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Abstract

In this paper, non-variational bi-Hamiltonian system of shallow-water waves propagation is
considered. Lie point generators are calculated and one dimensional optimal system of its
subalgebras up to conjugacy classes are reported. Then similarity variables are computed
by using these conjugacy classes which are further utilized for the reduction of considered
system. Then, a transformation is used to convert the system from non-variational to
variational system, thus standard Lagrangian is computed. Noether operators are calculated
by using Noether approach and local conserved quantity is discussed for the new fourth
order system of partial differential equations (PDEs). Further, inverse transformation is
applied to get the corresponding local conserved quantity for the considered non-variational
problem. Moreover, this local conservation law with the help of double reduction theorem
is utilized to reduce the system.

1. Introduction

Exact solutions of a system of nonlinear PDEs have lot of importance in the solution of initial or boundary value problems. It also helps to
see the exact inner picture of the phenomena. For higher order nonlinear system of PDEs, one does not has the enough methods to find
the exact solutions. Symmetry approach is one of the powerful tools for analyzing such systems. Lie group theory is also one of the most
interesting and active field of research for the solution of nonlinear PDEs. It is a systematic technique to construct a class of exact solutions or
reduce the considered differential equation into one of its simplest form. It also provides applicable approach to find the closed form solution
of differential equation. There are lot of efficient techniques available for the computation of exact solutions of differential equations. Some
well known techniques are separation of variables, traveling wave solution, self-similar solutions, solution by using ansatz and exponential
self-similar solutions. These approaches are the particular case of Lie group method (see [15]).
Reduction of a differential equation by using Noether approach is one of the aspect of Lie theory. Conserved quantities play a vital role in
the theory of differential equations. Solution and reduction of PDEs are some of the aspects where conserved quantities have its significant
importance. On the derivation of conservation laws active research efforts have been made in the last few decades. One of the elegant and
systematic approach is developed by Noether [12]. Direct method [2], characteristics approach [20] and the partial Noether approach [10] are
the approaches which have been used frequently in literature. Computing utilities for the calculation of conservation laws are also practised
in past (see [4, 6, 7, 8, 9, 21, 22]).
A first systematic method for finding the conservation laws [12] of the variational problems is given by Emmy Noether. She found a link
between the symmetries and conservation laws [12]. She concluded that each symmetry corresponds to a conserved quantity. This approach
is valid for the variational problems and thus depends on the existence of standard Lagrangian. There is a big class of PDEs and system of
PDEs which do not posses standard Lagrangian, thus Noether approach is not applicable. In this article, we will apply Noether approach to
the non-variational system of PDEs. For this we will use the following steps:

(i): Convert the non-variational system of PDEs into variational problem by using suitable transformation.

(ii): Standard Lagrangian is calculated and Noether approach is applied in new coordinates.
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(iii): Noether operators and corresponding conservation laws are computed.

(iv): Use an inverse transformation to convert the conserved quantities into the coordinates of original problem.
The bi-Hamiltonian Boussinesq system [1]:

ut −Ωvx = 0, vt −Ω

(
uxxx +8uux

)
= 0, (1.1)

describes shallow-water wave propagation in both directions, where Ω is a real constant.
In the past, lot of work has been done on the different forms of shallow-water waves propagation by means of Lie symmetry analysis. In
[14], M. Pandey discussed the one dimensional shallow water equation by using Lie approach. Exact solutions of one dimensional axis
symmetric flow of shallow water equations involving bores was computed with the help of point symmetries in [17]. Plebanski’s second
heavenly equation and 2+1-dimensional hamiltonian integrable system and is discussed in [11, 23] by means of symmetries. The group
analysis and an infinite aggregate of non-degenerate solutions of the equations of one-dimensional model of shallow water with a straight
bottom is discussed in [5].
The pattern of this paper is as follow. In Section 2, basic operators are discussed. The Lie point generators and reduction by using similarity
variables for the system (1.1) are discussed in Section 3. Local conserved quantity and double reduction for the considered system is
computed in Section 4. At last conclusion is provided.

2. Basic operators

Let (t,x) be independent variables and (u,v) be dependent variables. Consider the third order system of PDEs with two independent and
dependent variables i.e.

E1(t,x,u,v,ut ,vt , ...) = 0, E2(t,x,u,v,ut ,vt , ...) = 0. (2.1)

(1): A vector field:

Y = τ(t,x,u,v)
∂

∂ t
+ξ (t,x,u,v)

∂

∂x
+φ(t,x,u,v)

∂

∂u
+η(t,x,u,v)

∂

∂v

is a Lie point symmetry generator of (2.1) if it satisfies the invariance condition i.e.

Y [3]E1 = 0, Y [3]E2 = 0, whenever E1 = 0, E2 = 0, (2.2)

where Y [3] is the third prolongation [13].

(2): If u→Ux and v→Vx in (2.1) then the given third order system becomes fourth order system in U , V variables, i.e.

G1(t,x,U,V,Ut ,Vt , ...) = 0, G2(t,x,U,V,Ut ,Vt , ...) = 0. (2.3)

(3): The Euler operator is:

δ

δU
=

∂

∂U
−Dt

∂

∂Ut
−Dx

∂

∂Ux
+D2

t
∂

∂Utt
+D2

x
∂

∂Uxx
+ ..., (2.4)

δ

δV
=

∂

∂V
−Dt

∂

∂Vt
−Dx

∂

∂Vx
+D2

t
∂

∂Vtt
+D2

x
∂

∂Vxx
+ ..., (2.5)

where

Dt =
∂

∂ t
+Ut

∂

∂U
+Vt

∂

∂V
+Utt

∂

∂Ut
+Vtt

∂

∂Vt
+Utx

∂

∂Ux
+ ... (2.6)

and

Dx =
∂

∂x
+Ux

∂

∂U
+Vx

∂

∂V
+Uxx

∂

∂Ux
+Vxx

∂

∂Vx
+Utx

∂

∂Ut
+ ... (2.7)

are known as the total derivative operators.

(4): The generalized operator is defined by

X = τ
∂

∂ t
+ξ

∂

∂x
+φ

∂

∂U
+η

∂

∂V
+φ

x ∂

∂Ux
+η

x ∂

∂Vx
+φ

t ∂

∂Ut
+ ...· (2.8)

(5): A standard Lagrangian L = L(t,x,U,V,Ut ,Vt ...) ∈ A (space of differential functions) and satisfies:

δL
δU

= 0 and
δL
δV

= 0.

(6): The generalized operator is known as Noether operator associated with a standard Lagrangian L if it satisfies:

X [2]L+L(τt + τUUt + τVVt +ξx +ξUUx +ξVVx) = B1
t +B1

UUt +B1
VVt +B2

x +B2
UUx +B2

VVx. (2.9)
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In Eq.(2.9), Bi’s are known as the gauge terms, while X [2] is the second prolongation of the generator X .

(7): The equation:

(T 1)t +(T 2)x = 0 (2.10)

evaluated on the solution space given by (2.1) is known as the conservation laws for Eq. (2.1). The vector T = (T 1,T 2) is a conserved vector
where T 1,T 2 are its components.

The conserved vectors of the system (2.1) associated with a Noether operator X can be determined from the formula:

T i = Bi−Ni(L) i = 1,2, (2.11)

where

N1 = τ +(φ − τUt −ξUx)
δ

δUt
+(η− τVt −ξVx)

δ

δVt
−Dt(φ − τUt −ξUx)

δ

δUtt

−Dt(η− τVt −ξVx)
δ

δVtt
−Dx(φ − τUt −ξUx)

δ

δUtx
+ ..., (2.12)

N2 = ξ +(φ − τUt −ξUx)
δ

δUx
+(η− τVt −ξVx)

δ

δVx
−Dx(φ − τUt −ξUx)

δ

δUxx

−Dx(η− τVt −ξVx)
δ

δVxx
−Dt(φ − τUt −ξUx)

δ

δUtx
+ ...· (2.13)

Following statements are taken from [3, 18, 19].

(8): For nonlocal variable ω such that T 1 = ωx and T 2 =−ωt . While using similarity variables one can have T r = ωs and T s =−ωr, where

T r =
T 1Dt(r)+T 2Dx(r)

Dt(r)Dx(s)−Dx(r)Dt(s)
, T s =

T 1Dt(s)+T 2Dx(s)
Dt(r)Dx(s)−Dx(r)Dt(s)

, (2.14)

so that DrT r +DsT s = 0.

Theorem 2.1. If system (2.1) admits a nontrivial conserved form that has at least one associated symmetry in every reduction can be
reduced to a non linear system of 2nd order ordinary differential equations namely T r = K, while T r is defined in (2.14).

3. Lie Point Symmetries

In this section, we will apply standard method for finding infinitesimal generators for (1.1). Using (1.1) in (2.2) one can have an over-
determined system of linear PDEs that corresponds the following Lie point symmetries [13]:

Y1 = t
∂

∂ t
+

x
2

∂

∂x
−u

∂

∂u
− 3v

2
∂

∂v
, Y2 =

∂

∂ t
, Y3 =

∂

∂x
, Y4 =

∂

∂v
. (3.1)

After rescalling

Y1 =
2
3

Y1, Y2 = Y2, Y3 = Y3 and Y4 = Y4

.
By the definition of a subalgebra, one can easily conclude that there are infinite number of a one-dimensional subalgebras of

L = {Y1,Y2,Y3,Y4}.

The greatest or best representative of these algebras is called optimal system of one-dimensional subalgebra. In view of all these we can
write an arbitrary element from L i.e.

Y = aY1 +bY2 + cY3 +dY4, (3.2)

where a,b,c and d are real constants. Before going to write down optimal system for the one-dimensional algebra it should be noted that £i
and £ j are said to be equivalent conjugacy classes if

£i = Ad Yi

(
£ j

)
,

where Yi ∈ L1 and

Ad
[

exp
(

tYi

)]
Y j = Y j− t[Yi, Y j]+

t2

2

[
Yi, [Yi, Y j]

]
−·· · .

Now our next task is to simplify (3.2) by applying a carefully chosen adjoint transformation [16] that gives:

£1 =< Y1 >, £2 =< Y2 >, £3 =< Y3 >, £4 =< Y4 >,

£5 =< Y4 + εY3 >, £6 =< Y2 + εY3 >,£7 =< Y4 + εY2 +αY3 >,

where ε =±1 and α 6= 0.
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3.0.1. Reduction by calculating similarity variables

< Y1 >
This operator has the following characteristic system

dt
t
=

dx
( x

2 )
=

du
−u

=
dv

(−3v
2 )

. (3.3)

(3.3) can be separated into the following linear equations

(i) :
dt
t
=

dx
( x

2 )
, (ii) :

dt
t
=

du
−u

, (iii) :
dx
( x

2 )
=

dv
(−3v

2 )
. (3.4)

Integrating (3.4 (i)), (3.4 (ii)) and (3.4 (iii)) one by one we get the following results respectively:

ξ =
t

x2 , u =
P(ξ )

t
, v =

Q(ξ )

x3 .

Substituting the obtained invariants in (1.1) we obtain the following system of ordinary differential equation:

dP
dξ

+2Ωξ
2 dQ

dξ
− P

ξ
+3Ωξ Q = 0,

8Ωξ
3 d3P

dξ 3 +36Ωξ
2 d2P

dξ 2 +8(3ξ +2P)Ω
dP
dξ
−ξ

dQ
dξ

= 0. (3.5)

Similarly, working on the same line we discuss each class one by one.
< Y2 >

ξ = x, u = P(ξ ), v = Q(ξ ),

system after using similarity variables we have:

dQ
dξ

= 0,
d3P
dξ 3 +8P

dP
dξ

= 0. (3.6)

< Y3 >
For this case, one can have constant solution.
< Y4 >
It does not give any new solution.
< Y4 + εY3 >

ξ = t, u = P(ξ ), v =
x
ε
+Q(ξ ).

System (1.1) after using similarity variables yields the following solution:

v =
x
ε
+ c1, u =

Ωt
ε

+ c2. (3.7)

< Y2 + εY3 >
Similarity variables:

ξ = εt− x, u = P(ξ ), and v = Q(ξ )

converts the system (1.1) into:

dP
dξ

+Ω
dQ
dξ

= 0, Ω
2 d3P

dξ 3 +(ε +8Ω
2P)

dP
dξ

= 0. (3.8)

< Y4 + εY2 +αY3 >

ξ = εαt− εx, u = P(ξ ), v =
t
ε
+Q(ξ ).

System after using similarity variables we have:

α
dP
dξ

+Ωε
dQ
dξ

= 0, Ωε
3 d3P

dξ 3 −8ΩP
dP
dξ
−α

dQ
dξ
− 1

ε
= 0. (3.9)

4. Noether operators and conservation laws

In this section, we will calculate the conserved quantities of the system of shallow-water waves propagation.
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4.1. System of shallow-water waves propagation

It should be noted that system (1.1) belongs to the class of non-variational problems and hence does not possess a standard Lagrangian. In
order to make system (1.1) variational let us take u =Ux and v =Vx. The system (1.1) becomes

Utx−ΩVxx = 0, Vtx−Ω

(
Uxxxx +8UxUxx

)
= 0. (4.1)

The standard Lagrangian for system (4.1) is:

L =
Ω

2
U2

xx +
Ω

2
V 2

x +
4
3

ΩU3
x −

1
2

UtVx−
1
2

UxVt . (4.2)

Using Eq.(4.2) in Eq.(2.9) and separating with respect to derivatives of U and V one gets:

(i) : ξx = 0, (ii) : ξt = 0, (iii) : ξU = 0, (iv) : ξV = 0, (v) : ηU = 0, (4.3)

(i) : τV = 0, (ii) : τU = 0, (iii) : τx = 0, (iv) : τt = 0, (v) : ηV = 0, (4.4)

(i) : φU = 0, (ii) : φV = 0, (iii) : φx = 0, (iii) : φt = 0, (4.5)

(i) : B1
U =−1

2
ηx, (ii) : B1

V = 0, (iii) : B2
U =−1

2
ηt , (iv) : B2

V = Ωηx (4.6)

and

B1
t +B2

x = 0. (4.7)

The solution of Eqs. (4.3)-(4.7) is

τ = c1, ξ = c2, φ = a, η = b+ c3x, (4.8)

B1 =−1
2

c3U +λ (t,x), B2 =−1
2

btU−
1
2

atV + c3ΩV +δ (t,x). (4.9)

where

λt +δx = 0, (4.10)

while a and b are any arbitrary functions of t. Without loss of generality one can take λ = 0 = δ . Thus the Noether operators for the system
(4.1) will be:

X1 =
∂

∂ t
, X2 =

∂

∂x
, X3 = x

∂

∂V
, X(a,b) = a

∂

∂U
+b

∂

∂V
. (4.11)

Using (2.11) and after applying the inverse transformation, i.e. U →
∫

udx, V →
∫

vdx we can get the corresponding conserved vectors for
the system (1.1). One can easily verify that only X2 leads to local conserved quantity:

T 1
2 =−uv, T 2

2 =
Ω

2
v2− Ω

2
u2

x +
8Ω

3
u3 +Ωuuxx. (4.12)

4.2. Double reduction by Noether approach

In this section, we will apply double reduction theory [3, 18, 19] for the reduction of the system (1.1). One can see that Y1 and Y2 are the
associated Lie point symmetries thus using a linear transformation:

Y =
∂

∂ t
+β

∂

∂x
,

the corresponding similarity variables will be:

s = t, r = β t− x, u = u(r), v = v(r). (4.13)

Using nonlocal conservation law (4.12) in (2.14) we have

T r =−βuv− Ωv2

2
+

Ωu2
r

2
− 8Ωu3

3
−Ωuurr. (4.14)

Using Theorem (2.1) we get:

−Ωu
d2u
dr2 +

Ω

2

(
du
dr

)2
− 8Ωu3

3
−βuv− Ωv2

2
= K, (4.15)

where K is a real constant.
So system (1.1) after reduction converts to:

dv
dr

=−βΩ
du
dr

, −Ωu
d2u
dr2 +

Ω

2

(
du
dr

)2
− 8Ωu3

3
−βuv− Ωv2

2
= K. (4.16)
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4.3. Conclusion

In this paper, we presented a complete classification of one dimensional subalgebra of the symmetry algebra of the system of shallow-water
waves propagation up to conjugacy classes. These conjugacy classes were further used to reduce the considered system (1.1) into system of
ordinary differential equation.
Further, Noether approach was applied to the non-variational third order systems of PDEs (1.1). In order to convert the considered system
into variational problem the transformation u =Ux and v =Vx was applied. Moreover, local conserved quantity for new fourth order systems
in U , V variables was computed by using Noether approach. Then an inverse transformation U →

∫
udx, V →

∫
vdx was used to obtain the

local conserved quantity for the main problem. The obtained local conservation law with corresponding Lie point symmetries was used to
get double reduction for the system (1.1).
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[19] A. Sjöberg, On double reductions from symmetries and conservation laws, Non. Lin. Anal. Real World Appl., 10(6) (2009),3472−3477.
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