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Abstract

In this paper we are concerned with the problem{
u(α)(t) = Au(t)+ f (t,u(t)) t ∈ [0,T ]
u(0) = u0,Dα u(0) = u1

{
u(α)(t) = Au(t)+ f (t,u(t)) t ∈ [0,T ]
u(0) = u0,Dα u(0) = u1

Where α ∈ (1,2], and we use the conformable derivative. We give the notion of α-Cosine
families and proveded the existence and uniqueness of the problem 0.1.

1. Introduction

Our primary objective is to investigate the abstract semi-linear α-order initial value problem

u(α)(t) = Au(t)+ f (t,u(t)) t ∈ [0,T ]
u(0) = u0,Dα u(0) = u1

Where T ∈R∗+, 1 < α < 2, the linear operator A : D(A)⊂ X→ X , f : [0,T ]×X→ X , C =C ([0,T ],X) is the Banach space of all continuous
functions equipped with the supnorm.
A is the (possibly unbounded) infinitesimal generator of a strongly continuous α-cosine family of linear operators in X and fis a nonlinear
mapping from f : [0,T ]×X → X . Our goal will be to give a systematic and general treatment of (1) from the standpoint of existence,
uniqueness of solutions.
The pioneering work concerning the new definition of fractional derivative was done by [6]. This work open the door in front of sevral works
in this sens. Thabet Abdeljawad and other authors feat this notion for introducing the basic definition of α-semigroup. But G. F. WEBB in
[4] annonces the way to give an integral solution for one second problem, They precisely have considered the notion of cosine families. In
this paper we will try to give the definition of α-cosine families, and provide the existence and uniqueness of the problem (1).
This paper is organised as follows. In section 2 we recall some notion concerning the new derivative. Section 3 deal with the Basic definition
of α-Cosine families and some properties. The proof of mains results takes place in the last Section.

2. Preliminaries

In this section we will give some definition and properties concerning the new derevative important in the following.

Definition 2.1. see[6] Let α ∈ (n,n+1] and f : [0,∞)→ R be n-differentiable at t > 0, then the conformable fractional derivative of f of
order α is defined by

f (α)(t) = lim
ε→0

f (n)(t + εtn+1−α )− f (n)(t)
ε

f (α)(0) = lim
t→0

f (α)(t)
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Remark 2.2. see[6] As consequence of the previous definition, one can easily show that

f (α)(t) = tn+1−α f (n+1)(t)

where α ∈ (n,n+1], and f is (n+1)-differentiable at t > 0.

Definition 2.3. see[6] Let α ∈ (1,2], (Iα f )(t) =
∫ t

0 sα−2 f (s)ds.

Theorem 2.4. see[6]
(Iα f )(α) (t) = f (t)

for t ≥ 0

Example 2.5.

Iα (sin(t)) =
∞

∑
n=0

(−1)nt2n+α

(2n+α)(2n+1)!

where α ∈ (1,2)

Definition 2.6. see[5] Let α > 0. For a Banach space X, A family {T (t)}t≥0 ⊂L (X ,X) is called a fractional α .semigroup if:

1. T (0) = I

2. T
(
(s+ t)

1
α

)
= T

(
s

1
α

)
T
(

t
1
α

)
, for all s, t ∈ [0,∞)

Example 2.7. Let A be a bounded linear operator on X. Define T (t) = e2
√

tA. Then T (t)t≥0 is a 1
2 semigroup. Indeed:

1. T (0) = e0A = I
2. ∀s, t ∈ [0,∞), T

(
(s+ t)2)= e2(t+s)A = e2tAe2sA = T (s)T (t)

Definition 2.8. see[5] An α-semigroup T (t) is called a c0-semigroup if, for each fixed x ∈ X, T (t)x→ x as t→ 0+

The conformable α-derivative of T (t) at t = 0 is called the α-infinitesimal generator of the fractional α-semigroup T (t), with domain equals{
x ∈ X , lim

t→0
T (t)x exist

}

3. α-Cosine families

We will give the following definition

Definition 3.1. A one parameter family Cα (t), t ∈R of bounded linear operators mapping the Banach space X into itself is called a strongly
continuous α-cosine family if and only if

1. Cα (0) = I

2. Cα

(
(s+ t)

1
α

)
+Cα

(
(s− t)

1
α

)
= 2Cα

(
s

1
α

)
Cα

(
t

1
α

)
3. The mapping t→Cα (t)x is a continuous mapping for each fixed x ∈ X.

If Cα (t), t ∈ R is a strongly continuous α-cosine family in X , then:Sα (t), t ∈ R is the one parameter family of operators in X defined by

Sα (t) = (Iα Sα )(t)

Example 3.2. Let A be a bounded linear operator on X. Define Cα (t) = e2
√

tA+e−2
√

tA

2 . Then T (t)t≥0 is a 1
2 semigroup. Indeed:

1. Cα (0) = e0A = I
2. Cα

(
(t + s)2)+Cα

(
(t− s)2)= e2(t+s)A+e−2(t+s)A

2 + e2(t−s)A+e−2(t−s)A

2 = 2Cα (t2)Cα (s2)
3. The continuity is clear

Proposition 3.3. The family {Cα (t), t ∈ R} is a strongly cosine families if only if {C(t) =Cα (t)(t
1
α ), t ∈ R} is a strongly continuous cosine

families

Proof. Necessary condition: It is clear that C(0) = I. For all s, t ∈ R, we have

C(t + s)+C(t− s) =Cα (t + s)(t
1
α )+Cα (t− s)(t

1
α )

= 2Cα (t)(t
1
α )Cα (s)(t

1
α )

= 2C(t)C(s)

Further the continuity of t→Cα
q (t

1
α )x and the continuity of t→ tα implies that t→C(t)x is continuous.

For the sufficient condition it suffice to note that Ctα =Cα (t)

If {Cα (t), t ∈ R} is a strongly continuous cosine family in X , then {Sα (t), t ∈ R} is the one parameter family of operators in X defined by

Sα (t)x = (ICα )(t)x, ∀t ∈ R, x ∈ X

Remark 3.4. As the previous proposition {Sα (t), t ∈ R} is a α-Sine family iff {S(t) = Sα (t
1
α ), t ∈ R} is sine family.
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Proposition 3.5. Let Cα (t), t ∈ R} be a strongly continuous cosine family in X.
The following are true:

1. Cα (t) =Cα (−t)∀t ∈ R
2. Cα (s),Sα (s),Cα (t), and Sα (t) commute for all s, t ∈ R
3. Sα (t)x is continuous in t on R for each fixed x ∈ X
4. Sα (s+ t)+Sα (s− t) = 2Sα (s)Cα (t) for all s, t ∈ R
5. Sα (s+ t) = Sα (s)Cα (t)+Sα (t)Cα (s) for all s, t ∈ R
6. Sα (t) =−Sα (−t) for all t ∈ R
7. There exist constants M > 1 and ω ≥ 0 such that Cα (t)≤Meωtα

for all t ∈ R and

‖ Sα (t1)−Sα (t2) ‖≤
M
ω

(
eωtα

1 − eωtα
2

)
Proof. The proposition 1−6 are consequence of the proposition 3.1. For 7, we have

‖ Sα (t1)−Sα (t2) ‖=
∫ t1

t2

Cα (s)
s1−α

ds

≤M
∫ t1

t2

eωsα

s1−α
ds = [eωs]t1t2

The α-infinitesimal generator of a strongly continuous α-cosine families Cα (t), t ∈ R is the operator A : X → X defined by

Ax = lim
t→0

DαCα (t)

D(A) = {x, t→ DαCα (t)x, is continuous of t}

E = {x, t→ DCα (t)x, is continuous of t}

Lemma 3.6.
C(t) = lim

α→1+
Cα (t)is a cosine families

Proof. It suffice to note that Cα (t
1
α ) is a cosine families, t→ tα is continuous.

Proposition 3.7. Let Cα (t), t ∈ R, be a strongly continuous α-cosine family in X with α-infinitesimal generator A. The following are true.

1. D(A) is dense in X and A is a closed operator in X.
2. if x ∈ X and r,s ∈ R, then z =

∫ s
r

Sα (u)
u1−α xdu ∈ D(A)

and Az =Cα (s)x−Cα (r)x
3. if x ∈ X and r,s ∈ R, then z =

∫ s
0
∫ r

0
Cα (u)
u1−α

Cα (v)
v1−α dvdux ∈ D(A) and Az = 2−1(Cα (s+ r)x−Cα (s− r)x)

4. if x ∈ X, then Sα (t)x ∈ E
5. if x ∈ E, then Sα (t)x ∈ D(A) and (Cα )(α) (t)x = ASα (t)x
6. if x ∈ D(A), then Cα (t)x ∈ D(A) and DαCα (t)x = ACα (t)x =Cα (t)Ax
7. if x ∈ E, then limt→0ASα (t)x = 0
8. if x ∈ E, then Sα (t)x ∈ D(A) and Dα Sα (t)x = ASα (t)x
9. if x ∈ D(A), then Sα (t)x ∈ D(A) and ASα (t)x = Sα (t)Ax

10. Cα (t + s)−Cα (t− s) = 2ASα (t)Sα (s) for all s, t ∈ R.

Proof. Use the previous lemma.
For 1 it suffuce to use the previous lemma and proposition 2.2 in [4].
For 2−10 By change s by s

1
α and t by t

1
α and use proposition 2.2 in [4].

4. Mains results

In this section we consider the problem

u(α)(t) = Au(t)+ f (t,u(t)) t > 0, α ∈ (1,2)
u(0) = u0, u(α)(0) = u1

(1)

Where A : D(A)⊂X→X is a linear operator α infinitisimal generator of a Cα (t), t ∈R-Cosine families, and u0 ∈X . We set C =C ([0,T ],X).
f : [0,T ]×X → X is continuous and satisfies a Lipschitz condition ‖ f (x,y)− f (x,y′) ‖≤M f ‖ y− y′ ‖, ∀x ∈ [0,T ], x,y ∈ X .
T he folowing defiition is a extension of usual definition of mild see [4].

Definition 4.1. A function u : [0,∞)→ X is a mild solution of (1) if

1. u is continuous differential on [0,∞)
2. u is continuously α-differentiable on (0,∞)
3. u(t) ∈ D(A) for t > 0,
4. u(t) =Cα (t)u0 +Sα (t)u1 +

∫ t
0

Sα (t−s) f (s,u(s))
s2−α ds
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Theorem 4.2. Suppose that f : [0,T ]×X → X is continuous and Lipschitzian with respect to the second argument, then for any u0,u1 ∈ X
such that Cα (t)u0,Sα u1 ∈ D(A) for all t > 0, the problem (1) has a unique mild solution

Proof. Define the operator P : C → C By

(Pu)(t) =Cα u0 +Sα u1 +
∫ t

0
sα−2Sα (t− s) f (s,u(s))

We give the proof in sevral step:
Step 1: Let u1,u2 ∈ C

|(Pu)(t +h)− (Pu)(t)|=
∣∣∣∣∫ t+h

0
sα−1Sα (t +h− s) f (s,u(s))ds−

∫ t

0
sα−2Sα (t− s) f (s,u(s))ds

∣∣∣∣
≤
∣∣∣∣∫ t+h

0
sα−1 (Sα (t +h− s)−Sα (t− s)) f (s,u(s))ds

∣∣∣∣+ ∣∣∣∣∫ t

0
sα−2Sα (t +h− s) f (s,u(s))ds

∣∣∣∣
But ∣∣∣sα−1 (Sα (t +h− s)−Sα (t− s)) f (s,u(s))

∣∣∣≤ T α−1MheωT α

sup
s∈[0,T ]

|| f (s,u(s))||

By the dominated convergence theorem∫ t+h

0
sα−2 (Sα (t +h− s)−Sα (t− s)) f (s,u(s))ds→ 0, as h→ 0

Also ∣∣∣sα−1Sα (t +h− s) f (s,u(s))
∣∣∣≤ T α−2Meωh sup

s∈[0,T ]
|| f (s,u(s))||

By the dominated convergence theorem ∣∣∣∣∫ t

0
sα−2Sα (t +h− s) f (s,u(s))ds

∣∣∣∣→ 0, as h→ 0

Hence Pu ∈ C i.e P maps C into itself.
Step 2: Let u1,u2 ∈ C , t ∈ [0,T ], with u1(0) = u2(0) = u0

‖ (Pu1)(t)− (Pu2)(t) ‖≤‖Cα (t)(u1(0)−u2(0)) ‖+ ‖ Sα (t)(u1(0)−u2(0)) ‖+ ‖ sα−2Sα (t− s)( f (s,u1(s))− f (s,u2(s))) ‖

≤MM f eωT α

||u1−u2||
∫ t

0
sα−1ds

≤ tα
MM f eωT α

2

We set η =
MM f eωT α

2 We can deduce that

‖ (P2u1)(t)− (P2u2)(t) ‖≤ η

∫ t

0
sα ||u1−u2||ds

≤

(
ηt

α

2

)2

2
||u1−u2||

And by induction, we have for all t ∈ [0,T ]

‖ (P2u1)(t)− (P2u2)(t) ‖≤

(
ηt

α

2

)n

n!
||u1−u2||

Since

(
ηt

α
2
)n

n! → 0, as n→ ∞, then there exists r ∈ N such that follows that Pr is a contraction and there exists a unique u ∈ C such that
Pru = x. Furthermore, we have

Pr(Pu) = P(Pru) = Pu

Hence Pu is a unique fixed point of Pr, so we conclude that u is the unique mild solution of (1).

5. Conclusion

In this section you should present the conclusion of the paper. Conclusions must focus on the novelty and exceptional results you acquired.
Allow a sufficient space in the article for conclusions. Do not repeat the contents of Introduction or the Abstract. Focus on the essential
things of your article.
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