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Abstract

Meta-heuristic optimization algorithms are used in many application areas to solve opti-
mization problems. In recent years, meta-heuristic optimization algorithms have gained
importance over deterministic search algorithms in solving optimization problems. How-
ever, none of the techniques are equally effective in solving all optimization problems.
Therefore, researchers have focused on either improving current meta-heuristic optimization
techniques or developing new ones. Many alternative meta-heuristic algorithms inspired
by nature have been developed to solve complex optimization problems. It is important to
compare the performances of the developed algorithms through statistical analysis and deter-
mine the better algorithm. This paper compares the performances of sixteen meta-heuristic
optimization algorithms (AWDA, MAO, TSA, TSO, ESMA, DOA, LHHO, DSSA, LSMA,
AOSMA, AGWOCS, CDDO, GEO, BES, LFD, HHO) presented in the literature between
2021 and 2022. In this context, various test functions, including single-mode, multi-mode,
and fixed-size multi-mode benchmark functions, were used to evaluate the efficiency of the
algorithms used.

1. Introduction

Optimization has received more attention in recent years, and various new optimization methods have been developed [1–15].These newly
discovered techniques are applied to real-world challenges. An optimization problem is about finding the optimal answer from a collection
of possible solutions. The main goal of optimization is to find selection variables that lead to the minimization or maximization of an
objective function. These problems are classified as constrained or unconstrained, discrete or continuous, static or dynamic, and single-or
multi-objective. Most real-world problems are nonlinear, incur significant computational costs, and have many complicated solution spaces.
For this reason, several researchers have proposed optimization techniques to solve these problems, often referred to as mathematical
programming approaches or meta-heuristic methods. Therefore, solving problems with a large number of variables and constraints is very
challenging. Since most traditional optimization techniques are based on classical mathematical and probabilistic assumptions, they are not
able to provide useful answers to the increasingly complicated optimization problems of recent years. Often, basic optimization problems
can be effectively solved using traditional optimization approaches such as mathematical programming. However, solving real-world
engineering optimization problems using classical optimization methods is very difficult. Therefore, several researchers [16–24] have
proposed novel solution strategies, called meta-heuristic algorithms, to solve difficult optimization problems within reasonable time and cost.
Most conventional optimization approaches are based on classical mathematics and probabilistic assumptions that cannot provide useful
answers to emerging, complicated optimization problems. Meta-heuristics, which have gained popularity among researchers due to their
numerous advantages over conventional optimization strategies, have a number of advantages over conventional optimization strategies,
including their simplicity, non-differentiation, adaptability, and avoidance of local optima [25]. The main advantage of these techniques over
conventional optimization methods is that they are able to solve optimization problems without requiring gradient information. Moreover,
they can be adapted to a variety of working situations. The efficiency and effectiveness of meta-heuristic optimization algorithms in
addressing known constrained mathematical and engineering design problems is one of their main advantages. Evolutionary algorithms,
physics-based algorithms, swarm intelligence algorithms, and human-based algorithms are the four types of meta-heuristic algorithms [26,27].
Table 1.1 shows some of the optimization algorithms presented in the literature between 2021 and 2022 that were investigated in this study.
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Algorithms Year
Artificial Water Drop Algorithm (AWDA) [28] 2022
Mexican Axolotl Optimization (MAO) [3] 2022
Tunicate Swarm Algorithm (TSA) [2] 2022
Tuna Swarm Optimization (TSO) [1, 8] 2022
Equilibrium Slime Mould Algorithm (ESMA) [8, 26] 2021
Dingo Optimization Algorithm (DOA) [29] 2021
Leader Harris hawks optimization (LHHO) [5, 30] 2021
Differential Squirrel Search Algorithm (DSSA) [9, 10] 2021
Leader Slime Mould Algorithm (LSMA) [31] 2021
Adaptive Opposition Slime Mould Algorithm (AOSMA) [32] 2021
Hybrid Augmented Grey Wolf Optimizer & Cuckoo Search (AGWOCS) [33, 34] 2021
Child Drawing Development Optimization Algorithm (CDDO) [34] 2021
Golden Eagle Optimizer (GEO) [35] 2021
Bald eagle search Optimization algorithm (BES) [14] 2021
Lévy Flight Distribution (LFD) [6] 2021
Harris hawks optimization (HHO) [36] 2021

Table 1.1: Optimization algorithms

In this study, the performance of some meta-heuristic algorithms, listed in Table 1.1, was evaluated using a series of test functions. These are
meta-heuristic algorithms inspired by the behavior of natural organisms. Meta-optimization is the process of optimizing the performance
of an algorithm by changing its parameters. This strategy not only increases the efficiency of the algorithm, but also allows us to better
understand how the algorithm responds to different types of challenges. These techniques fall into two broad categories: offline and
online. Offline techniques specify the parameter settings of the algorithm before execution and work with a training set as an example.
Offline approaches work well when the selected examples have the same structure as the other examples in the training set. However, these
approaches may fail if the class of instances is heterogeneous. This is because finding the appropriate parameter settings for each class of
instances takes a lot of time in this case. Online approaches, on the other hand, collect feedback and try to determine the optimal parameter
values while the algorithm is solving a problem scenario. These approaches reduce computation time by trying to find the parameter settings
while the algorithm is running. Although several optimization methods have been proposed in the literature, no algorithm is able to provide
the optimal answer to all optimization questions [37]. As a result, the established optimization techniques and the field of new meta-heuristic
optimization algorithms are constantly being improved through innovations and further developments. By evaluating the success of newly
developed meta-heuristic optimization algorithms and comparing them with previously published algorithms, new studies on improving
existing optimization algorithms or developing new optimization algorithms based on successful algorithms are added to the literature on a
daily basis. In this context, Artificial Water Drop Algorithm [28], Mexican Axolotl Optimization: a novel bio-inspired heuristic [3], Tunicate
Swarm Algorithm [2], Tuna Swarm Optimization [1, 8], Equilibrium Slime Mould Algorithm [8, 26], Dingo Optimization Algorithm [29],
Leader Harris hawks optimization [5], Differential Squirrel Search Algorithm [9, 10], Leader Slime Mould Algorithm [31], Adaptive
Opposition Slime Mould Algorithm [32], CLA- New Meta-Heuristic Algorithm [38], Hybrid Augmented Grey Wolf Optimizer and Cuckoo
Search [33, 34], Child Drawing Development Optimization Algorithm [34], Golden Eagle Optimizer [35], Bald eagle search Optimization
algorithm [14], Chimp Optimization Algorithm [39], Lévy Flight Distribution [6] and Harris hawks optimization [36] are some of them.
This paper compares the performances of sixteen meta-heuristic optimization algorithms presented in the literature between 2021 and 2022.
Various test functions, including single-modal, multi-modal and fixed-size multi-modal comparison functions, have been used to evaluate the
effectiveness of the algorithms used in this context.
The rest of the article is structured as follows: Section 2 describes the methodology and mathematical framework of the benchmark functions;
Section 3 presents the experimental results. Finally, section 4 presents the conclusion.

2. Methodology

An important aspect of testing and validating a new algorithm is comparing it to existing algorithms that use benchmark functions. This
type of bench-marking is also crucial to better understand the advantages and weaknesses of the algorithm. Typically, the new technique is
evaluated against a set of test functions that ideally have different properties such as mode shapes. However, these bench-marking methods
suffer from a crucial weakness. Although it is a comparative function, it is rarely used in practice. There are several reasons for this.
While real-world scenarios are much more complex and different than these test items, an explanation is usually well thought out and
concise. Another problem is that these test functions often use unconstrained or regular fields, whereas in the real world, non-linear, complex
constraints often apply, and the field may contain multiple isolated partitions or islands. The functions used to compare the performances of
the algorithms discussed here are detailed below.

2.1. Mathematical framework of benchmark functions

The following functions are among the most used for evaluating optimization strategies. They are categorized based on their basic physical
properties and shapes (see Table 1.1). Uni-modal, Multi-modal and Fixed-dimension multi-modal benchmark test functions were used in this
study. In Table 2.1, D indicates the size of the function, Range is the variation range of the optimization variable, and Fmin is the minimum.
Twenty-three test functions were used to evaluate the performance of the sixteen algorithms considered in this study. Figure 2.1, Figure 2.2,
and Figure 2.3 show two-dimensional (2D) views of the different functions.
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Table 2.1: A mixture of uni-modal, multi-modal, and fixed-dimension multi-modal benchmark functions.

Figure 2.1: 2-D version of uni-modal benchmark function.
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Figure 2.2: 2-D version of multi-modal benchmark function

Figure 2.3: 2-D version of fixed-dimension multi-modal benchmark function
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3. Experimental Results

In this section, we demonstrate the effectiveness of the algorithm used for 23 commonly used uni-modal, multi-modal and fixed-dimensional
multi-modal bench-marking functions using qualitative metrics such as best, worst, mean, standard deviation and median scores. Table 2.1
illustrates these functions with category representations of three mathematical functions. Figure 2.1, Figure 2.2, and Figure 2.3 also represent
two-dimensional shapes. The first group includes functions with a single solution path (F1-F7), which have a single ideal solution and are
intentionally difficult to use. The second group includes functions (F8-F13) that have many optimal solutions. While the local optimal
solutions are used in these functions to evaluate the algorithm’s exploration performance, an algorithm must be able to search the space
globally to find the global optimum and avoid being trapped in the local optimum. The third group contains multi-modal functions with fixed
dimensions (F14-F23), which are similar to multi-modal functions but have fixed dimensions. The dimensions of these functions, as well as
the constant coefficients used in this work, are accessible in [40, 41]. For each test category, 30 particles with 500 iterations were used. Each
function was run 30 times and its average values were used for a fair evaluation. Table 3.1 shows how the parameters of each algorithm are
configured.

Algorithms Parameter Value

For all algorithms Population 30
Maximum Iterations 500

AGWOCS Control Parameter (a) [2 1]

AOSMA Control Parameter (a, b)
[1 3]

[1 0]

AWDA
diffusion factor(pp) 0.1
upper limit 5
lower limit 2

BES Control parameter (a) [1.5 2]
Control parameter (r) [0 1]

CDDO
child level rate(LR) 0.01
Child skill rate(SR) 0.9
Creativity Rate (CR) 0.1

CLA

alpha 0.85
zeta 0.6
pConf 0.25
mu 0.05

DOA Hunting or Scavenger rate (p) 0.5
Group attack or persecution (Q) 0.7

DSSA

Gliding constant (Gc) 1.9;
Crossover rate (Cr) Cr=0.5;
Random gliding distance (dg) dg=0.8;
Predator presence probability(Pdp) Pdp=0.1;

ESMA adjustable param (q) 0.2
vectors of random numbers in the range (r, λ ) [0 1]

GEO Propensity to attack (pa) [0.5 2]
Propensity to cruise (pc) [1 0.5]

HHO

escaping energy (E0) [-1 1]
are random number (q) [0.5 0.5]
Harris Hawks Number 30
β 1.5
E0 variable ε [-1, 1]

LFD

Search agents 30
Threshold 2
CSV 0.5
β 1.5
α1 10
α2 0.00005
α3 0.005
∂1 0.9
∂2 0.1

LHHO
Harris Hawks Number 30
β 1.5
E0 variable ε [-1, 1]
Entropic parameter (r) 0.5

LSMA N 20
z 0.03

MAO

CrossOver Probability (cop) 0.5
damage probability(dp) 0.5
regeneration probability (rp) 0.1
tournament size (k) 3
differentiation constant (λ ) 0.5
Search agents 30

TSA Parameter Pmin 1
Parameter Pmax 4

TSO a 0.7
z 0.05

Table 3.1: Algorithm parameter settings
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The results of the performance comparison are shown in Table 3.2 for uni-modal, Table 3.3 for multi-modal and Table 3.4 for multi-modal
fixed dimensions. Due to the stochastic nature of meta-heuristic algorithms, the results of two consecutive runs often do not match. Since
we performed many independent experiments with each method, the average values of the results for each function are tabulated. The
experiments were conducted in MATLAB 2021a on an Intel Core i7, with 16 GB RAM and in a Windows 10 environment. The algorithms
of each benchmark function were run 30 times under the same conditions. The tables contain statistical data in the form of best value, worst
value, median value, mean value and corresponding standard deviation.

Algorithms F1 F2 F3 F4 F5 F6 F7

AGWOCS
Best 3.3506e-49 1.6539e-30 1.2297e-12 3.6704e-15 0.029243 0.0021407 1.7915e-06
Mean 0.25209 0.0016347 2.0228 0.0031702 130.791 0.25954 7.0832e-05
Std 1.14 0.0060045 5.5347 0.0081379 735.3995 1.1485 0.0002045

AOSMA
Best 0 0 0 0 0.0051288 3.6623e-06 2.7551e-06
Mean 5.5695 52.0231 75.962 0.045495 17156.5852 4.7483 0.013632
Std 92.779 45.0205 349.9254 0.21304 354706.9755 103.5421 0.24843

AWDA
Best 0.11767 0.00095195 1.0586 0.015044 6.0371 0.031703 7.2871e-05
Mean 1.8643 0.016292 3.8985 0.028343 1045.6344 1.9835 0.0006933
Std 2.8366 0.032433 2.1564 0.010301 2800.0147 2.8459 0.0014098

BES
Best 0 0 0 0 0.65699 3.9129e-21 2.3361e-06
Mean 1.1926e-15 6.1888e-10 2.9025e-08 2.5315e-09 0.79875 0.0076214 8.3538e-06
Std 2.6668e-14 1.3839e-08 6.4902e-07 5.6606e-08 0.087603 0.029749 2.9198e-05

CDDO
Best 2.1644e-60 1.4406e-171 0 1.7792e-173 0.9624 0.052593 2.653e-05
Mean 1.2876 0.0033599 8.7454 0.0058665 2015.8209 1.406 0.00036195
Std 9.7277 0.042286 143.1281 0.075178 44221.5524 26.4666 0.0038432

DOA
Best 1.1469e-148 4.477e-124 8.6369e-219 4.6275e-164 0.96158 0.18751 3.7285e-05
Mean 7.157 16322776.9037 21.7977 0.013491 20147.9618 5.993 0.010845
Std 114.5315 365353138.5064 347.2062 0.16287 448149.7826 96.0457 0.17488

DSSA
Best 0 2.5337e-184 2.4815e-233 1.2598e-173 0 0 3.8027e-05
Mean 12.7504 4122824.3096 29.7994 0.025507 37561.7976 16.4352 0.020802
Std 167.4216 65122224.9887 382.15 0.26481 483778.2616 180.258 0.25229

ESMA
Best 0 5.2536e-256 0 3.6113e-247 0.0081807 3.7081e-05 6.4925e-06
Mean 13.8772 228481.2873 53.2054 0.0089188 15700.6462 5.6668 0.010327
Std 176.0067 5108996.7524 486.9561 0.12994 350975.4737 102.2555 0.20037

GEO
Best 5.6973e-27 4.9817e-32 2.5913e-24 2.115e-20 3.6978e-33 1.0374e-32 1.2008e-3
Mean 0.000979 0.0002412 4.9683e-05 0.00011026 0.00020344 0.00072641 0.00031885
Std 0.0069597 0.00077319 0.00013601 0.00060643 0.0016597 0.0046885 0.0022391

HHO
Best 3.2657e-114 1.3239e-56 9.4819e-94 2.6659e-52 0.00029177 2.1529e-05 1.4017e-05
Mean 7.1772 517294.4506 27.5972 0.015173 19452.9728 6.4293 0.01276
Std 121.1378 11567055.3729 329.9414 0.1707 386839.017 116.7763 0.20452

LFD
Best 1.0547e-08 0.00052114 2.5953e-07 2.2107e-05 1.6065 0.081866 0.00016718
Mean 25.1795 2.4779605994158 213.2922 0.041412 86637.4102 23.6023 0.071877
Std 295.4489 5.5404824897375 1880.1345 0.31196 1142071.398 252.4117 0.73438

LHHO
Best 4.0603e-161 4.1437e-80 1.0195e-112 1.6601e-80 4.0084e-06 4.8004e-08 1.0863e-06
Mean 2.4816 219.2769 5.6402 0.0065608 668.1418 0.86073 0.00065924
Std 52.2959 4903.0323 73.9713 0.094363 14709.5343 16.1954 0.012678

LSMA
Best 0 0 0 6.0899e-320 0.0056562 5.9639e-05 1.9479e-06
Mean 8.1105 74.5910 384.4104 0.018095 18847.2574 6.626 0.0067008
Std 125.5814 16.6790 1203.5107 0.17735 358882.8341 112.3465 0.12339

MAO
Best 13.7968 0.15669 31.1561 0.55386 96.4628 9.8023 0.0017507
Mean 87.4892 416.7457 154.6912 1.0213 119163.5785 72.2031 0.024319
Std 162.0843 5648.4623 306.2596 0.64014 448476.2389 157.1719 0.09077

TSA
Best 1.301e-202 1.8046e-103 1.5165e-185 1.8193e-92 0.955 0.20092 1.1951e-05
Mean 7.3101 88640985.7881 9.4265 0.018317 21884.5316 8.1195 0.013698
Std 114.2715 1982072697.8507 163.5931 0.19395 418587.6844 117.503 0.25689

TSO
Best 2.1705e-257 5.4605e-128 3.9708e-224 9.279e-118 0.03069 1.9959e-05 2.737e-05
Mean 19.8437 4187.2582 82.5075 0.018975 26214.3009 14.8457 0.014592
Std 151.2259 93628.9913 490.0847 0.18541 489293.5139 145.0812 0.19667

Table 3.2: The results of benchmark functions with uni-modality, (D= 30, Max it=500)

Table 3.2 shows the convergence of the algorithms used. In this step, the performance of the algorithms was evaluated against the benchmark
functions in which they were run. In this evaluation step, the initial population number was assumed to be 30 and the iteration number was
assumed to be 500. Figure3.1 shows convergence plots of uni-modal benchmark functions. In the evaluation algorithm, the solutions tend
to search extensively for promising regions of the search spaces and exploit the optimal point. In these uni-modal model functions, it is
observed that there is an effective balance between exploration and exploitation so that the solutions move toward the optimal point. In
the initial steps, a repetition of sudden changes can be observed, which gradually decreases as the iteration progresses. The convergence
behavior of an algorithm at a point in the search space leads to solution fitness. The convergence diagram of solution fitness is shown in
Figure 3.1. The graphs show decreasing behavior across all test functions. They show that the approximate optimum significantly improves
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the point at all iterations. Figure 3.1−Figure3.4 shows the convergence plot of 23 functions compared to different algorithms (16 algorithms).
Those that can reach the point of global optimum (0) with high performance in functions F1-F7 of the algorithms.

Figure 3.1: Convergence curves of the algorithms on F1–F7

Table 3.3 evaluates the convergence of the algorithms. The performance of the algorithms is tested at this stage using the multi-modal
(F8-F13) benchmark functions. The initial population is 30 and the number of iterations in this evaluation stage is 500. The consistency
diagrams for multi-modal benchmark functions are shown in Figure 3.2. It was found that there is an efficient balance between search and
utilization for these multi-modal model functions, which ensures that the solutions approach the optimal point. The initial phases show a
pattern of dramatic shifts that diminishes as the iteration progresses. At a certain point in the search space, the convergence behavior of an
algorithm leads to solution fitness. For all test functions, the graphs show decreasing convergence.
Table 3.4 shows the convergence performance of the fixed-dimension multi-modal algorithms (F14-F23) in this phase. In this evaluation
phase, the initial population is 30 and the number of iterations is 500. The consistency diagrams for fixed-dimension multi-modal benchmark
functions are shown in Figure3.3. The early phases show a pattern of dramatic shifts that decrease as the iteration progresses. The diagrams
show decreasing convergence for all test functions. The convergence plots for functions F14-F23 are shown in Figure 3.3.
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Multimodal benchmark functions
Algorithms F8 F9 F10 F11 F12 F13

AGWOCS
Best -7.8365 0 8.8818e-18 0 0.00010519 0.00092445
Mean -7.3794 0.041007 0.00097152 0.0027997 1.3831 220.9848
Std 0.24301 0.082966 0.0027633 0.012436 17.098 1239.4441

AOSMA
Best -418.9827 0 2.9606e-17 0 9.9386e-07 6.7812e-06
Mean -415.9582 0.075541 0.0047513 0.044797 52393.0677 55823.3721
Std 20.5681 0.95516 0.046634 0.99497 1171544.4371 1248248.3047

AWDA
Best -2.5589 0.039849 0.0060703 0.0018924 0.0041695 0.0029728
Mean -2.0609 0.076849 0.012512 0.015766 3153.6857 10144.2236
Std 0.39046 0.021872 0.0044522 0.015993 5547.4062 16607.6865

BES
Best -192.849 0 2.9606e-17 0 3.9419e-25 0.098869
Mean -159.6664 3.0316e-17 1.6406e-12 1.1145e-16 0.00047515 0.098944
Std 21.8772 6.779e-16 3.6684e-11 2.4921e-15 0.0033075 0.00019872

CDDO
Best -414.9186 4.1436 1.4803e-16 0 1.9783e-06 0.010553
Mean -409.2277 4.1992 0.0029311 0.005143 143.3606 802.3993
Std 30.587 0.43545 0.030446 0.1003 3205.583 17941.9473

DOA
Best -174.9058 0 2.9606e-17 0 0.024691 0.078147
Mean -159.6674 0.67532 0.0060553 0.10222 35187.4366 96073.2885
Std 18.7455 2.6085 0.052274 1.2424 785684.0574 2032984.8721

DSSA
Best -2.718491268946872e+68 0 2.9606e-17 0 5.2351e-34 4.4993e-34
Mean -1.90597575847278e+66 0.12554 0.0058799 0.12345 72488.5008 202488.5563
Std 1.717311818082357e+67 1.2337 0.060015 1.5571 1072057.3871 2600745.5342

ESMA
Best -418.9721 0 2.9606e-17 0 2.4456e-05 1.7282e-06
Mean -410.9383 0.10006 0.0038052 0.058521 43636.2202 69284.3225
Std 31.5805 0.99944 0.039319 0.83932 975735.3523 1549156.0305

GEO
Best 5.3515e-32 4.1497e-32 4.1512e-16 5.7436e-21 2.0543e-33 1.1894e-28
Mean 0.00039421 0.00013089 0.00047771 0.00013806 0.00015149 0.0012698
Std 0.004072 0.00049639 0.0047613 0.0023189 0.00084138 0.0046525

HHO
Best -418.9774 0 2.9606e-17 0 2.801e-06 7.0288e-07
Mean -414.5949 0.11334 0.0051101 0.054826 41053.6651 113010.0108
Std 29.3184 1.0612 0.048748 0.99619 902002.1664 2150141.3942

LFD
Best -937.7924 7.4903e-06 2.6392e-05 2.5532e-09 0.00049674 0.16477
Mean -413.8811 3.3044 0.0091952 0.28953 300136.7078 233181.9774
Std 235.8705 5.0429 0.065979 2.6183 3366941.541 3359582.3175

LHHO
Best -418.9829 0 2.9606e-17 0 1.0112e-08 4.471e-07
Mean -416.4481 0.091388 0.0023909 0.017484 673.9148 9749.6928
Std 21.7364 0.79404 0.027909 0.37956 15066.1738 216313.5404

LSMA
Best -418.9775 0 2.9606e-17 0 6.7502e-06 9.812e-05
Mean -407.2941 0.084856 0.0047234 0.052499 49885.3932 99542.8596
Std 36.8422 0.86632 0.048209 0.98755 1115471.0593 1892313.5595

MAO
Best -92.5983 0.9515 0.27227 0.22361 0.13535 12.4004
Mean -68.2304 1.9137 0.37329 1.1615 459699.3387 792254.9447
Std 17.0243 0.90728 0.10648 1.8415 1991167.4424 2327180.6163

TSA
Best -105.0841 0.06663 1.4803e-16 0 0.022997 0.075074
Mean -98.7788 0.64792 0.0067426 0.06771 43727.5153 53020.4358
Std 5.8538 2.1449 0.054204 0.99494 949251.061 1106040.1279

TSO
Best -418.9829 0 2.9606e-17 0 1.3514e-06 2.7818e-06
Mean -412.5186 0.21564 0.01235 0.097162 41742.4897 98319.3265
Std 30.9786 0.90544 0.05926 1.0356 933389.2961 1697227.7022

Table 3.3: The results of the benchmark functions with multi modality, with 30 dimensions

Although the comparison has a slower convergence rate at the beginning of the search for most functions, after a few iterations it shows
good convergence performance and gives a better answer for most functions, especially for fixed multi-modal functions. The frequency
diagram can be seen in Figure3.4. In this way, the performance of all algorithms in all functions is shown together. The frequency by best
case indicates the number of algorithms that can reach the optimal point in the functions. According to this scheme, the algorithm GEO has
the highest frequency, while the algorithms AWDA and LFD have the lowest frequency. To allow a fair comparison, the necessary conditions
for the algorithms have remained the same. It is worth noting that due to the meta-heuristic nature of the algorithms, the comparisons made
here are not constant and do not always give the same result.
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Figure 3.2: Convergence curves of the algorithms on F8–F13

Fixed-dimension multi-modal benchmark functions
Alg. F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

AGWOCS
Best 0.0033135 3.5141e-07 -0.0011462 0.00044281 0.0033333 -0.0042913 -0.0036521 -0.0074093 -0.0079195 -0.0038682
Mean 0.0036284 1.0034e-06 -0.0011444 0.00046888 0.0035728 -0.0042828 -0.0036105 -0.0057 -0.005937 -0.0030972
Std 0.0014804 5.3683e-06 3.0457e-05 0.00047603 0.0028832 7.3445e-05 0.00015844 0.0015926 0.0019506 0.00048692

AOSMA
Best 0.033267 1.4088e-05 -0.034388 0.013263 0.1 -0.12876 -0.10658 -0.33844 -0.34676 -0.35121
Mean 0.05901 7.2452e-05 -0.034346 0.013281 0.13901 -0.12868 -0.10537 -0.32794 -0.33328 -0.34115
Std 0.16589 0.00044571 0.00053593 0.00016387 0.47073 0.00030876 0.0068892 0.049831 0.047258 0.030526

AWDA
Best 0.0033135 1.0092e-06 -0.0011463 0.0033335 0.0033335 -0.004292 -0.0036895 -0.0029809 -0.011482 -0.0030016
Mean 0.0034069 4.743e-05 -0.0011413 0.00617 0.0042119 -0.0041809 -0.0033073 -0.0025423 -0.0065387 -0.0026121
Std 0.0003169 0.00015492 1.0756e-05 0.0035232 0.0025558 0.00021722 0.00048191 0.00075494 0.0038831 0.00032105

BES
Best 0.033267 1.025e-05 -0.034388 0.013263 0.1 -0.12876 -0.11073 -0.16851 -0.34676 -0.35121
Mean 0.03489 1.6113e-05 -0.034383 0.013293 0.10002 -0.12868 -0.11038 -0.16805 -0.34264 -0.34873
Std 0.010095 0.00010823 7.938e-05 0.00020801 0.00049561 0.0013077 0.0035659 0.0059867 0.026726 0.019388

CDDO
Best 0.033267 8.2041e-05 -0.034346 0.013268 0.10234 -0.12618 -0.094687 -0.3371 -0.33279 -0.34979
Mean 0.035301 0.00013376 -0.034288 0.013495 0.34636 -0.12422 -0.094687 -0.32306 -0.28744 -0.34583
Std 0.045474 9.0075e-05 0.00083044 0.0014674 0.40121 0.00189 2.9173e-16 0.041391 0.05882 0.013276

DOA
Best 0.033267 0.00067878 -0.034388 0.013263 0.1 -0.12876 -0.11055 -0.33844 -0.34676 -0.35121
Mean 0.03453 0.00073193 -0.034305 0.013619 0.10346 -0.12807 -0.11018 -0.33236 -0.34238 -0.34561
Std 0.0080879 0.00067655 0.0012122 0.0030308 0.046907 0.0026997 0.0027794 0.036855 0.031086 0.03435

DSSA
Best 0.033267 2.0486e-05 -0.034012 0.013335 0.38346 -0.12736 -0.095157 -0.17003 -0.34676 -0.35121
Mean 0.12317 4.6844e-05 -0.033502 0.013935 0.45034 -0.12705 -0.089494 -0.16933 -0.3419 -0.3495
Std 0.84121 0.00024589 0.0016329 0.0021464 0.46138 0.00024224 0.0057824 0.0096559 0.032963 0.021966

ESMA
Best 0.033267 1.0342e-05 -0.034388 0.013263 0.1 -0.12876 -0.10677 -0.33844 -0.34676 -0.35118
Mean 0.047522 5.1199e-05 -0.034055 0.013476 0.22587 -0.12864 -0.10438 -0.33534 -0.32294 -0.34799
Std 0.14829 0.00041763 0.003931 0.002481 0.95846 0.00059844 0.0049511 0.019334 0.060308 0.027668

GEO
Best 1.5268e-30 1.915e-30 6.6766e-33 0 4.2114e-33 1.5216e-15 4.1227e-23 8.7103e-32 1.7117e-30 6.5173e-31
Mean 6.3114e-05 0.00040485 0.00068608 2.2865e-05 0.00043754 0.00011214 0.00016022 0.00067317 0.00064407 0.0001355
Std 0.0004438 0.0027602 0.0031767 8.8517e-05 0.0035416 0.0010354 0.00066701 0.005151 0.0055138 0.0009007

HHO
Best 0.033267 1.0422e-05 -0.034388 0.013263 0.1 -0.12856 -0.098654 -0.16851 -0.16946 -0.17081
Mean 0.072033 2.4821e-05 -0.034353 0.013447 0.25284 -0.12721 -0.090329 -0.16665 -0.16705 -0.16894
Std 0.57258 0.00010526 0.00032258 0.0031932 1.0818 0.0012712 0.0044844 0.01272 0.013189 0.012809

LFD
Best 0.033267 6.1611e-05 -0.034388 0.10129 0.10834 -0.12869 -0.10531 -0.33844 -0.12414 -0.17095
Mean 0.10675 0.00024484 -0.034195 0.10975 0.11857 -0.12842 -0.10396 -0.30615 -0.10692 -0.15115
Std 0.16519 0.0015185 0.0011812 0.017921 0.032809 0.0019299 0.006337 0.083296 0.030128 0.039268

LHHO
Best 0.033267 1.0269e-05 -0.034388 0.013263 0.1 -0.12876 -0.10361 -0.33833 -0.16959 -0.3512
Mean 0.036795 2.604e-05 -0.034358 0.013475 0.10315 -0.12868 -0.099576 -0.30315 -0.16949 -0.28795
Std 0.028064 0.00017386 0.00041314 0.0027182 0.069287 0.00075748 0.0020618 0.070785 0.00068774 0.088846

LSMA
Best 0.033267 1.0297e-05 -0.034388 0.013263 0.1 -0.12876 -0.11073 -0.33843 -0.34676 -0.35121
Mean 0.043432 3.426e-05 -0.034116 0.014432 0.48988 -0.12824 -0.10629 -0.32716 -0.32563 -0.30189
Std 0.033784 9.4922e-05 0.00088212 0.005674 3.3495 0.002802 0.010143 0.029421 0.065147 0.081489

MAO
Best 0.066401 0.00036673 -0.034387 0.78119 0.82362 -0.12841 -0.10869 -0.27841 -0.080423 -0.086101
Mean 1.3265 3.2519 0.13343 3.636 2.2516 -0.12241 -0.094856 -0.15349 -0.059535 -0.066526
Std 4.0638 74.4946 3.3885 7.9148 8.2122 0.016864 0.024606 0.10096 0.021443 0.01934

TSA
Best 0.45395 0.00028049 -0.034388 0.01334 0.1 -0.12843 -0.10819 -0.20731 -0.056239 -0.33368
Mean 0.47901 0.00086876 -0.032249 0.014729 0.49815 -0.12746 -0.10047 -0.17529 -0.050901 -0.23924
Std 0.56031 0.0045565 0.0072198 0.0051053 1.0072 0.0047008 0.01357 0.043324 0.0075194 0.055414

TSO
Best 0.033267 4.0772e-05 -0.034388 0.013263 0.1 -0.12876 -0.11073 -0.33844 -0.34676 -0.35121
Mean 0.038004 0.0001935 -0.034156 0.013405 0.11071 -0.12866 -0.10999 -0.3307 -0.34009 -0.33744
Std 0.017447 0.0016314 0.0016097 0.0016331 0.1609 0.00091173 0.0059657 0.042262 0.034612 0.048519

Table 3.4: The results of the benchmark functions with fixed-dimension multi modality, with 30 dimensions
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Figure 3.3: Convergence curves of the algorithms on F14–F23

Figure 3.4: Performance histogram of the algorithms depending on the benchmark functions used

4. Conclusion

This paper compares the performance of sixteen meta-heuristic algorithms inspired by natural events. In this work, uni-modal, multi-modal,
and fixed-dimension multi-modal benchmark functions were utilized to evaluate the efficiency of the optimization algorithms (AWDA, MAO,
TSA, TSO, ESMA, DOA, LHHO, DSSA, LSMA, AOSMA, AGWOCS, CDDO, GEO, BES, LFD, HHO). The functions used contain sixteen
test functions of three different types to test their performance in terms of usage, avoidance of local optimum, and convergence. The results
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are presented in the form of tables and diagrams. For future work, the use of different types of functions with a greater variety of curvatures,
slopes and intercepts in the optimization of real problems is considered.
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