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Abstract

This work investigates the well known localization problem of energy and momentum.
The purpose of this paper is two fold. First, we compute Einstein, Landau-Lifshitz and
Bergmann’s energy-momentum complexes for static spherically symmetric magnetically
charged regular black hole spacetime in general relativity. We observe strong coincidences
among the results obtained form the three descriptions. These resembling results from
different energy-momentum prescriptions may offer some basis to explain a exclusive
quantity which supports Virabhadra’s viewpoint. Secondly, the problem is discussed in
modified gravity. In particular, we use generalized Landau-Lifshitz prescription for the
determination of energy-momentum with reference to f (R) theory of gravity. We explicitly
compute the energy-momentum complex for the static spherically symmetric magnetically
consistent regular black hole metric for a well-known choice of the f (R) gravity models.

1. Introduction

The energy-momentum localization in curved spacetimes is one of the most important issues since the emergence of general relativity (GR).
This problem has no proper solution till date. Several attempts have been carried out by researchers to overcome this issue, using different
tools and hypothesis. A unique tensorial definition of energy and momentum has been a focus of many findings in the GR. Energy-momentum
tensor T b

a is a second rank symmetric, localized and divergence-less quantity introduced in both, the special relativity and the classical
mechanics. It gives the account of the energy and momentum matter source, and non-gravitational field sources. Given below equation
defines the conservation law of energy and momentum

T b
a; b = 0. (1.1)

Unique definitions of energy and momentum exist in classical physics. However, ordinary derivatives transforms to covariant derivatives in
GR. Thus, we get

T b
a;b =

1√
−g

(
√
−gT b

a ),b−Γ
b
acT c

b = 0. (1.2)

This conservation law was formulated by Einstein [1]. Eq. (1.2) shows that T b
a does not satisfy Eq. (1.1) in the presence of gravitational

field. The summation of these two terms (stress-energy tensor and a pseudo-tensor) remains divergence-less. The addition of a non-tensor
quantity to justify the gravitational field energy was criticized by many researchers. Levi Civita argued on an alternate gravitational energy
tensor. Penrose [2] introduced another concept of energy, known as quasi-local energy in order to find a feasible expression other than tb

a
(pseudo-tensor). Pauli criticized Einstein’s work on energy-momentum distribution but Einstien argued that his energy-momentum complex
(EMC) gave reasonable outcomes for the energy and momentum of isolated systems which obey the conservation laws.
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Later on, different prescriptions were suggested by many researchers including Landau-Lifshitz [3], Bergmann-Thomson [4], Tolman [5],
Weinberg [6], Papapetrou [7], and Möller [8]. All of these works are coordinate dependent i.e one has to perform the computations in
the quasi-cartesian coordinates except Möller’s prescription which is coordinate free. Due to non-tensorial nature, these complexes are
also called pseudo-tensors. Misner et al. [9] proved that spherical coordinate system can be used for the localization of energy. But later
on, possibility of energy localization in any system was proved by Sarracino and Cooperstock [10] as they showed that the energy can be
localized in any system, if it is localized in spherical systems. In 1990, Virabhadra claimed that energy-momentum complexes might provide
intuitive conclusions just for the isolated systems total energy. Virabhadra and his co-authors [11] studied several spacetimes and found
various energy distributions for such spacetimes. The issue of localization of energy-momentum in the GR gained a new viewpoint from the
results elaborated by Xulu et al. [12]. Rosen [13] investigated the total energy of a closed homogenous isotropic universe using Einstein’s
EMC. Many efforts have been made to solve the problem of localization of energy and momentum [14]-[20]. Amir and Mirshekari [21]
investigated energy-momentum distributions in static and non-static cosmic strings space-times using Einstein, Landau-Lifshitz, papapetrou,
Bergmann-Thomson, Tolman, Mø̈ller, and Weinberg’s prescriptions. They noted strong similarities between the findings. These results were
thought to be the extension of Virabhadra’s point of view that different energy-momentum prescriptions may provide some basis to explain
an exclusive quantity. Xulu and his collaborators [12] investigated the matter source of black hole phantom metric with the help of Einstein’s
EMC. Sharif and Kanwal [22] evaluated energy-momentum distribution of Bell-Szekeres metric in the GR and teleparallel gravity with
the help of Bergmann-Thomson, Einstein, Landau-Lifshitz, and Mø̈ller’s prescriptions. Bergmann and Einstein’s prescriptions for Bianchi
type-V spacetime in the GR and teleparallel theory of gravity were investigated by Salti and Aydogdu [23]. Bianchi type-II universe was
investigated by Aydogdu using Landau-Lifshitz and Einstein EMC in the GR [24]. Banerjee and Sen [25] calculated the total energy density
for Bianchi type-I universe using Einstein’s EMC. Sharif and Fatima [26] computed the energy-momentum distribution of the Weyl metrics,
singularity-free cosmological model and non-null Einstein-Maxwell solution using different prescriptions.

Modified theories of gravity have enthused many researchers lately due to the collective motivation imminent from high-energy physics,
astrophysics, and cosmology. Among several alternatives to the Einstein’s theory of gravity, theories which comprise high order scalar
curvature invariants, and explicitly the class of f (R) theories, enjoys a long history. In the last seven years or so, there has been a novel
incentive for their study, leading to numerous fascinating results in this modified gravity. Furthermore, it has proven to be an effective
and consistent to the GR and it continues to behave so. This definitely happens to be the reason to consider this theory for our present
work Mainly, most of the work in the literature on the problem of energy momentum localization is with in the framework of the GR. In
particular, the f (R) gravity seems an interesting and straight forward modification for the discussion. Multämaki et al. [27] were the pioneers
to generalize Landau-Lifshitz EMC in f (R) theories of gravity. However, they restricted the generalization for those spacetimes having
constant scaler curvature. Sharif and Shamir evaluated the energy density of plane symmetric solutions for some popular choices of f (R)
models. They also investigated the energy distribution of cosmic string spacetime [28]. Similar work can be found in [29]-[32].

Black holes gained much importance since Schwarzschild era. Xulu computed the energy distribution of Melvins magnetic universe and a
charged dilaton black hole [12]. Gao and Zhang [33] investigated the properties of a phantom black hole metric. The accretion process
of phantom fluid onto a black hole was studied by Babichev et al. [34]. Fabris and Bronnikov [35] obtained some interesting results on
investigating the physics of neutral phantom black holes. Ding et al. [36] studied the influence of phantom fields on strong gravitational
lensing.

In this paper, we interest to investigate some EMCs for static spherically symmetric magnetically charged regular black hole metric.
For this purpose, we choose Landau-Lifshitz, Einstein, and Bergmann’s prescriptions. We also investigate the energy and momenta for
generalized Landau-Lifshitz EMC in f (R) theory. The sequence of this manuscript is given as: Section 2 gives a brief discussion on the static
spherically symmetric magnetically charged regular black hole metric. Section 3 is devoted to discuss different EMCs. In particular Einstein,
Landau-Lifshitz and Bergmann’s EMCs have been discussed for the magnetically charged regular black hole metric in detail. Section 4
gives the generalized expressions for Landau-Lifshitz in context of f (R) gravity. Specifically, we calculate the components of energy and
momentum. The last section is devoted to the comments and conclusive remarks.

2. Magnetically charged regular black hole metric

We use here the static, spherically symmetric magnetically charged regular black hole metric [37],

ds2 = w(r)dt2− dr2

w(r)
− r2dΩ

2, (2.1)

where metric function w(r) is given

w(r) = 1− 2m(r)
r

,

with m(r) is the mass function given by

m(r) =
q

3
2

16 4
√

γ

[
ln

2
√

γq−2 4
√

γ
√

qr+ r2

2
√

γq+2 4
√

γ
√

qr+ r2 +2arctan
(

1+
r

4
√

γ
√

q

)
−2arctan

(
1− r

4
√

γ
√

q

)]
,

where q gives magnetic charge. To workout a black hole solution being consistent at r = 0, the parameter γ has to assume the value [37]

γ =

(
πq

3
2

8M

)4
.
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Thus the metric function w(r) turns out to be

w(r) = 1+
M
πr

[
ln

32M2r2 +8πMq2r+π2q4

32M2r2−8πMq2r+π2q4 −2arctan
(

8Mr
πq2 +1

)
+2arctan

(
1− 8Mr

πq2

)]
.

Here M is the mass parameter. Ding and collaborators. [36] explored that for M = 0, the metric provides the Ellis wormhole geometries. For
the computation of components of energy and momentum, the line element (2.1)should be transformed from spherical polar coordinates (t, r,
θ , φ ) to quasi-cartesian coordinates i.e. (t, x, y, z) applying the following transformations

x = r cosφ sinθ ,

y = r sinφ sinθ ,

z = r cosθ .

The line element just transformed reads

ds2 = w(r)dt2− (dx2 +dy2 +dz2)− 1
w(r)

(
xdx+ ydy+ zdz

r

)2

+

(
xdx+ ydy+ zdz

r

)2
.

The corresponding determinant g of the tensor gik gives

g =−1.

We obtain seven non-zero independent contra-variant components of the symmetric metric tensor.

g
00

=
1
w
,

g
11

=
x2(1−w)− r2

r2 ,

g
22

=
y2(1−w)− r2

r2 ,

g
33

=
z2(1−w)− r2

r2 ,

g
12

=
(1−w)xy

r2 ,

g
23

=
(1−w)yz

r2 ,

g
31

=
(1−w)xz

r2 .

3. Energy-momentum prescriptions in the GR

Here, we discuss the three different EMCs in the GR. In particular we discuss Einstein, Landau-Lifshitz and Bergmann’s EMCs.

3.1. Einstein energy-momentum prescription

The Einstein EMC is given as[38]

Θ
b
a =

1
16π

hbc
a,c,

where

hbc
a =−hcb

a =
gad√
−g

[
−g
(

gbdgce−gcdgbe
)]

,e
.

The energy, momentum components are denoted by Θ0
0 and Θ0

i respectively. Θb
a satisfies the covarient local Einstein’s conservation laws

∂Θb
a

∂xb = 0.

The momentum four-vector (or the components of energy-momentum) is expressed as

Pa =
∫ ∫ ∫

Θ
0
adx1dx2dx3. (3.1)
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Pi with (i = 1,2,3) provides the components of momentum and the energy the energy is represented by P0. Energy of physical system when
the integration is taken over the hypersurface element by considering constant t is

E =
∫ ∫ ∫

Θ
0
0dx1dx2dx3.

All the calculations are restricted to be carried out in quasi-cartesian coordinates. Applying Gauss’s divergence theorem on the Eq. (3.1)leads
to

Pa =
1

16π

∫ ∫
h0b

aµbdS, (3.2)

where µb = xi
r is the normal unit vector directed outward over an infinitesimal surface element dS. For the purpose to attain energy, we

acquire three independent components of hbc
a

h01
0 =

2x(1−w)
r2 ,

h02
0 =

2y(1−w)
r2 ,

h03
0 =

2z(1−w)
r2 . (3.3)

Using the Eq. (3.3) in Eq. (3.2), the energy distribution is obtained as

PE(r) =
r(1−w)

4
,

where PE(r) expresses the total energy (gravitational field plus matter) within radius r. Likewise, Pi gives the total momentum due to both
gravitational field and matter. It is to be noted that

h01
1 = h01

2 = h01
3 = 0,

h02
1 = h02

2 = h02
3 = 0,

h03
1 = h03

2 = h03
3 = 0,

suggesting that Px = Py = Pz = 0. It is worthwhile to note that our results agree with [12] when we take q = 0.

3.2. Landau-Lifshitz energy-momentum prescription

The EMC of Landau-Lifshitz is [38]

Lab = (−g)(T ab + tab) =
1

16π
χ

abcd
,cd ,

where χabcd is defined as

χ
abcd =−g(gabgcd −gacgbd).

The components of energy and momentum are expressed by L00 and L0i respectively.

∂Lab

∂xb = 0. (3.4)

Eq. (3.4) further gives the conservation law for the quantity

Pa =
∫ ∫

(−g)(T ab + tab)µbdS.

The quantities tab vanish in the quasi-cartesian coordinates when there is no gravitational field, and the above relation takes the form

Pa =
∫ ∫

(−g)T ab
µbdS,

which represents the four-momentum of the physical system. It gives the total four-momentum of the matter plus gravitational field. Thus,
tab is refereed as the energy-momentum pseudo-tensor of the gravitational field. The energy-momentum components are described as a
three-dimensional integral space, given as

Pa =
∫ ∫ ∫

Ła0dx1dx2dx3. (3.5)

Here also using Gauss’s Theorem in Eq. (3.5), we get

Pa =
1

16π

∫ ∫
χ

a0bd
,d µbdS, (3.6)
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After some lengthy calculations the following independent components of χabcd turn out to be

χ
0011 =

r2 + x2(w−1)
wr2 ,

χ
0022 =

r2 + y2(w−1)
wr2 ,

χ
0033 =

r2 + z2(w−1)
wr2 ,

χ
0012 =

−(w−1)
x

ywr2,

χ
0023 =

−(w−1)
y

zwr2,

χ
0031 =

−(w−1)
x

zwr2. (3.7)

Using Eq. the (3.7) in Eq. (3.6), we obtain

PL(r) =
(1−w)r

4w
,

where PL(r) gives the total energy within radius r. Here we also get all the other components zero as expected from the geometry of a static
metric.

3.3. Bergmann energy-momentun prescription

The Bergmann’s EMC is given as[4]

Bab =
1

16π
β

abc
,c ,

where β abc is given as

β
abc = gadV bc

d ,

and V bc
d is defined as

V bc
d =−V cb

d =
gde√
−g

[
−g
(

gbegc f −gcegb f
)]

, f
.

Here Bab approves the covariant local laws of conservation

∂Bab

∂xb = 0.

The energy-momentum components are expressed as

Pa =
∫ ∫ ∫

Ba0dx1dx2dx3. (3.8)

Applying the Gauss’s theorem in the Eq. (3.8), we obtain

Pa =
1

16π

∫ ∫
β

a0b
µbdS. (3.9)

Now, to obtain the energy distribution, we get just three components of Babc

B001 =
2x(1−w)

wr2 ,

B002 =
2y(1−w)

wr2 ,

B003 =
2z(1−w)

wr2 . (3.10)

Using Eqs. (3.10) in the Eq. (3.9), the energy distribution is obtained as

PB(r) =
r(1−w)

4w
.

All the other components of Babc are vanished resulting in zero momentum. It is worthwhile to mention here that the energy-momentum
distribution for magnetically charged regular black hole metric in both Landau-Lifshitz and Bergmann prescription is same. Now, we
investigate the energy-momentum distribution in modified f (R) gravity.
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4. Energy-momentum distribution in f (R) theory of gravity

Exploring the localization problem in alternative theories of gravity might be an intresting task. Researchers have worked on this localization
issue in the teleparallel theory of gravity [39]-[41] expecting a positive solution of this complex problem. The energy-momentum distribution
for particular space-times has been computed using different prescriptions by Sharif and Jamil [42]. No general conclusion was deduced
form the results though they were consistent in some cases. Because of the cosmologically vibrant f (R) model, the f (R) theory has proven
to be very attractive in the recent years. The generalization of Landau-Lifshitz EMC has been studied in the framework of this modified
gravity [27].

4.1. Generalized Landau-Lifshitz energy-momentum complex

The f (R) gravity is a generalised form of the GR. The f (R) gravity is equipped with the following field equations

F(R)Rµν −
1
2

f (R)gµν −∇µ ∇ν F(R)+gµν�F(R) = 8πGT m
µν ,

where F(R) is the differentiation of f (R) with respect to R. T m
µν defines the standard minimally coupled stress-energy tensor. The generalized

Landau-Lifshitz EMC is given by [27]

T µν = F(R0)τ
µν

LL +
1

6k2 (F(R0)R0− f (R0))∂λ (g
µν xλ −gµλ xν ). (4.1)

where τLL
µν represents the Landau-Lifshitz EMC worked out in the GR and κ is the coupling constant. This is a generic expression validating

any f (R) theory of gravity when the scaler curvature of the chosen metric happens to be constant. The 00-component becomes

T 00 = F(R0)τ
00
LL +

1
6k2 (F(R0)R0− f (R0))∂λ (g

00xλ −g0λ x0), (4.2)

where τ00
LL (the Landau-Lifshitz EMC) may also be computed the summation of energy-momentum and energy-momentum pseudo tensor as

τ
00
LL = (−g)(T 00 + t00

LL), (4.3)

where t00
LL is given by

t00
LL =

1
2k

[(2Γ
γ

αβ
Γ

δ

γδ
−Γ

γ

αδ
Γ

δ

βγ
−Γ

γ
αγ Γ

δ

βδ
)(gµα gνβ −gµν gαβ )

+ (gµα gβγ )(Γν

αδ
Γ

δ

βγ
+Γ

ν

βγ
Γ

δ

αδ
−Γ

ν

γδ
Γ

δ

αβ
−Γ

ν

αβ
Γ

δ

γδ
)

+ (gνα gβγ )(Γ
µ

αδ
Γ

δ

βγ
+Γ

µ

βγ
Γ

δ

αδ
−Γ

µ

γδ
Γ

δ

αβ
−Γ

µ

αβ
Γ

δ

γδ
)

+ (gαβ gγδ )(Γ
µ
αγ Γ

ν

βδ
−Γ

µ

αβ
Γ

ν

γδ
)].

It may be noted we need here the cartesian coordinates to apply the general formula in the Eq. (4.2). For convenience and without any loss of
generality, we discuss the energy-momentum distribution of magnetically charged regular black hole metric in f (R) gravity using polar
coordinates.

4.2. Energy distribution of magnetically charged regular black hole metric

It is mentioned here that the value of scaler curvature for the metric (2.1) is

R =
2
r

(d2m
dr2 −

dm
dr

)
.

On putting the value of m(r) the Ricci scaler comes out to be constant i.e R0 = 0. Hence, the static spherically symmetric magnetically
charged regular black hole metric is an exact solution of any f (R) theory, that satisfies the constant curvature condition. Now, as the Ricci
scaler R remains constant, we may find the energy density for this f (R) model by implementing the generalized Landau-Lifshitz EMC.
Using the Eq. (4.2) comes out with the following 00-component

τ
00 = F(R0)τ

00
LL +

1
2κ

(F(R0)R0)− f (R0)(rF(R)+3 f (R)). (4.4)

Using Eq. (4.3) and after some manipulations, we get

τ
00
LL =

1
2κ2

[(
−3
2

w′(r)2

w(r)2 − rw′(r)− rw′(r)sin2
θ − 7

r2 +2w(r)−2
(

cos2θ

sin2θ

)
+ w(r)sin2

θ +
−3
2

w′(r)
rw(r)

− 2
r

cosθ

sinθ

)(
1+

1
r2w(r)

+
1

r2w(r)sin2θ

)
+

(
1

w(r)2

)(
w′(r)2

2w′(r)
+

2w′(r)
rw(r)

)]
. (4.5)
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Substituting Eq. (4.5) in Eq. (4.4), it follows that

τ
00 =

1
2κ2

[(
−3
2

w′(r)2

w(r)2 − rw′(r)− rw′(r)sin2
θ − 7

r2 +2w(r)−2
(

cos2θ

sin2θ

)
+ w(r)sin2

θ +
−3
2

w′(r)
rw(r)

− 2
r

cosθ

sinθ

)(
1+

1
r2w(r)

+
1

r2w(r)sin2θ

)
+

( 1
w(r)2

)(
w′(r)2

2w′(r)
+

2w′(r)
rw(r)

)]
F(R0)

+
1

6k2 (F(R0)R0− f (R0))

(
−rw′(r)

w(r)2 +
3

w(r)

)
.

Now we discuss an important case by choosing a f (R) model. It is to be noted that we can not consider a model which becomes non-analytic
at R0 = 0. For example we can not choose f (R) = R+ c2

R . Thus the simplest and commonly used model is

f (R) = R+ c1R2.

For this model, the corresponding 00-component of the Landau-Lifshitz EMC, reads as

τ
00 = τ

00
LL(1) =

1
2κ2

[(
−3
2

w′(r)2

w(r)2 − rw′(r)− rw′(r)sin2
θ − 7

r2 +2w(r)−2
(

cos2θ

sin2θ

)
+ w(r)sin2

θ +
−3
2

w′(r)
rw(r)

− 2
r

cosθ

sinθ

)(
1+

1
r2w(r)

+
1

r2w(r)sin2θ

)
+

(
1

w(r)2

)(
w′(r)2

2w′(r)
+

2w′(r)
rw(r)

)]
.

4.3. Momentum Of magnetically charged regular black hole metric

We also calculate the momenta of the magnetically charged regular black hole metric by implementing the same technique and relations. τ0i

represents the components of momentum. For momentum calculation, Eq. (4.1) becomes

T 0i = F(R0)τ
0i
LL +

1
6k2 (F(R0)R0− f (R0))∂λ (g

0ixλ −g0λ xi). (4.6)

Using Eq. (4.6), the simplified momentum components for i = 1,2,3 are

τ
01 =

1
2κ2

[(
2w(r)w′(r)

r
− 2w′(r)

rw(r)
+(2w(r)+3)cos2

θ − w′(r)2

w(r)2 −
w′(r)2

2
−

2
cos2θ

sin2θ

)(
−1
)
+

(
−1− 1

w(r)2− 1
r2w(r)

− 1
r2w(r)sin2θ

)
(

w(r)w′(r)
2r

+ rw(r)sinθcosθ

)
+

(
−1+w(r)2 +

w(r)
r2 +

w(r)
r2sin2θ

)
(

w′(r)2

2w(r)2 −
2w′(r)
rw(r)

)]
,

τ
02 =

1
2κ2

[(
−w′(r)2

2
+

2w(r)w′(r)
r

−2w(r)−2 f (r)sin2
θ

− w′(r)2

2w(r)
2
r

cosθ

sinθ
− cos2

θ − 2w′(r)
rw(r)

−2(
cos2θ

sin2θ
)

)(
−1

r2w(r)

)
+

(
−1− 1

w(r)2 −
1

r2w(r)
− 1

r2w(r)sin2θ

)(
−4sinθcosθ

r

)]
,
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τ
03 =

1
2κ2

[(
2w(r)w′(r)

r
+

2w′(r)
rw(r)

−2w(r)−3w(r)sin2
θ +4cos2

θ

− w′(r)2

2
− w′(r)2

2w(r)2 −
2
r2 −

2cos2θ

sin2θ
+

w′(r)
2w′(r)r

− 2cosθ

rsinθ
+

w′(r)cosθ

2w(r)sinθ

)
(

−1
w(r)r2sin2θ

)
+

(
−1+

1
w(r)2 −

1
w(r)r2 −

1
w(r)r2sin2θ

)
(
−w(r)sin2

θ +
2
r2 +

2cos2θ

sin2θ
+ cos2

θ

)
+

(
−1

r2w(r)sin2θ
− w(r)

r2sin2θ

)
(

3
4

w′(r)2

w(r)2 −
2w′(r)
rw(r)

)]
.

5. Concluding remarks

Many investigations have been put forward to address the issue of energy-momentum as it is an important conserved quantity. Unfortunately,
there does not exist a general definition of energy and momentum in the GR. In this work, we focus to investigate the well-known problem of
localization of energy-momentum with reference to the GR by using these three EMCs and also give some analysis under the modified
gravity. In particular, we calculate the energy and momentum distributions for a static spherically symmetric magnetically charged regular
black hole metric using Einstein, Bergmann-Thomson and Landau-Lifshitz EMCs. We conclude that energy turns to be well-defined and
finite in these prescriptions for the black hole metric. It is worth noting that for w = 1 the final results of all these three prescriptions gives
constant energy equal to zero. It is to be noted that the unique results are obtained for Einstein, Bergmann-Thomson and Landau-Lifshitz
energy-momentum prescriptions. Extension of Virbhadra’s viewpoint [43] (different energy-momentum prescriptions may provide some
basis to define a unique quantity) is supported by the coincidences observed in the results of these prescriptions. It is worthwhile to mention
here that our results agree with [12] when we ignore the magnetic charge, i.e. q = 0.

We have also worked on the energy and momentum distributions of the same metric in the context of modified gravity. For this purpose,
we choose f (R) theory of gravity and the Landau-Lifshitz energy-momentum prescription. Inspired by the recent interesting f (R) gravity
models, we generalize the results obtained for Landau-Lifshitz prescription. Here, we limit ourselves to investigate the Landau-Lifshitz EMC
using the constant curvature assumption. The obtained energy and momentum components are well-defined for a space r > 0. It would be an
attractive task to get more generalized results by evaluating the Landau-Lifshitz EMC for non-constant Ricci scaler. Extending other EMCs
in the context of f (R) gravity as well in other modified theories of gravity would also be interesting.

For the comparative analysis of Energy-Momentum Distribution for Magnetically Charged Black Hole Metric, we have noted some worthy
works in modified f (R) theories of gravity in [29], [27], and [28] under some specific assumptions of different models and parameters. It
has been noted that our work about Einstein, Landau-Lifshitz and Bergmann’s energy-momentum complexes for static spherically symmetric
magnetically charged regular black hole metric is consistent and similar in many aspects. However, a very few dissimilarities wherever they
have appeared might be because of some different choices of the models and the corresponding parameters.

References

[1] C. Møller, The Theory of Relativity Oxford Univ. Press, London, (1958).
[2] R. Penrose, Quasi-local mass and angular momentum in general relativity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., A381 (1982), 53-63.
[3] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields , Pergamon Press, 1987.
[4] P. G. Bergmann, R. Thomson, Spin and angular momentum in general relativity, Phys. Rev., 89 (1953), 400.
[5] R. C. Tolman, On the use of the energy-momentum principle in general relativity, Phys. Rev. 35 (1930), 875.
[6] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons Inc., New York, 1972.
[7] A. Papapetrou, Einstein’s theory of gravitation and flat space, Proceedings of the Royal Irish Academy. Section A, Mathematical and Physical Sciences,

Royal Irish Academy, A52 1948, pp. 11-23.
[8] C. Møller, On the localization of the energy of a physical system in the general theory of relativity, Ann. Physics, 4 (1958), 347-371.
[9] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Company, San Francisco, 1973.

[10] F. I. Cooperstock, R. S. Sarracino, The localisation of energy in general relativity, J. Phys. A: Math. Gen., 11 (1978), 877.
[11] A. Chamorro, K. S. Virbhadra, A radiating dyon solution, Pramana-J. Phys., 45 (1995), 181.
[12] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, and R. Prasad, Einstein energy-momentum complex for a phantom

black hole metric, Chinese Physics Letters, 32(2) (2015), 020402.
[13] N. Rosen, The energy of the universe, Gen. Relativ. Gravit, 26 (1994), 319-321.
[14] S. S. Xulu, Energy distribution in Melvin’s magnetic universe, Int. J. Modern Physics A, 15(30) (2000), 4849-4856.
[15] S. S. Xulu, Total energy of the Bianchi type I universes, Int. J. Theor. Phys., 39 (2000), 1153-1161.
[16] S. S. Xulu, Møller energy for the Kerr–Newman metric, Modern Phys. Lett. A, 15 (2000), 1511-1517.
[17] S. S. Xulu, Bergmann–Thomson energy-momentum complex for solutions more general than the Kerr–Schild class, Int. J. Theor. Phys., 46 (2007),

2915-2922.
[18] S. S. Xulu, Bergmann-Thomson energy of a charged rotating black hole, Found. Phys. Lett., 19 (2006), 603-609.
[19] A. K. Sinha, G. K.Pandey, A. K. Bhaskar, B. C. Rai, A. K. Jha, S. Kumar and S. S. Xulu, Effective gravitational mass of the Ayón-Beato and Garcı́a

metric, Modern Phys. Lett. A, A 30 (2015), 1550120.
[20] S. Aygün, I. Tarhan,Energy–momentum localization for Bianchi type-IV Universe in general relativity and teleparallel gravity, Pramana, 78 (2012),

531-548.
[21] A. M. Abbassi, S. Mirshekari and A. H. Abbassi, Energy-momentum distribution in static and nonstatic cosmic string space-times, Phys. Rev., D 78

(2008), 064053.
[22] M. Sharif, K. Nazir, Energy-momentum problem of Bell-Szekeres metric in general relativity and teleparallel gravity, Brazilian J. Phys., 38 (2008),

156-166.
[23] O. Aydogdu, M. Salti, The momentum 4-vector in bulk viscous Bianchi type-V space-time, Czechoslovak J. Phys., 56 (2006), 789-798.
[24] O. Aydogdu, Gravitational energy–momentum density in Bianchi type II space–times, Int. J. Modern Phys., D1504 (2006), 459-468.
[25] N. Banerjee, S. Sen, Einstein pseudotensor and total energy of the universe, Pramana, 49 (1997), 609-615.
[26] M. Sharif, T. Fatima, Energy-momentum distribution: A crucial problem in general relativity, Int. J. Modern Phys., A20 (2005), 4309-4330.



Journal of Mathematical Sciences and Modelling 9
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