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Abstract: In this review, an up to date and current knowledge of some of the green solvents, which
includes supercritical fluids extraction (SFE), switchable polarity solvents (SPS), and natural deep eutectic
solvents (NADES) are discussed with more emphasis on the extraction of active components of herbal
products.  Different  scientific  articles  and  books  have  been  researched  and  reviewed  to  explain  the
applications of new generation solvents for extraction of herbal products prior to atomic and molecular
analysis from the past until now. Currently, the most of techniques used in processing herbal products
involve the use of extraction methods. Therefore, trends in extraction methods focuses mainly on finding
reasonable solutions that minimizes the use of toxic solvents and allows the usage of renewable and
green solvents  from natural  products,  which  ensure high quality  and safe extracts.  In  future,  SFE is
definitely going to be on the industrial scale due to its numerous applications in the large scale especially
for herbal, food, cosmetics and pharmaceutical products etc.
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1. INTRODUCTION

The  separation  between  molecular  analysis  and
atomic analysis, which are regarded as two distinct
and  extremely  divergent  areas,  has  existed  in
analytical chemistry for many years. As a matter of
fact,  the tools  and extraction  techniques  created
for  atomic  analysis—which  inevitably  need
vaporization,  atomization,  and  occasionally  even
ionization—are extremely different from those used
for  molecular  analysis,  and  the  spectra  seen  in
both situations show considerable differences (1).
However,  given the different  types  of  works that
connect  these  two  disciplines  nowadays,  such  a
division  needs  to  be  reevaluated.  High-resolution
continuum source atomic absorption spectrometers
(HR-CS-AAS), which use either flame (F) or graphite
furnace  atomizers  (GF),  have  considerably
revolutionized the science of atomic absorption (2).
As the concept of using continuum sources instead
of line sources for AAS can be virtually traced back
to the invention of the technology, several devices
have been developed based on such concepts (3).
Molecular  analysis  is  regarded  as  a  laboratory
procedure that entails the examination of various
sample  materials,  including  food,  herbals,  cells,
tissues,  and  environmental  samples,  for  the
identification  of  various  target  analytes  at  a
molecular level using various analytical techniques,

including high performance liquid chromatography
(HPLC)  and  gas  chromatography  (GC),  using
different detectors (4).

Generally,  major  industrial  and  conventional
chemical processes involve the use of flammable,
toxic,  volatile,  hazardous,  and  environmentally
destructive  solvents  in  chemical  reactions  and
separation  processes  (1).  These have a negative
impact  on  the  economic  and  environmental
performance of such processes (2). Conventional or
classical  extraction  methods  are  also  time-
consuming, laborious, and involve large amounts of
energy-consuming  solvents  such  as  alcohols,
chloroalkanes,  and  other  hydrocarbons  (3).
Therefore,  since  most  bioactive  components  are
water-insoluble, this can ultimately aggravate the
degradation  of  some  target  analytes  (4).  It  is
worthy  of  note  that,  despite  the  use  of  high
amounts of solvents and high energy consumption,
the  yield  is  also  lower  in  comparison  to  the
alternatives  (5).  Therefore,  a  few  decades  ago,
safer,  effective extraction methods in accordance
with a sound compromise of their environmental,
economic,  and  social  requirements  began  to  be
considered as replacements (6).

Green chemistry as a concept was first introduced
in 1991 by PT Anastas when he launched a unique
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program  in  order  to  implement  sustainable
development  in  the  area  of  chemical  technology
(7). 

Green chemistry has 12 principles which serve as
guidelines  for  designing  chemical  products  and
methods (8,9) that reduce or occasionally remove
the  application  and  generation  of  harmful  and
hazardous chemical materials altogether by using
solvents and chemicals that are entirely non-toxic
to  human  health  as  well  the  immediate
environment in order to design and create effective
and non-hazardous methods facilitating the use of
renewable  solvents  known  as'  new  generation
solvents’  or ‘solvents of  the future’  (10).  Gu and
Jerome  proposed  the  first  requirements  for  a
solvent  and  a  process  to  be  considered  green
based  on  their  availability,  biodegradability,
flammability,  grade,  performance,  price,
recyclability,  renewability,  stability,  storage,
toxicity, and synthesis (11). There is no doubt that
these  are  reasonable  and  sound  conditions  (12).

Nevertheless,  it  can  also  cause  a  dilemma
regarding classifying a solvent as a green solvent,
because in most cases, a solvent cannot fulfill all
these parameters. For example, a solvent can fulfill
eleven  or  ten  or  nine  out  of  the  total  twelve
conditions of a green solvent (13). Therefore, can
this  solvent  still  be  regarded  as  green?  It  is
therefore  crucial  to  be  precise  regarding  the
meaning of  these green solvents.  The term itself
can therefore be misleading due to the its novelty
and  relative  nature  (14).  Though  Warner  and
Anastas defined "green chemistry" as a process of
reducing the toxicity and hazards of processes or
methods, they did not define it as a method that
does  not  cause  any  damage  or  harm  (15).
Therefore, a solvent can be considered green if it is
‘greener’ when compared with the current classical
solvent  to  be  replaced,  which  can  be  supported
with  clear  and strong evidence  (1).  In  almost  all
cases, the choice will be based on a compromise
between different conditions,  as seen in Figure 1
below (17,18).

Figure 1: An ideal solvent is a combination and involves a compromise of different and multitude
requirements (Adapted from Chemat et al. (11)).

These are termed "new generation solvents" owing
to their tunable properties, which may prove to be
a class of solvents that offer energy and material
efficiency greater than existing solvents that need
further exploitation to improve their application as
a green chemical process (19). 

Finally, given their limited context, there is a need
to  use  their  applicability  in  micro-extraction
methods,  particularly  for  switchable  polarity
solvents (SPS) (20).

In  conclusion,  the  aim of  this  review  is  to  show
some  applications  and  wide  extraction  methods
using new generation solvents for herbal products
prior to atomic and molecular analysis (21). In this
regard,  atomic  analysis  entails  the  identification
and characterization of  various sample materials,

particularly  environmental,  cosmetic,  food,  and
herbal samples, for the identification, isolation, and
confirmation of analytes at the elemental state via
atomization  using  various  analytical  techniques
such as FAAS and inductively coupled plasma mass
spectrometry (ICP-MS). While molecular analysis is
considered  a  laboratory  procedure  that  involves
the  study  of  different  sample  materials  such  as
food,  herbals,  cells,  tissue,  and  environmental
samples  for  the  identification  of  various  target
analytes  at  a  molecular  level  using  different
analytical techniques such as HPLC and GC using
different detectors.

2. SOLVENT-FREE SYSTEM

Sometimes the best solvent is no solvent at all. A
solvent-free  system  completely  satisfies  the  5th
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condition  of  green  chemistry.  Numerous  studies
have  shown  that  there  is  an  abundance  of
industrial and chemical processes in which the use
of  solvents  is  completely  avoided  (22).  However,
this  is  not  always  possible.  Especially  if  the
absence  of  the  solvent  leads  to  dangerous
overheating  or  results  in  a  higher  demand  for
energy (23). Therefore, these disadvantages would
definitely surmount the advantages of using a non-
solvent  system  (solvent-free  process).  Some
decades ago, scientists tried synthesizing polymers
using solvent-free conventional reactions (24). It is
indeed  notable  that  some  industrial
polymerizations  have  succeeded  in  using solvent
free methods in synthesis as well as in separation,
such  as  solid  state  polymerization  and  melt
polymerization (25). For example, PET is produced
commercially  through  melt  polymerization  and
then  followed  by  the  solid  state  polymerization
method (26). It is possible to produce polymers, for
example  poly  (phenylene  vinylene),  by  ensuring
that there is close contact among the molecules of
the starting materials for about five minutes in the
ball milling process (27). This ball milling process is
not  only  used  in  polymer  science,  but  also  has
diverse  applications  in  organic  synthesis  (28).
Apart from avoiding the use of organic solvents, it

also  has  numerous  advantages,  such  as  a
reduction  in  reaction  time  and  high  energy
efficiency (29). As far as the solvent-free process is
concerned, mentioning the solvent-free microwave
extraction  method  is  significant,  which  is  a  well-
designed technique introduced by Lucchesi and his
group  in  the  year  2004  (30).  This  sophisticated
method can be applied to extracting essential oils
from fresh plant material in a microwave-assisted
dry distillation process (31).  It  is  a quick,  robust,
and  sensitive  method  that  gives  a  strong
alternative to the time-consuming and long-lasting
conventional hydro-distillation method (32). 

3. SUPERCRITICAL FLUID EXTRACTIONS 

These are substances which exist as a single phase
above  their  critical  points  of  temperature  and
pressure (33). This critical point can be defined as
the  point  at  which  liquid  and  vapor  can  be
distinguished without the need for boundaries (34).
For example,  the supercritical  point of water was
discovered to be 374 °C and 22.7 MPa C (Figure
2A),  while  the  supercritical  point  of  CO2 was
discovered to be 31 °C and 7.3 MPa C (Figure 2B)
(35).

Figure 2: Phase diagram of water and CO2 (Adapted from Lucchesi et al., 2004 (35)).

Due  to  their  tunable  properties  of  low  viscosity
(gas-like) and high density (liquid-like),  these are
considered  to  be  important  new  generation
solvents that improve solubility and mass transfer
properties  (36).  The  properties  of  certain
supercritical  fluids  are  mentioned  in  Table  1.  In
analytical chemistry, supercritical propane–butane,
water,  ammonia,  and  CO2 have  also  been  used.
Because  of  its  low  critical  temperature  and
pressure  (31  °C  and  7.3  MPa),  inertness,  purity,
non-toxicity,  and  availability,  CO2 is  the  most
widely  used  supercritical  fluid.  Furthermore,  the
strength of supercritical carbon dioxide (ScCO2)
solvation  can  be  adjusted  by  changing  the
temperature and pressure (37). 

Another benefit of CO2 is that it is gaseous at room
temperature and pressure, making active product
recovery relatively quick and cheap, as well as the
ability  to  produce  solvent-free  extracts.  ScCO2's
ability to operate at low temperatures while using a
non-oxidizing  medium  is  also  advantageous  for
sample  processing  of  medicinal,  food,  biological,
and natural products, as it allows for the extraction
of thermally labile or readily oxidized compounds
with  minimal  degradation.  ScCO2 has  solubilizing
properties similar to n-hexane and n-heptane due
to  its  low dielectric  constant  and dipole  moment
near  to  zero.  Due  to  charge  isolation  and  its
electronic  composition,  it  has  a  quadrupole
moment, allowing it to behave as both a Lewis acid
and  a  Lewis  base.  Despite  having  a  quadrupole
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moment,  ScCO2 acts  like  a  nonpolar  solvent,
limiting its use in removing hydrophilic analytes. A
polar modifier or (co-solvent) is normally applied to
tune the polarity and increase the solvating ability
to address this constraint. Chemical solvents such

as  methanol,  ethanol,  and  ethyl  acetate  are
applied  to  ScCO2 in  small  amounts  (1–20  vol
percent)  to  broaden  its  extraction  spectrum  to
include more polar analytes.

Table 1: Physical properties (density, diffusion and viscosity) of gaseous, supercritical and liquid states.
(35).

State Density (g/cm3) Diffusion (cm2/s) Viscosity (g/cm•s)

Gas 10-3 10-1 10-4

Supercritical 10-1 - 1 10-4 - 10-3 10-4 - 10-3

Liquid 1 <10-5 10-2

Supercritical  fluid  extraction  of  herbal  and
biologically  active  components  is  now a  growing
area of interest. It gives an ability to process plant
and herbal products at a very low temperature, in
absence of toxic and harmful solvents, in addition
to  limiting  thermal  degradation  of  the  analytes
(38). Any fluid can be used as a supercritical fluid if
it fulfils the characteristics under critical conditions.
However,  cost,  solvation  power  and  toxicity
determine the best and suitable solvent to be used
in a particular and specific application. It has been
reported that propane, dimethyl ether and ethane
have  been  used  in  extraction  of  herbal  products
and biologically active compounds as supercritical
solvents (39).

For easy understanding, we need to know that the
supercritical fluid methods for most of the natural

compounds are mainly categorized into two main
divisions:  (1)  undesired  or  unwanted  chemical
substances that need to be removed from the plant
materials  (matrix),  for  example,  removal  of
caffeine  from tea  and  coffee,  defatting  of  press
cakes, as well as removal of various factors such as
porosity,  particle  size,  nature  of  the  matrix,  and
moisture, as well as removal of some parameters
from  some  processes,  such  as  temperature,
pressure, and solvent flow rate, which can have an
effect  on  the  supercritical  fluid  result,  (2)  the
extraction  of  biologically  active components from
plant material  (40).  Table 2 shows a selection of
common  applications  of  supercritical  fluid
extraction from herbal and plant origins, along with
extraction properties such as pressure, modifiers,
and temperature.

Table 2:  Supercritical-CO2 extraction of some selected herbal bioactive compounds (selected from plant
origin) (6).

Material Extract Modifier T (°C) P (bar)

Almond Oil, tocopherols Methanol 35–50 350–550

Aloe Vera leaves α -tocopherol Ethanol 40–70 300–600

Black pepper Oleoresin, piperine       - 35–55 200–300

Ginger Oleoresin Ethanol, isopropanol 25–35 200–250

Thyme  Total extract, thymol,       - 40 80–400

Walnut Oil Ethanol 40–60 300–500

Grape skin Resveratrol Ethanol 40 150

Ginkgo leaves  Terpenes, flavonoids Ethanol 60–110 242–312

4. SWITCHABLE POLARITY SOLVENTS (SPS)

Generally, switchable solvents (SS) are mixtures of
compounds  that   have  the  ability  to  abruptly
change their physical  properties,  such as polarity
(hydrophilicity), conductivity, solubilizing capability

orviscosity  (41,42).  The  switching  of  polarity  is
induced  through  bubbling  of  CO2 gas  at
atmospheric  pressure  into  the  reaction  vessels
(43).  The  CO2 will  further  reacts  and  associates
with a compound in the reaction system forming an
ionic liquid (IL) having different properties from the
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initial  molecular  liquid  (44).  This  process  can
simply  be  reversed  through  removal  of  CO2 by
bubbling inert gasses, N2 gas, NaOH or sometimes
through applying mild heat to the liquid (45).

It  has been reported that various materials  have
the ability to switch some of their characteristics,
for  example  polymers,  solutes,  and  surfactants
(46).  With  the  aid  of  suitable  reagents  such  as
organic bases, water also has the ability to switch
to higher ionic strength from lower ionic strength
(47). SS are very important for processes that need
various  solvent  characteristics  in  consecutive
steps, such as product recovery or extraction (48).

The  use  and  application  of  switchable  solvents
reduces the number of solvents required during a
chemical process (49,50).

Switchable  polarity  solvents  (SPS)  were  first
introduced  by  Jessop  in  the  year  2005,  which
contain  either  only one component,  for  example,
secondary  amines,  or  are  composed  of  multiple
components  (51).  Usually,  two  components  of
switchable  polarity  solvents  are  composed  of
amidine or  sometimes guanidine together  with  a
primary  amine  or  an  alcohol  (52).  Other
combinations, such as guanidine or diamines/acidic
alcohol chemical mixtures, are possible (53).

Figure 3: Switchable polarity solvent switching from low-polarity to high polarity by bubbling CO2
(Adapted from Jessop et al., (56)).

Each  SPS  has  its  own  properties  (54,55).  These
characteristics have to be taken into consideration
when selecting the best SPS for a certain chemical
process  (56).  Systems  containing  amidine  1,8-
diazabicyclo-[5.4.0]-undec-7-ene, for example, are
extremely  sensitive  to  moisture,  whereas  some
secondary amines and other amidines SPS are less
sensitive  (57).  One  of  the  advantages  of  single
component  SPSs  is  that  they  do  not  need  any
operator  to  monitor  the  mole  ratio  of  these  two
liquids.  Furthermore,  secondary  amines  are  cost-
effective when compared with amidines (58, 59). 

One of the major challenges of industrial processes
is  solvent  removal  from  hydrophobic  materials
without  the  use  of  distillation  processes  (60).
However, the idea is possible provided that there is
a  solvent  which  can  reversibly  switch  from
hydrophobic state to a more hydrophilic one (61).
Therefore, the discovery of SPS plays a major role
in solving this negative inconvenience in industrial
processes,  because  the  removal  of  solvents
through distillation is the most common industrial
activity that suffers from the main drawbacks that
lead to environmental  hazards and damage (62).
Firstly,  because  distillation  usually  employs  the
usage of  a  volatile  substance,  it  results  in  smog
formation through great vapor emission. Secondly,
it  needs  a  high  input  of  energy  (63).  Therefore,
there is  a need to find a new and efficient  non-
distillative approach for the separation of solvents
from their products, in order to avoid the usage of
volatile solvents (64,65).

Soylak  et  al. reported  that  N,N,N-
tributylpentanamidine was first used as an SPS that
can be applied for extracting low polarity products
such  as  vegetable  oils,  and  then  the  solvent  is
removed from the product using carbonated water
(66,67). Carbonated water has the ability to extract
the solvents from the products due to the fact that
the  CO2 can  convert  the  solvent  into  the  polar
form. Subsequently, the solvent is then separated
from the carbonated water by removing the CO2,
because the removal triggers the conversion of the
solvent  into  its  non-polar  form.  And  finally,  the
removal  of  the  solvent  from  the  herbal  product
does not require distillation (68,69).

Memon et al.,  (2017) proposed a green and novel
switchable  solvent,  which  was  hyphenated  with
liquid  phase  micro  extraction  (SS-LPME)  for
extraction and preconcentration of the nutritionally
and  biologically  important  element  Co(II)  from
tobacco  and  food  samples  using  flame  atomic
absorption  spectrometry.  To  improve  conversion
from  the  deprotonated  form  to  the  protonated
form,  N,  Ndimethyl-n-octylamine bicarbonate was
synthesized  and used as  a  switchable  solvent  in
the presence  of  CO2 to  improve conversion  from
the deprotonated to the protonated form, and then
examined  for  analyte  extraction.  A  quantitative
recovery was achieved (70,71). This study involves
the formation of a complex at a pH of 4.0 between
Co(II) and 1-nitroso-2-naphthol, which serves as a
ligand, and then extraction through conversion of
the  solvent  to  a  nonpolar  N,N-dimethyl-n-
octylamine phase. The accuracy and validity of this
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method  were  checked  using  standard  reference
material (IC-INCT-OBTL-5) and additional recovery
verification. The LOD and LOQ were also found to
be 3.2 μg L−1 and 10.6 μg L−1 respectively. Finally,
this  method  was  efficiently  used  for  the  atomic
analysis  of  tobacco,  herbal  products,  and  food
samples (72). 

5.  NATURAL  DEEP  EUTECTIC  SOLVENTS
(NADES)

In 2003, Abbot and his co-workers introduced deep
eutectic solvents (DES) for the first time (73). They
reported  excellent  properties  for  some  eutectic
mixtures of a range of quaternary ammonium salts
and urea (74). DES are now widely regarded as a
novel  class of  sustainable  solvents  that serve as
green  alternatives  to  ionic  liquids  (ILs)  (75).
Because of their similar properties such as starting
materials,  non-flammability,  non-volatility,  and
high  viscosity,  DES  are  considered  the  4th

generation of ionic liquids (78). However, DES are
not entirely made up of ionic species (76,77). DES
are  created  by  combining  two  or  more
components,  such as organic salts  (phosphonium
salt or quaternary ammonium) and hydrogen bond
donors (HBD) or metal salts that can associate with
one  another  via  hydrogen  bonding  (78).  The
charge  delocalization  that  occurs  results  in  a
decrease in the melting point of the final product
when compared with the individual melting points
of  the starting  materials  (79).  Nevertheless,  DES
has  numerous  advantages  and  applications  over
ILs,  such  as  lower  economic  and  environmental
impact (80,81). This is more pronounced for DES
that  are  produced  naturally  from  primary
metabolites of living cells, known as natural deep
eutectic solvents (NADES), which are mostly found
in abundance in our diet, such as amines, sugars,
carboxylic  acids,  polyalcohol  and  choline  (82).
These  NADES  satisfy  all  the  principles  of  green
solvents,  which produces many advantages,  such
as  readily  available  starting  materials,  reduced
toxicity,  cost-effectiveness,  and  simplicity  of
preparation,  among  the  others.  Moreover,  they
possess excellent physicochemical properties such
as  adjustable  viscosity,  wide  range  of  polarity,
liquids  even  at  lower  temperatures,  and  high
solubilizing  capacity  for  a  wide  range  of
compounds  that  can  be  fine-tuned  for  a  certain
application  because  of  their  different  structural
possibilities (83). 

Due to the above properties of NADES, there is a
rapid increase in their application for the extraction
of biological ingredients of herbal materials such as
phenolic  acid,  saponins,  flavonoids,  alkaloids,
terpenoids  and  anthocyanin,  which  clearly
indicated  the  possibility  of  using  NADES  in
extracting  different  hydrophobic  and  hydrophilic
naturally occurring chemical compounds (84,85). 

In order to select a suitable NADES for extracting
active compounds from herbal materials, it is very
important  to  try  different  combinations  having

different  physicochemical  parameters.  For
instance,  Dai  et  al.,  reported  that  seven  NADES
were used in the extraction of aromatic pigments
having  wide  range  of  polarity  from  Carthamus
tinctorius L. showing that NADES with low polarity
possess  the  lowest  efficiency  for  polar  active
compounds  but  higher  extraction  ability  for  non-
polar active compounds and vice versa (86). This
corresponds  to  the  rule  of  “like  dissolves  like”.
Various  researchers  draw  the  same  conclusion
when extracting  phenolic  compounds  from grape
skin. In the study, they used choline-chloride based
NADES that contains organic acids, polyalcohol or
sugars  as  the  hydrogen  bond  donors  (HBD).
However, polyalcohol and sugar based NADES are
less polar than organic acid based NADES, having a
polarity almost equal to that of methanol (87,88). 

Furthermore,  to improve the extraction efficiency
of NADES, there is a need to optimize the NADES
content  of  water.  Increasing  the  water  content
decreases  its  viscosity,  thereby  increasing  the
transfer  of  mass  from  the  herbal  matrices  to  a
solution and hence increasing the efficiency of the
extraction  (89).  The  main  problem  with  using
NADES  for  extraction  is  its  viscosity,  which  is
generally high at room temperature. For instance,
some  NADES  cannot  be  utilized  directly  for
extraction without diluting them with water due to
their high viscosity. However, increasing the water
content  decreases  the  interaction  between  the
solvent and the target analyte. Also, an excess of
water  in  NADES  can  lead  to  halide-HBD
supramolecular  complex  breakage  and  thereby
form a single aqueous solution of each of the initial
components. In general, a NADES with high water
content  are  more  suitable  for  the  extraction  of
more polar compounds, while those with low water
content are more suitable for extracting non-polar
compounds.  However,  water  content  has  a
significant  effect  on  the  yield  for  both  non-polar
and  polar-active  components.  Furthermore,  the
stability of the target analytes while using NADESs
should be taken into consideration as an important
factor when selecting a specific solvent. In a study
to  determine  the  stability  of  some  phenolic
components  of  safflower  extracts,  the  results
showed  that  using  NADES  improved  compound
stability over using conventional solvents (39). The
stability  in NADES is due to the strong hydrogen
bonding that exists between the molecules of the
solvent  and  solute,  whereby  among  the  studied
NADES,  sugar-based  NADES  showed  the  highest
stability  (90).  This  interaction  is  responsible  for
decreasing  the  mobility  of  the  solute  molecules,
and this reduces the contact time with oxygen and
air, hence minimizes oxidative degradation, which
is the major factor that causes degradation of the
active compounds (91). There is a need for further
research  on  the  reasons  behind  bioactive
ingredients'  stability  in  NADESs  for  a  full
understanding of the mechanism (92,93). 

Furthermore,  before final  selection  of  NADES,  its
environmental  effects  should  be  checked  and
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examined, because the assumption that NADES are
non-toxic is based on toxicity results for individual
components used in preparing NADES, which are
naturally  occurring  biomaterials  that  are
pharmaceutically  accepted  (94).  The  assumption
does not take into account the probability  of  the
existence  of  combined  and synergistic  effects  of
the  individual  components  that  make  up  the
NADES (95).

According to the current  research trend,  there is
little  or  no  application  of  the  NADES  extraction
method on an industrial scale for green extraction
of  herbal  active  components  on  a  large  scale.
Therefore,  to  achieve  such  industrial
implementation,  environmental  and  economic
factors  should  be  considered  (96).  Though  the
price  of  NADES  is  comparable  to  that  of
conventional  and  classical  solvents,  their
production  is  regarded  as  a  sustainable  process
(97).  Nevertheless,  other  factors  should  be
considered,  such  as  the  recovery  of  the  target
bioactive  component  as  well  as  the  NADES
recyclability, before implementing this technique in
large  scales.  Nonetheless,  researchers  (98-107)
reported  that  NADES  is  a  suitable  alternative
technique  that  involves  renewability  and
sustainability  for  the  extraction  of  value  added
compounds as well as other precious analytes prior
to both atomic and molecular analysis.

CONCLUSION

Currently,  most  of  the  techniques  used  in
processing  herbal  products  involve  the  use  of
extraction methods. Therefore, trends in extraction
methods  focus  mainly  on  finding  reasonable
solutions that minimize the use of  toxic  solvents
and allow the use of renewable and green solvents
from natural products that ensure high quality and
safe extracts. In the future, SFE is definitely going
to be on an industrial  scale due to its numerous
applications on a large scale, especially for herbal,
food, cosmetics, pharmaceutical products etc. Due
to  its  various  applications,  as  mentioned  in  this
research,  CO2 is  a vital  chemical  compound.  SFE
shows  diverse  advantages  over  conventional
solvents.  Also,  switchable  polarity  solvents  (SPS)
have shown excellent applications on an industrial
scale through switching one of their characteristics
from the non-polar form to the polar form simply
by  bubbling  CO2,  which  enables  complete
miscibility  and  ensures  the  extraction  of  the
bioactive components. However, there is a need for
more  development  and  transference  of  this
technique  into  the  micro  extraction  method  as
there  is  less  data  and  research  in  that  field.
Moreover,  NADES  show  unique  physicochemical
parameters  and  completely  satisfy  all  the
principles of a green solvent that can be used for
extracting  bioactive  compounds  from  herbal
materials,  due  to  their  low  environmental  and
economic  impacts.  However,  there  is  a  need  for
transferring this  technique to the industrial  scale
owing  to  the  meager  amount  of  research

conducted in the published technical literature that
is used on a large scale.

Finally,  the  need  for  the  identification,  analysis,
and  standardization  of  herbal  products  is  of
paramount  importance,  owing  to  their  significant
application  in  society  and  to  verify  fraudulence,
fraud, counterfeit, and adulteration.
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