(chi8);
GroupHomomorphismBylmages(s3, c31\21Xc2,

[(4,5,6), (2,3)(5,6)], [( 1,2,3), (l,2)(4,6)])

12. DerivationSection

DerivationSection( C, xi )

This function converts a section of C to a derivation of the associated
crossed module X. This function is inverse to SectionDerivation.

gap> xi4 := Cat 1SectionB ylmages(SC, allSC.genimageList[ 4));
Cat ISectionBylmages(s3, c31\21Xc2, [(4,5,6), (2,3)(5,6)],

[(1,3,2)(4,6,5), (2,3)(5,6)])
gap> chi4 := DerivationSection(xi4);
XModDerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[( I ,3,2)(4,5,6),0))

13. CompositeSection

CompositeSection(xi, xj)

This function applies the Whitehead composition to two sections and returns
the composite.

gap> xi48 := CompositeSection(xi4, xi8);
CatISectionByImages(s3, c31\21Xc2, [(4,5,6), (2,3)(5,6)],

[(1,2,3), (1,3)(4,5)])
gap> SectionDerivation(chi48) = xi48;
true
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14. SourceEndomorphismSection

SourceEndomorphismSection(xi)

Each section ~ determines an endomorphism y of G such that

gap> gamma4 := SourceEndomorphismDerivation(xi4);
GroupHomomorphismB yImages( c3"2Xc2, c3"2Xc2,

[(1,2,3), (4,5,6), (2,3)(5,6)], [( I,3,2), (4,6,5), (2,3)(5,6)])

15. RangeEndomorphismSection

RangeEndomorphismDerivation(xi)

Each derivation ~ determines an endomorphism p of R such that p r =
h~ r.

gap> rho-l := RangeEndomorphismDerivation(XSC, 4);
GroupHoIllomorphismBylmages(s3, s3, [(4,5,6), (2,3)(5,6»),

[(4,6,5), (2,3)(5,6)])

16. CatlEndomorphismSection

CatlEndomorphismSection(xi)

The endomorph isms gamma4, rho-t together determine a pair which may be
used to construct an endomorphism of C. When the derivation is regular, the
resulting morphism is an automorphism, and this construction determines a
homomorphism from the Whitehead group to the automorphism group of C.

gap> psi4 := CatIEndomorphismSection(xi4);
Morphism of cat I-groups < [c3"2IXc2 == >s3)-- >[c3"2IXc2 == >s3J >

REFERENCES

Alp, M., and Wensley, C. D., XMOD, Crossed modules and cat l-groups in
GAP, version 1.3 Manual for the XMOD share package, (1996) 1-80.

Schonert, M. et aI, GAP: Groups, Algorithms, and Programming, Lehrstuhl D
fiir Mathematik, Rheinisch Westf a lische Technische Hochschule,
Aachen, Germany, third edition, 1993.

Brown, R. and Higgins, P. J., On the connection between the second relative
homotopy groups of some related spaces, Proc. London Math. Soc., (3) 36
(1978) 193-212.

236



M.ALP-S.PAKISECTIONS IN GAP 13

Whitehead, J. H_ c., On adding relations to homotopy groups, Ann. Math., 47
(1946) 806-810.

Ellis, G_ J-, Crossed modules and their higher dimensional analogues, Ph.D
thesis, Univ. of Wales, Bangor, (1984).

Loday, J. L, Spaces with finitely many non-trivial homotopy groups,
J .App.Algebra, 24 (1982) 179-202.

Whitehead, J. H_ c., Combinatorial homotopy II, Bull. A.M.S., 55 (1949) 453-
496.

Lue, A. S. T., Semi-complete crossed modules and holomorphs of groups, Bull.
London Math. Soc., II (1979) 8-16.

Lue, A. S. T., The centre of the outer automorphism group of a free group, Bull.
London Math. Soc., II (1979) 6-7.

Norrie, K. J., Crossed module and anologues of group theorems, Ph.D thesis,
Kings College, University of London, (1987).

Gilbert, N.D., Derivations, automorphisms and crossed modules, Comm. in
Algebra 18:2703--2734, 1990.

Alp, M. GAP Crossed Modules, Catl-groups to the Computational Group
theory, PhD Thesis, University of Wales, Bangor. 1997

Alp, M. and Wensley C. D., Enumeration of Catl-groups of Lower order
groups, IJAC. 1999.

Alp, M. Pullback Cat I-groups, Turkish Journal of Mathematics 1998
Alp, M. Left Adjoint of Pullback Catl-groups, Turkish Journal of Mathematics,

1998

237



238


