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Abstract:  Coordination compounds with mixed ligands were synthesized with 2A group (Mg2+, Ca2+,
Ba2+,  Sr2+)  alkaline earth metal  cations of  coumarilic  acid and nicotinamide ligands.  Afterward,  the
structural  properties of these new molecules were investigated by melting point, elemental analysis,
infrared  spectroscopy,  thermal  analysis  (TGA  /  DTA)  curves,  powder  X-ray  diffraction  (P-XRD)
spectroscopy. It has been suggested that the complex structure with the Mg2+ metal center is different
from  the  other  three  structures.  In  this  structure,  it  was  determined  that  four  aqua  and  two
nicotinamide ligands were located in the coordination sphere, and the coordination number was six, as
expected.  With  two  monoanionic  coumarilic  acids  located  outside  the  coordination sphere,  complex
charge  equivalence  was  achieved.  The  other  three  molecules,  Sr2+  and  Ba2+,  have  iso-structural
properties, and it is suggested that both structures contain a dinuclear metal center, and two aqua
ligands are located in the bridging position between metal centers. Besides, the two coumarilate ligands
involved in coordination are thought to coordinate with the primary metal cation through carbonyl and
acidic oxygens while coordinating with the secondary metal cation through furan oxygen, providing the
third bridge connection between metal centers. Metal cations with nine coordination numbers complete
the coordination  sphere with two terminal aqua and one nicotinamide ligands, each included in the
structure. In the molecule with Ca2+ cation, which differs little from these metal cation structures, the
difference according to these structures can be interpreted as the coordination of furan oxygen with the
secondary metal center due to the octet coordination of the Ca2+ cation. From the thermal analysis
curves, it was determined that only the Mg2+ cation complex contained hydrate. As a result of thermal
decomposition, it was determined that relevant metal oxide residues remained in all structures, and this
situation was defined by powder XRD.
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INTRODUCTION

Furan,  benzofuran,  and  thiophene  are  aromatic
heterocyclic  molecules  that  have  been  widely
studied  by  chemists  and  biologists  (1).  A  wide
range  of  biological  activity  such  as  benzofuran
derivatives,  anticancer,  antimicrobial,  anti-
inflammatory,  antiviral,  anti-oxidant,  cytotoxic,

pesticidal,  HIV  and  enzyme  inhibitory  (2-6),
cardiovascular and antibacterial properties (7,8) is
presented.  Coumarilic  acid  with  benzofuran  ring
group (coumarin-2-carboxylic  acid,  benzo[b]furan
carboxylic  acid,  HCCA)  is  one  example  of  many
derivatives  of  the  coumarin  molecule.  It  is  a
functional ligand that shows binding properties to
monoanionic  monodentate  or  monoanionic
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bidentate  through  its  carboxylate  group.  It  has
pharmacophore properties over the benzo[b]furan
ring  in  the  structure  and  can  be  easily  isolated
from natural sources (9). Benzo[b]furan functional
ring and derivatives are found in different herbal
natural  food  sources  such  as  fruits,  herbs,  and
vegetables  (10).  It  is  also  one  of  the  main
component  molecules  of  drugs  (such  as
amiodarone  and  bergapten)  that  have  been
synthesized  recently  and  were  used  in  many
applications (11,12).  It  is  well  known that  many
heterocyclic compounds containing oxygen atoms
in  the  ring  chain  exhibit  important  biological
properties  such  as  antiarrhythmic,  spasmolytic,
antiviral,  anticancer,  antifungal,  and  anti-
inflammatory  activities  (13-19).  In  particular,
benzofuran  carboxylic  derivatives  are  applied  in
different  fields  such  as  biological,  electronic,
pharmaceutical,  and  agricultural  chemicals
(20,21).

Although  the  coordination  compounds  in  which
coumarilic acid uses metal cations as central atoms
exist  in  the  literature  (22-27),  the  number  of
studies  on  structural  characterizations  is  limited
(25,26,28). Whether the coumarilate ligand binds
as  a  monodentate  bridge  or  terminal  ligand  or
participates  in  coordination  as  a  bidentate
chelating ligand depends on the reaction conditions
and the type of metal cation (22-24, 28-31). The
synthesis  of  these  complexes  has  gained
importance due to the therapeutic properties of the
element copper against  common diseases  of  our
time  such  as  cancer,  Parkinson's,  Alzheimer's,
diabetes, and cardiovascular diseases (32-35). By
using the electrochemical synthesis method, pure
ligand complexes of coumarilic acid with Cu(II) and
Zn(II)  metal  cations  were  synthesized  and
structurally investigated. In addition, mixed ligand
complex  structures  of  Co(II),  Ni(II),  Cu(II),  and
Zn(II)  metal  cations  secondary  to  nicotinamide,
N,N-diethylnicotinamide,  and  1,10-phenanthroline
were  synthesized,  and their  structural  properties
were investigated. (36-41).

Coordination  compounds  of  alkali  and  alkaline
earth metal cations are preferred over transition or
lanthanide metal cations due to their cheap, water-
soluble, and non-toxic properties (42). Magnesium,
one of the alkaline earth metals, is known to play
an important role in various biological systems due
to its binding to proteins, complexing with anions,
and  free  availability  (43).  Magnesium  deficiency
may be an essential factor in the pathogenesis of
ischemic heart disease, cardiomyopathy, and some
arrhythmias  (43–47).  Coordination  compounds
containing alkaline earth metal cations have begun
to see considerable favor, especially in bioinorganic
chemistry (48). The coordination behavior of Mg2+

and Ca2+ metal cations has attracted the attention

of many studies because of the important role of
these  ions  in  biological  processes  (49-51).
Coordination occurs mainly through ion-dipole and
ion-induced dipole  interactions  that  contribute  to
binding. However, covalent interaction is possible
through  the  transfer  of  electron  density  from
bound  ligand  orbitals  to  empty  or  p-orbitals
(52,53).

 O

O

OH  

N

O

NH2
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Figure 1: Molecular formulas of ligands (a)
coumarilic acid, (b) nicotinamide.

In the report presented, coordination compounds
containing  2A  group  metal  cations  [Mg2+,  Ca2+,
Sr2+,  and  Ba2+]  coumarilic  acid  (Figure  1a)  and
nicotinamide  (Figure  1b)  ligands  of  the  periodic
table were synthesized.  The structural  properties
of the molecules obtained were characterized using
powder  X-ray  diffraction  (P-XRD),  UV-Vis
spectroscopy,  and  infrared  analysis  methods.
TG/DTG/DTA  curves  were  recorded  to  determine
the thermal behavior of molecules.

EXPERIMENTAL

Material and synthesis
(CH3COO)2Mg.4H2O (magnesium  acetate),
(CH3COO)2Ca.xH2O  (calcium  acetate),
(CH3COO)2Sr.½H2O (strontium  acetate),
Ba(CH3COO)2 (barium  acetate),  coumarilic  acid,
and  nicotinamide  used  in  the  synthesis  of  the
complexes were obtained from Sigma-Aldrich.

0.001  moles of  magnesium  acetate,  calcium
acetate,  strontium  acetate,  and  barium  acetate
were  taken  and  dissolved  in  30  milliliters  of
distilled water  and  transferred  to  flat-bottomed
flasks.  The  solutions  of  0.002  mol  of  coumarilic
acid prepared in 30 mL of ethyl alcohol and 0.002
mol of nicotinamide prepared in 30 mL of water
were  added separately  on them. These solutions
were  placed  in  the  distillation  apparatus  and
heated with stirring at a temperature between 70
- 80 °C for 5 hours. After the items were removed
from the setup, they were left on hold for a day.
Then  each  substance  was  taken  into  separate
beakers and placed in the heater, and the mixture
of 50 mL of water and 50 mL of ethyl alcohol was
added over time to evaporate the acetate. During
this process, the temperature was tried to be kept
between 70 – 75 °C. The beakers were then sealed
with a perforated paraffin film and allowed to stand
until  the  crystal  formed.  The  reaction  schemes
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showing  the  synthesis  mechanisms  of  the coordination compounds are shown in Scheme 1.
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Scheme 1: The synthesis reaction schemes of metal-coumarilate / nicotinamide mixed ligand complexes.

Elemental analysis
The  elemental  analysis  results  of  coordination
compounds with coumarilate – nicotinamide mixed
ligands of alkaline earth metal cations are given in
Table 1. 

Thermal Analysis
Thermal  analysis  curves  (TG,  DTG,  and  DTA)
showing the thermal behavior of the synthesized
alkaline  earth  metal  cations  of  mixed  ligand
coordination compounds containing coumarilate  /
nicotinamide  (Figure  2).  In  addition,  the  data
showing the thermal behavior of the complexes are
summarized in Table 2.

The DTG curve of the complex compound of the
Mg(II)  cation,  which is  one of  the coumarilate /
nicotinamide-containing mixed-ligand complexes of
the alkaline earth metal cations, was found to be
degraded  in  four  steps  corresponding  to  the
maximum temperatures of 125, 263, 428 °C and
575; 647; 758; 825 °C. 

As  the  first  degradation  step,  removing
uncoordinated hydrate in the structure occurred in
the temperature range of 85-147 °C (exp. 2.65%;
calc. 2.65%). Decomposition corresponding to the
maximum  temperature  step  at  125  °C  is
endothermic.

 
[Mg(C6H6N2O)2(H2O)4].2(C9H5O3).H2O

85-147OC
[Mg(C6H6N2O)2(H2O)4].2(C9H5O3) + H2O
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The second degradation step is still the dehydrated
degradation  step  and  takes  place  in  the
temperature range of 158-304  °C. At the 263  °C
DTA peak,  the  four  moles  of  coordination  water

remaining  in  the  coordination  sphere  in  the
endothermic  degradation  step  decay  away  (exp.
11.07%; calc. 10.58%).

 
[Mg(C6H6N2O)2(H2O)4].2(C9H5O3)

158-304OC
[Mg(C6H6N2O)2].2(C9H5O3) + 4 H2O

From  the  coordination  compound,  which  has
become  entirely  dehydrated,  in  the  third
degradation step, two moles of nicotinamide (na)
ligand in the structure burns and degrades in the
temperature  range  of  351-482  °C.  It  is  thought

that NO/NO2, CO/CO2, and H2O combustion gases
and vapors are formed as decomposition products
in  the  reaction  that  takes  place  at  428  °C
maximum  decomposition  step  endothermically
(exp. 34.97%; calc. 35.84%).

 
[Mg(C6H6N2O)2].2(C9H5O3)

351-482ºC
[Mg].2(C9H5O3) + 4 H2O+ NO/NO2 +CO/CO2

The  last  step  of  decay  can  be  attributed  to  the
separation of the two moles of coumarilate ligands
located  outside  the  coordination  sphere  as  the
stabilizing ion in the structure in the 485-908  °C
temperature region. Endothermic degradation has
DTA  peaks  at  575;  647;  758;  825  °C.
Experimental  and  theoretical  mass  losses  also
support  this  claim (exp.  44.11%; calc.  44.94%).

After this  decomposition step,  it  was determined
that  the  oxide  compound  of  the  corresponding
metal cation remained in the reaction vessel. The
fact that the color of the oxide is black instead of
white can be said to be caused by the carbonized
carbon remaining in the environment (exp. 7.20%;
calc. 5.92%). 

 
[Mg].2(C9H5O3)

351-482ºC
4 H2O+ +CO/CO2MgO

DTA  curve  of  the  coordination  compound  with
mixed  ligands  of  Ca  metal  cation  shows  that
decays occur in four steps, at 118, 254, -414 and
481;-688;708  °C  maximum  temperatures.  The
first degradation step is involved in the removal of
all  aqua ligands in the structure  (three moles of

aqua  at  the  two-molar  bridge  position  and  six
moles  of  aqua  ligands  in  total,  three  moles
attached  to  each  Ca  cation)  in  the  temperature
range 65-186  °C. These decays are endothermic
and occur at 118  °C maximum degradation step
(exp. 11.98%; calc. 12.94%).

 65-186ºC

+ 8 H2O
-(H2O)2[Ca(C9H5O3)(C6H6N2O)(H2O)3]2.2(C9H5O3)

[Ca(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

In  the  temperature  range  of  188-290  °C,  two
moles of neutral  nicotinamide ligands are located
in  the  coordination  sphere  at  a  maximum
degradation step of  254  °C burn away from the

structure  (exp.  21.93%;  calc.  21.92%).  It  is
thought that  NO/NO2,  CO/CO2, and H2O gas and
vapors are formed as combustion products.

 
188-290ºC

+ H2O[Ca(C9H5O3)]2.2(C9H5O3)[Ca(C9H5O3)(C6H6N2O)]2.2(C9H5O3) + +NO/NO2 CO/CO2

The degradation of the two moles of coumarilate
ligand,  which  is  located  outside  the  coordination
sphere  and  provides  the  charge  balance  of  the
structure  as  the  counter-ion,  occurs  in  the

temperature region of 343-424 °C, exothermic at a
maximum decomposition temperature of -414  °C
(exp. 28.72%; calc. 28.93%). 

 
343-424ºC

+ H2O[Ca(C9H5O3)]2[Ca(C9H5O3)]2.2(C9H5O3) +CO/CO2
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The  fourth  and  last  degradation  step  can  be
attributed  to  the  decomposition  of  two-mole
coumarilate ligands coordinated to the metal cation
inside  the  coordination  sphere.  Decomposition
occurs  in  the  temperature  range  of  427-905  °C
and at  maximum decomposition temperatures  of

481;  -688;  708  °C  provided  that  one  is
exothermic.  The  coherence  of  the  experimental
and calculated mass losses attributed to the decay
supports  the  claimed degradation  (exp.  25.82%;
calc. 26.06%).

 
[Ca(C9H5O3)]2 2CaO

427-905OC
+CO/CO2 +H2O

After  all  the  degradation,  the  remaining
decomposition product is two moles of CaO. The
black color of the expected decomposition product
in white color can be attributed to the carbonized
carbon remaining in the environment due to the
inability of complete combustion. This is supported
by the fact that the percentage of the experimental
residual  product  is  higher  than  the  calculated
percentage  (exp.  11.55%;  calc.  10.06%).  The
thermal  analysis  curves  of  the  Sr-centered

coumarilate/nicotinamide  compound  determined
that  six  degradation  steps  correspond  to  the
maximum decomposition temperatures of 85, 148
226, -229, -410; 470 and -742; 848 °C. The first
of  these  is  the  coordinated  four  molecule  aqua
ligand, coordinated at the terminal position to the
Sr  cations  in  the  compound  in  the  temperature
range  59-106  °C,  separated  from  the  structure
(exp. 5.83%; calc. 6.14%).

 59-106ºC

+ 4 H2O

-(H2O)2[Sr(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3)

-(H2O)2[Sr(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

In the next step of decay, it was determined that
the two molecule aqua ligands, which are bridging
between the two Sr atoms, which act as central

cations in the structure, were decomposed in the
108-192 °C temperature range in the 148 °C DTA
max. (exp. 2.72%; calc. 3.07%).

 108-192ºC

+ 2 H2O
-(H2O)2[Sr(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

[Sr(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

In the  next  degradation step,  it  was determined
that  the  two  molecule  aqua  ligands,  which  are
bridging  between  the  two  Sr  atoms,  were
decomposed in the 108-192 °C temperature range,
in  the  148  °C DTA maximum temperature  (exp.
2.72%;  calc.  3.07%).  In  the  subsequent
decomposition  stage  of  the  dehydrated  complex
starts  to  burn  organic  residues.  Comparing  the
experimental  and  calculated  mass  losses  (exp.

7.31%;  calc.  7.51%)  estimates  that  partial
combustion  of  the  nicotinamide  ligand  in  the
neutral position occurs primarily. The carbonyl and
amide functional groups of the nicotinamide ligand
form  NO/NO2,  CO/CO2, and  H2O  combustion
products and move away from the structure in the
195-282  °C temperature region, at the maximum
decomposition temperature of 226 °C.

 195-282ºC

+ H2O
[Sr(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

[Sr(C9H5O3)(C5H4N)]2.2(C9H5O3) NO/NO2+ CO/CO2+
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Table 1: Elemental analysis data of molecules.

Complex M.A.
(g/mol)

Yield
(%)

C% 
exp-(calc)

H% 
exp-(calc)

N% 
exp-(calc)

[Mg(C10H14N2O)2(H2O)4].2(C9H5O3).H2O  (I) 662.89 91 53.92-(54.36) 4.77-(4.56) 8.32-(8.45)
μ-(H2O)2[Ca(C9H5O3)(C6H6N2O)(H2O)3]2.2(C9H5O3) (II) 1113.07 90 51.33-(51.80) 4.71-(4.35) 4.97-(5.03)
μ-(H2O)2[Sr(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3) (III) 1172.13 87 48.77-(49.19) 3.92-(3.78) 4.84-(4.78)
μ-(H2O)2[Ba(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3) (IV) 1271.54 86 45.73-(45.34) 3.79-(3.49) 4.35-(4.41)
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Subsequent degradation has been attributed to the
burning  of  the  more  stable  pyridine  rings  of
nicotinamide ligands. In the temperature range of
372-403  °C,  in  the  exothermic  -299  °C

decomposition  step,  the  pyridine  rings  remove
from the structure by giving the combustion gases
and  vapors  of  NO/NO2,  CO/CO2, and  H2O  (exp.
13.51%; calc. 13.31%).

 372-403ºC

+ H2O
[Sr(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

[Sr(C9H5O3)]2.2(C9H5O3) NO/NO2+ CO/CO2+

The  combustion  reactions  taking  place  in  the
degradation  steps  in  the  temperature  range  of
404-685  °C,  one  exothermic  -410  °C,  and  the
other  endothermic  470  °C,  can  be  attributed  to
two  mole  stabilizing  coumarilate  anions  located

outside the coordination sphere. The compatibility
of experimental  and theoretical  results with each
other  also  supports  this  situation (exp.  26.92%;
calc. 27.47%).

 
404-685ºC

+ H2O[Sr(C9H5O3)]2.2(C9H5O3) [Sr(C9H5O3)]2+CO/CO2

The sixth and final degradation step is the step in
which  all  combustion  events  occur,  and  the
degradation  ends,  and  the  last  black-colored
molecule  of  SrO  remains.  The  coherence  of
experimental  and  theoretical  mass  losses  in  the
combustion  reaction  occurring  at  the  maximum
decomposition  temperatures  of  742  °C  and
endothermic  848  °C  in  the  687-891  °C
temperature region also supports this result (exp.
24.91%;  calc.  24.74%).  It  is  suggested  that

CO/CO2 and H2O combustion gas and vapors are
formed as combustion products. The fact that the
experimental  mass  amount  of  the  final  residual
product  is  slightly  higher  than  the  theoretical
amount  indicates  that  the  black  color  of  the
residual  product  is  due  to  carbonized  carbon
remaining  from  combustion  due  to  an  inert
nitrogen  environment  (exp.  18.80%;  calc.
17.68%).

 
687-891ºC

+H2O[Sr(C9H5O3)]2 2SrO+CO/CO2

Thermal  analysis  curves  of  the  coumarilate  /
nicotinamide complex of the Ba metal cation are
given  in  Figure  4.  Six  degradation  steps  were
observed  in  the  DTA  curve  at  maximum
decomposition  temperatures  of  86,  205,  333,  -
401, -417; 454; 617 and -707; -774; 842 °C. The
degradation  pattern  of  the  Ba  complex  is  very

similar to that of the Sr complex. The first decay
step  can  be  attributed  to  the  removal  of  the
coordinated four molecules of aqua ligand at the
terminal  position  to  the  Ba  cations  in  the
temperature  range  59-94  °C  (exp.  6.02%;  calc.
5.66%).

 

 59-94ºC

+ 4 H2O

-(H2O)2[Ba(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3)

-(H2O)2[Ba(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

The second degradation step is still the dehydrated
degradation step and belongs to the degradation of
the aqua ligands, which are the bridges connecting
the  two  Ba  cations,  which  takes  place  in  the

temperature  range  95-215  °C  with  a  maximum
decomposition temperature of 86 °C (exp. 3.04%;
calc. 2.83%).

 95-215ºC

+ 2 H2O

-(H2O)2[Ba(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

[Ba(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

It is thought that the neutral ligand, nicotinamide -
NH2 group,  leaves  the  structure  in  the  form  of

ammonia  gas  in  the  next  decaying step  of  the
dehydrated coordination compound, with the water
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removed from its  structure.  The  decomposition's
experimental  and  theoretical  mass  losses  in  the
temperature  range of  217-384 °C are consistent

with  this  fragmentation  (exp.  2.42.04%;  calc.
2.52%).

 217-384ºC

+ H2O
[Ba(C9H5O3)(C6H6N2O)]2.2(C9H5O3)

[Ba(C9H5O3)(C6H3NO)]2.2(C9H5O3) + CO/CO2+2 NH3

The  subsequent  degradation  belongs  to  the
combustion  reaction  of  the  remaining  parts  of
nicotinamide  ligands,  leaving  the  structure  by
forming NO/NO2,  CO / CO2, and H2O combustion

products. In the temperature range of 385-407 °C,
in the exothermic -401 °C degradation step,  the
nicotinamide  residue  burns  completely  (exp.
16.52%; calc. 16.67%).

 
385-407ºC

+H2O[Ba(C9H5O3)(C6H3NO)]2.2(C9H5O3) [Ba(C9H5O3)]2.2(C9H5O3)+ CO/CO2+ NO/NO2

The degradation continues with the combustion of
the coumarilate anions in the counter-ion position
outside  the  coordination sphere,  among the four
molecule  coumarilate  ligands,  which  are  organic
residues in the structure. In the temperature range

of  408-580  °C,  one  exothermic  -410  °C,  others
endothermic 454; 617 °C decomposition products
are formed as a result of the combustion reactions
that  take  place  in  the  decomposition  steps
(exp.25.22%; calc. 25.33%).

 
408-580ºC

+H2O[Ba(C9H5O3)]2.2(C9H5O3) [Ba(C9H5O3)]2+CO/CO2

The final degradation step of the thermal analysis
of the complex occurs in the temperature region of
585-880 °C,  while  it  takes  place  in  three steps,
two  exothermic  -707;  -774  °C  and  the  other
endothermic 842 °C. After all the combustion and
disintegration  processes,  it  was  determined  that
25.21%  BaO  residue  remained  in  the  reaction
vessel as the final product. The fact that this value
is slightly higher than the theoretically calculated

residual  value  (24.12%)  is  that  complete
combustion  cannot  occur  by  conditioning  the
reaction  medium  with  inert  nitrogen  gas  to
determine  the  disintegration  steps  more  clearly
since complete combustion could not  take place,
some carbon residue accumulated on the surface
of the metal oxide as carbonized coal, which can
be interpreted as the reason for the expected black
color of the residual metal oxide.

 
585-880ºC

+H2O[Ba(C9H5O3)]2 2BaO+CO/CO2
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Infrared spectroscopy
FTIR  stretching  modes  of  the  coumarilic
acid/nicotinamide complexes of alkaline earth metal
cations  are  given  in  Figure  3,  and  the  important
band stretching modes of the FT-IR spectra of the
compounds are summarized in Table 4.

When FTIR  spectra  of  alkaline  earth  metal  cation
complexes  with  mixed  ligands  containing
coumarilate  /  nicotinamide  ligands  are  examined,
the resulting strong and broadband 3680-2850 cm-1

indicates  the  presence  of  -OH  group  in  the
structures of the coordination compounds. The Mg
metal  cation  complex  is  salt  type,  and  the
coumarilate  ligands  are  located  outside  the
coordination  sphere.  In  other  structures,
coumarilate  ligands  entered  the  coordination
sphere.  Accordingly,  different  FTIR  peaks  were
observed  in  the  Mg  cation  mixed  ligand  complex
from other structures.  While the peak of the C=O
stress vibration of the carboxylic acid group in the
Mg  complex  is  observed  at  1663  cm-1,  it  is  also
understood from the difference between asymmetric
and  symmetrical  stress  vibrations  that  the  same
group  is  monodentately  coordinated  (ν(C=O)asym.-
ν(C=O)sym.: 1562 cm-1 - 1441 cm-1 = Δνasym-sym: 121
cm-1).  In  other  complexes,  the  bonding  is  of
bidentate  fashion,  and  the  differences  between
asymmetric  and  symmetrical  stress  vibrations  are
found to be greater than the difference (130 cm-1)

between the coumarilic acid's own asymmetric and
symmetrical stress vibrations (170 cm-1 for complex
II, 142 cm-1 for complex III, 160 cm-1 for complex
IV respectively). The appearance of both the N-H
peaks of the nicotinamide ligand and the fact that
the peaks of the carbonyl group of the amide group
do  not  show  any  shift  compared  to  the  pure
nicotinamide ligand can be considered as evidence
that this ligand participates in the coordination via
the  characteristic  pyridine  nitrogen.  The  peaks
belonging  to  the  coordination  of  the  ligands  are
generally the peaks indicating the attachment to the
metal  center.  In  contrast,  three  different
coordination is observed in the Mg complex, which is
different  from the other compounds (649 cm-1  for
ν(M–N), 559 cm-1 ν(M–O–)carboxyl, and 425 cm-1 for
ν(M–O)aqua),  while  in  the  other  three  cation
complexes,  four  different  coordination  with  the
metal was observed due to the carboxylate group
oxygens that show bidentate bonding. The stresses
belonging to these coordinations have been found
for  the  Ca  complex  ν(M–N)  is  646  cm-1, ν(M–
O–)carboxyl is 581 cm-1,  ν(M–O=)carbonyl 535 cm-1 and
ν(M–O)aqua  427 cm-1; for the Sr complex  ν(M–N) is
617 cm-1, ν(M–O–)carboxyl is 578 cm-1, ν(M–O=)carbonyl

526  cm-1 and  ν(M–O)aqua  445  cm-1;  for  the  Ba
complex  ν(M–N) is 669 cm-1, ν(M–O–)carboxyl is 581
cm-1,  ν(M–O=)carbonyl 526 cm-1 and  ν(M–O)aqua  426
cm-1.
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Figure 2: Thermal analysis curves of metal-coumarilate / nicotinamide mixed ligand complexes. (a) Mg2+

complex, (b) Ca2+ complex, (c) Sr2+ complex and (d) Ba2+ complex.

Powder x-ray diffraction analysis
It  has  been  determined  that  all  of  the  molecules
whose powder X-ray diffraction patterns are formed
have  good  crystallinities  (Figure  4).  However,
single-crystal structure analysis could not be made
due to  the  small  size  of  the  crystals  selected for
single-crystal  structure  analysis.  The  apparent
difference in the powder x-ray diffraction pattern of

the Mg2+ cation-centered complex from that of the
other  three  complexes  supports  this  molecule's
proposed salt structure claim. The general similarity
of  powder X-ray diffraction patterns in Ca2+,  Sr2+,

and  Ba2+-centered  structures  strengthens  the
suggestion  that  these  three  structures  are  iso-
structural with each other.
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Table 2: Thermal analysis data of metal-coumarilate / nicotinamide mixed ligand complexes.

Complexes Temp.
Range
(˚C)

DTAmax 

(˚C)
Removed
Groups

Mass Loss 
(%)

Remaining
Product (%)

Decomp.
Product

Color

Exp. Calc. Exp. Calc.
[Mg(C6H6N2O)2(H2O)4].2(C9H5O3).H2O Pink

C30H30MgN4O12 1 85-147 125 H2O 2.65 2.65
662.89 g/mol 2 158-304 263 4 H2O 11.07 10.58

3 351-482 428 2 C6H6N2O 34.97 35.84

4 485-908
575, 647, 758,

825
C9H5O2; C9H5O3 44.11 44.94 7.20 5.92 MgO Black

μ-(H2O)2[Ca(C9H5O3)(C6H6N2O)(H2O)3]2.2(C9H5O3) White
C48H48Ca2N4O22 1 65-186 118 8 H2O 11.98 12.94

1113.07 g/mol 2 188-290 254 2 C6H6N2O 21.93 21.92
3 343-424 -414 2 C9H5O3 28.72 28.93
4 427-905 481, -688, 708 2 C9H5O2 25.82 26.06 11.55 10.06 2 CaO Black

μ-(H2O)2[Sr(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3) Blue
C48H44N4O20Sr2 1 59-106 85 4 H2O(terminal) 5.83 6.14

1172.13 g/mol 2 108-192 148 2 H2O(bridge) 2.72 3.07
3 195-282 226 2 C2H2NO 7.31 7.51
4 372-403 -299 2 C5H4N 13.51 13.31
5 404-685 -410, 470 2 C9H5O3 26.92 27.47
6 687-891 -742, 848 2 C9H5O2 24.91 24.74 18.80 17.68 2 SrO Black

μ-(H2O)2[Ba(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3) White
C48H44Ba2N4O20 1 59-94 86 4 H2O(terminal) 6.02 5.66

1271.54 g/mol 2 95-215 205 2 H2O(bridge) 3.04 2.83
3 217-384 333 2 NH3 2.42 2.52
4 385-407 -401 2 C6H4NO 16.52 16.67
5 408-580 -417, 454, 617 2 C9H5O3 25.22 25.33
6 585-880 -707, -774, 842 2 C9H5O2 21.57 22.81 25.21 24.12 2 BaO Grey
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CONCLUSIONS

This  study  was  presented  as  a  master's  thesis,
complex  compounds  with  coumarilic  acid  /
nicotinamide mixed ligands of magnesium, calcium,
strontium,  and  barium  cations  are  alkaline  earth
metal cations, were synthesized. Elemental analysis,
Fourier  transform  infrared  spectroscopy  (FTIR),
thermogravimetric  analysis  (TGA/DTA),  powder  x-
ray diffraction diffractometer (P-XRD), and melting
point determination methods were used to examine

the structural characterization of the complexes. It
was determined that compounds with mixed ligands
were 1:2:1 except for the Mg complex. In the Mg
complex,  the  ratio  was  determined  as  1:2:2.
Molecular formulas of the compounds determined to
contain  water  in  their  structures  according  to
thermal  analysis  curves  and  infrared  spectra  are
proposed  as  follows  by  chemical  composition
analysis. 

(I) [Mg(C6H6N2O)2(H2O)4].2(C9H5O3).H2O C30H30MgN4O12

(II) μ-(H2O)2[Ca(C9H5O3)(C6H6N2O)(H2O)3]2.2(C9H5O3) C48H48Ca2N4O22

(III) μ-(H2O)2[Sr(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3) C48H44N4O20Sr2

(IV) μ-(H2O)2[Ba(C9H5O3)(C6H6N2O)(H2O)2]2.2(C9H5O3) C48H44Ba2N4O20

Table 3:  FT-IR spectral data of metal-coumarilate / nicotinamide mixed ligand complexes.
Groups Mg2+ Ca2+ Sr2+ Ba2+

ν(OH)H2O 3500-3100 3550-2850 3670-3000 3680-3000
ν(N-H)amide 3358, 3198 3354, 2850 3498, 3180 3423, 3175
ν(=C–H)ar 3252 3257 3280 3280
ν(C=C)ar 3061 3061, 3081 3058, 3001 3061, 3011
ν(CH2) 2910, 2825 2850, 2885 2924, 2872 2928, 2866
ν(C=O)carbonyl 1663 1657 1643 1649
ν(C=O)amide 1705 1709 1699 1697
ν(COO-)asym. 1562 1566 1552 1572
ν(COO-)sym. 1441 1396 1410 1412
Δνas-s 121 170 142 160
δ(OH)H2O 1474 1467 1474 1474
ν(C-N-C)pyridine 1328 1334 1337 1337
ν(C9-O1-C1) 1259/1184 1262/1178 1259/1178 1262/1181
ν(C-O)carboxyl 1298 1295 1305 1308
ν(Ring) 1106-816 1125-812 1109-835 1109-835
ν(C-N)amide 943-741 943-744 943-741 943-741
ν(M-N) 649 646 617 669
ν(M-O–)carboxyl 559 581 578 581
ν(M-O=) - 535 526 526
ν(M-O–)aqua 425 427 445 426
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Figure 3. FT-IR spectra of the complex structures I, II, III and IV.
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Figure 4: P-XRD patterns of the complex structures Mg2+, Ca2+, Sr2+, and Ba2+.

The images of the synthesized complexes taken with
light microscopy were given in Figure 5. The Mg2+

complex  is  salt-type,  and  the  coumarilate  ligands
are  located  outside  the  coordination  sphere.  In
other  structures,  coumarin  ligands  entered  the
coordination sphere. Accordingly,  different infrared
peaks  were  observed  in  the  Mg2+ cation  mixed
ligand  complex  from  other  structures.  The
appearance  of  both  the  N-H  peaks  of  the
nicotinamide ligand and the fact that the peaks of
the carbonyl group of the amide group do not show
any shift compared to the pure nicotinamide ligand
can  be  considered  as  evidence  that  this  ligand
participates in the coordination via the characteristic
pyridine nitrogen. The coordination of the ligands is
generally  supported  by  infrared  peaks  that  signal
their  bonding  to  the  metal  center.  While  three
different  coordination  is  observed  in  the  Mg2+

complex, which is different from other compounds in
its  structure,  in  the  other  three cation complexes
(Ca2+,  Sr2+, and  Ba2+),  the  infrared  peak  of  four
different  coordination  with  the  metal  has  been
determined due to the carboxylate group oxygens
showing  bidentate  bonding.  Thermal  degradation
analysis  of  the  coordination  compounds  of  the

synthesized alkaline earth  metal  cations has been
interpreted in detail in the thermal analysis section.
The  degradation  steps  started  with  removing
hydrate  waters  located  outside  the  coordination
sphere and continued with the decay of the terminal
waters located within the coordination sphere. The
complete dehydration of the complexes ended with
the  departure  of  the  aqua  ligands,  which  were
bridging between the two metal cation centers, from
the structures.  The degradation of organic ligands
started with the decomposition of the neutral ligand,
nicotinamide, and then continued with the burning
of  the  coumarilic  acid  ligands.  The  cleavage
sequence  of  coumarilic  acid  ligands  showing  two
different types of binding in the complexes was also
noticed. First of all, the coumarilate ligands acting
as  the  stabilizing  anion  of  the  complexes  located
outside the coordination sphere have been removed.
Afterward,  the  degradation  of  the  coumarilate
ligands that  provide  bidentate  coordination to  the
metal in the coordination sphere was observed. It
was  determined  that  oxide  compounds  of  the
respective metals remained in the reaction vessel as
the final products of all thermal degradation.
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Figure 5: Light microscopic images of the synthesized complexes. (a) Mg2+ complex, (b) Ca2+ complex, (c)
Sr2+ complex and (d) Ba2+ complex.
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